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Semiclassical approximations to the coherent-state propagator for a particle in a box
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We compute the semiclassical coherent-state propagator for a particle moving in a one-dimensional box. In
this semiclassical approach complex trajectories are stationary paths of the propagator's asymptotic expansion
and play a fundamental role. A second semiclassical approximation is also introduced, which makes use of real
trajectories only. An application to a seemingly simple system, the infinite well, is carried out completely for
the diagonal elements, and a comparison is made among the three possible methods, those based on complex
and real trajectories and the “exact case” that is determined by decomposing the propagator into its eigen-
states[S1050-294{@6)04908-4

PACS numbsdis): 03.65.Sq

[. INTRODUCTION of view, is the freedom from caustic problems in momentum
and position representations. In this work we present a brief
It is a remarkable fact how semiclassical methods havéeview of the theory of the semiclassical approximation of
contributed to enlarge and clarify our understanding of quan@ne-dimensional coherent-state propagators as developed in
tum systems. The spirit of such semiclassical programs is t§€tail in Ref.[12]. The main result of the theory is that the

describe quantum systems by classical elements only or g{assical—like trajectories contributing to the semiclassical

oLl . ropagator exist in a complexified phase space and satisfy
leaSt’ by Cla.ss'ce.“ like elements that emerge from S.em.'daésnixed end-point conditions. Of course, we expect that trajec-
sical approximations. The quantum postulates intrinsicall

q ibe d ical ; b | i h Y%ories moving deep into the imaginary part of the phase
escribe dynamical Systeéms by compiementary SCNemeg,qq give exponentially small contributions and can, there-

These reflgct themselves_in the ma_thematical structure of t re, be neglected. The main contribution can generally be
theory, whlch avoids conjugate \_/arlab_les to possess simultaayen into account by considering only neighborhoods of real
neously precise measurements in a given state. A direct CORrajectories. Some recent studid®,11] have addressed the
Sequence of this fact is the nonexistence of a pOSitiVe deﬁnitgame Subject, Wlth focus on other Specific quantum SystemS,
function with a probability interpretation associated with two using, however, a different methodo|ogy_ There have been
conjugate variables. However, the definition of distributionseveral tentative schemes of complexificatifiB,14 in
functions with different physical interpretations and which semiclassical theory recently, and some of them try to im-
depend on both conjugate parameters is possible; the Wignerove semiclassical formulas in the regions where the expan-
[1] and Husimi[2] functions are the best examples. One verysion by the usual stationafyeal) orbits does not work prop-
attractive application of such distributions is the possibility erly. The inability of semiclassical relations to treat tunneling
of a comparative study between classical phase-space strygshenomena is well known, and some form of complex struc-
tures and quantum mechanical “phase-space” pictures. Thaure is needed, in the form of either a complex tifd8] or
Husimi distribution is particularly well suited for this study, complex trajectorie$14]. The approach developed [A2]
since coherent statdsr Gaussian wave packgtsan be re- suggests a form of complexification that appears naturally as
garded as the most similar probability distributions to classinew complex dynamical equations that connect the quantum
cal particles. The connection between the Husimi andnechanical paramete(t&om the coherent-state propagajors
Wigner distributions is that the former can be written as ato the new boundary conditions for those equations.
Gaussian average of the latter. This has the effect of smooth- In this paper we apply the semiclassical formula for the
ing the quantum oscillations present in the Wigner distribu-coherent-state propagator to a seemingly simple system, a
tion and allowing the classical structures to be more easilyparticle moving in a one-dimensional box. In spite of its
recognized in the quantum phase-space picture. simplicity, we shall see that this problem displays several
The most natural way of introducing semiclassical ap-unexpected features. In addition to the complex orbit ap-
proximations in quantum mechanics is through the path inproximation (COA) for the propagator, we also consider a
tegral formalism developed by FeynmE8]. Its application real orbit approximatiofROA) where only small neighbor-
to the usual position or momentum propagators has beehoods of real orbits are taken in account. Finally, we com-
studied in detai[4,5], and it has given rise, in particular, to pare the results of three possible methods: the COA, the
the famous “trace formula’[6], which relates the density of ROA, and the “exact method,” that is, the expansion of the
states to a sum over periodic orbits of the correspondingropagator in its eigenstates.
classical system. The path integral version in the coherent This work is organized as follows: in Sec. Il we review
states representation was introduced by Klauder and othelsiefly the theory for the COA and ROA; in Sec. Ill we treat
[7-9], as its advantages are highly attractive, in spite of thehe infinite well case where complex orbits are obtained, as
mathematical difficulties in developing the approximation.well as other classical elements like the energy, action etc; in
One of these advantages, in addition to the phase-space poiéc. IV we determine the key ingredients for the semiclassi-
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cal approximation of the coherent-state propagator; and in N~1 42,
Sec. V we present the main results and discuss conclusions K(zy,2,T)= lim f H —Lgoth )
and open questions. Noo/ j=1 7
Il. BRIEF REVIEW OF THE THEORY where
N—1
The quantum mechanical propagator for the timia the _ . 1o 12 1 2 ~
coherent-state representation is defined by 7= kzo ~W(Z a2 2|2d° 212l — eHi e ©)
K(Z"*,Z,,T):<Z”|e_IHT/h|Z,>, (1) and
where |z) is the coherent state generated by the harmonic ~ (zk+l|I:||zk)
i iltoniand ~= D2/2+ w292/2 Hkr10=—0 o~ - €C)
oscillator HamiltoniarH,=p q-/2, (Z741]24)
|z)=e*1’zlz‘2eza1|0), (2 In the semiclassical regimé: (~0), the integrals in Eq(6)
. can be carried out by the steepest descent method. Such a
with |0) the ground state, procedure involves the determination of all stationary phase
o points, in fact a trajectory of pointg., of o. Not all these
1/9 p trajectories, however, should be included in the semiclassical
L L ©) L L
2\b ¢ approximation. Some of them are called noncontributing and
should be left out; we will return to this point later.
the creation operator, and The condition for a stationary solution reads
1(q p 70, 27 g (10
ZZE B+IE . (4) &zk_ , 02:+1_ ,
] ) or, more explicitly,
The widths are given bp=#A/w andbc=#. The param- _
etersqg andp that label the coherent state are real numbers. le dH s 1/
. . e . * *
The quantity in Eq(1) represents the probability ampli- EEORE A s TIO, k=1,2,...,N—1,
tude of a transition between the initial sta#¢) and the final k 11
state|z”) after a timeT. Later we will restrict the treatment ~ (1D
he di I '=27", which i icularly i e i
to the diagona case' =z, which is partlcy arly important Z—Zi1— - ——=0, k=0,1,... N-2.
to compute the Husimi distributions of eigenstates and the ho 9z

spectrum. In this case we expect to find large values of o
|K(z*,z,T)|? at pointsz close to a periodic orbit with period In the limit e—0 Egs.(11) reduce to
close toT. -
_ —1dH 1 oH (12

A. The semiclassical propagator Zhoar P Th e

A semiclassical formula for the propagatdy has been
obtained in Ref[12] by using the path integral approach and
the steepest descent methb]. Here we are going to re-
view very briefly the basic steps of this semiclassical deriva
tion. We start, as usual, by dividing the timieinto N small
intervals of sizee and inserting into1l) N—1 intermediate
over-completeness relations,

andH(z,z*)=(z|H|z)/(z|z). The “smoothed” Hamiltonian
H(z,z*) does not coincide with the classical Hamiltonian
H[a(z,z*),p(z,z*)]. However, the difference between the
two is of order# and, as discussed 2], it can be ne-
glected in this approximation.
The solution of these equations has been discussed before,
by Klauder[7] and in[12], and the key point concerns the
d?z boundary conditions. If we try to solve Eq$12) with
f |Z>7<Z|=1- (5)  z(0)=z' and z*(T)=z*, we see immediately that these
boundary conditions are much too restrictive for general so-
lutions to be found. In fact, how can there be a trajectory in
a two-dimensional phase space'if z'*, andT (five param-
N-1 42, eterg are given? The way out of this apparent conflict is
f _ | given by the discrete equatiori$1), where we see that;
) andzy never appear. Therefore, we should look for solutions
Cfh i of (12) with z(0)=z2' but z*(0)#z'* andz* (T)=2"* but
X(zyle |zn-1)- - (zile |20), z(T)#2". General solutions satisfying the above conditions
(6) exist in a complexified phase space. Similar interpretations
have been suggested in recent work8]. Our treatment is,
where we have set’=zy andz’ =z,. Using standard prop- however, different, since we are going to directly integrate
erties of coherent states, H§) can be expressed in the form Egs.(12).

In the limit whereN—o, we get

K(Z),20,T)= lim

N—o

=1 T
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The new complex phase space will contain stationary tra- u(t)=ov*(t) (19
jectories described by new complex parameteendv (as
substitutes foz andz*, respectively with for O<t<T, a real trajectory is obtained. In this case
H,=0, and all variables assume real values. Also, if
1(qg 1p 1/(qg 1p z'=7", then this orbit is periodic with period.
- E b e VT E b ¢ (13 It is useful to define real phase-space variables by
g=x;+1pz,
Note that nowg andp are complex numbers and, therefore,
u#v* in general. New Hamiltonian equatiorior a com- B
plex classical mechanicgre P=p1t Xz (20
9H 9H If the HamiltonianH is an analytical function, then it is
hu=—, —lho=—, (14 possible to write EQs.(14) in terms of the real part
% o H1(X1,P2,P1,X2) only and get
and the orbits appearing in the semiclassical propagator are H H H H
those which satisfy 5(122, p1=— Q )'(2:2' D= — h
4 0Xq P, Xy
1(q 1p’ (21
Z’=u0)=u'=—7—|—+—/, . . .
N Therefore, the one-dimensional complex dynamics can be

(15)  described as a two-dimensional real mechanical system. For

1(q 1p’ the sake of comparison to other results we will call Ef)
7% =y(T)= vn:E<F — ?> , the complex orbit approximatioiCOA).
whereq’, p’, g", andp” arereal parameters. Note also that B. Contributing and noncontributing trajectories
nothing is said about the numbar$ andv’ as far as initial The semiclassical approximation of E@) leads to the

conditions are concerned. They are determined by the intedetermination of all stationary trajectories satisfying Egs.

gration of the Hamiltonian equatiori$4) and will depend in  (14) and (15). There are cases, however, in which the con-

a complicated way om’ andv”. tribution of a given stationary trajectory far exceeds the ex-

Expandingo up to second order around the stationarypected value of the original function, which does not corre-
paths and doing the quadratic Gaussian integrals gives thepond to any reasonable physical behavior whatsoever. To
final coherent-state semiclassical approximafib?| understand why these trajectories have to be excluded we
recall that the semiclassical approximation treated here con-

[ S, I siders the asymptotic limit of integrals of the type
KSC|(Z"* ,Z,,T):E % au,ﬁ:}/leX[{%Sﬂvu,ur,T) ymp g yp

I(\)= fcg(z)e“’"(z)dz, (22

J

1
=S+, 16

whereC is some previously defined curve andis a very

where the sumj is performed over all possible stationary large parameter. The steepest descent method involves the

trajectories that connect the points andv” in the timeT,  deformation of the original contou€ into the steepest de-

andS is the complex action scent paths emanating from the stationary pafalso called
critical pointg. It so happens that some of these points may
lead to a contribution larger than the very integral defined

dt over the original contou€. When this happens such a criti-
cal point obviously cannot be taken into account in the final

o approximation. An outstanding simple example of a noncon-
- ?(v uj+u'vj). 7 tributing stationary point is given by the asymptotic limit of
the Airy function defined byr{=1,2,3)

T
?(UJ'UJ‘—UJ'UJ')—H(UJ',UJ')

Sj(v",u’,T)=f

0

It can be shown that the functio§;(v”,u’,T) obeys the 3

. 1 Z
relations Fn(s)= _f eszfz3/3dzl W(z)=z— =, S—x,
211 C, 3
0S 0S 0S (23
— " - ! - =
Sor = WU o=’ oo=—H, (18

with the curvesC,, defined in[15]. One of the curves;)
as ifu andv were conjugate variables. cannot be deformed into a contour emanating from the sta-
Both the Hamiltonian and the action computed for such dionary pointz=1 simply because the resulting contribution
general solution are complex numbers, and we will denotdrom this point is much larger than the integrand defined
them byH=H;+1H, and S=S;+1S,, respectively. As is over the originalC, (see Ref[15]). In other cases the defor-
easily seen, the usual classical mechanics is contained in timeation of the curveC in (22) through some stationary points
equations above. In fact, if is prohibited by the Cauchy theore(see[15], p. 268, the
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example of the Hankel function of tygg. In all cases these and a quadratic expansion around real orbits would retain the
stationary phase points are callethdmissibleor noncon-  essential information. Assuming that the classical motion is
tributing. There is, however, no general method which en-bounded, we see that through each phase-space pp (
ables the direct discrimination of the noncontributing points.with H(q,p) =E (one degree of freedonthere is a periodic
This determination is generally made posteriori In the  orbit with periodr= 7(E). Therefore, as discussed[it?], if
process of selecting contributing and noncontributing pointsT is close tor, i.e.,
not only technical but also physical arguments may be in-
voked in order to discriminate the anomalous outcome of T=7+4T, (30
inadmissible point$16].

In the case of the functional given k) the situation is
the samgasymptotic limit forh “1=#—0). The integration 9S 1 52
is defined over all phase space, and the complexification S(z*,2,T)=S(z*,z,7)+ = 6T+ = — 6°T. (3]
scheme may reveal stationary trajectoriesitical points JT 29T
from ¢’ (z) =0] whose contribution is larger than the maxi-
mum value expected dK(z”,z,T)|, which is 1. As every
integrand entering into Ed6) is also limited, it follows that

an expansion of the action is possible:

The coefficients of this expansion can be calculated with
the help of Eqs(18) and give

no stationary path which leads to a contribution larger than 1 S

can be taken into account in the final approximation. They T —H(u",v")=—Ey, (32
are accordingly callechoncontributing trajectories They

have also been noticed in othe_r sy_ste[_ﬂl@_], and in the _ 2S JH JH dv’ L oH 52S

present system they can be easily discriminated, as we will — = (33

cee. gT2" 9T ' aT hav u'aT’

whereE, is the energy of the real orbit around which the

h 2h

C. Example approximation is made. Using also the relation
As a simple application of the semiclassical approxima-
tion described above, we present the harmonic oscillator. As 1S o | =— 9S (34)
the generator of the coherent-state basis, the semiclassical h dv"’ aT
approximation to the harmonic oscillator coherent-state
propagator is exact. The Hamiltonian is and differentiating both sides with respect w6, we can
) further simplify (33) and get
1 w
H=gpt 5 d @49 #S . PS "
T T G = T (39
or
Substituting these approximations intb6) we find
H=Awuv, (25
~ I 0°S(z*,z, 7)) |
hat Eqs(14 * =D /- —— "V exg —S(z* ,z, 7
so that Eqs(14) are Ksel(Z¥,2,T) ; 5 o do" ex;{ﬁsj(z \Z,7T})
U+ilwu=0, v—lwv=0. (26) | |
—|z|2——E05T——a5T2}, (36)

The complex trajectories that satisfy the boundary conditions

(15) are easily determined as
which we call the real orbit approximatidiROA).

ut)=u'e ", p(t)=v"e ", 27 As we will see in the explicit example of a particle in a
) ) ) i box, Eq. (36) does provide a good approximation to the
Notice thatu(t) #v* (t) in general, except in the special case propagator for most values of, p, andT.
whereu’=v"* andT=2n7/w. The action is In the next sections we will compute the propagator for a
VI JR, particle moving in a box of an infinite square-well potential
S(”,u’.T) hu've ' (28) according to the three available methods: the complex orbit
approximation, the real orbit approximation, and by expand-

and the propagator is finally given by ing the propagator in its eigenstates:

loT w1 ) 5 "
K(Z'™*,z2', T)=exg — —+2'2"*e "' — =(|Z|*+|Z'|?)|.
2 2 K(Z”*,Z,,T):E <Zu|n><n|zr>eflEnT/ﬁ (37)
(29 n=1
D. Approximation by real trajectories Where|n> Is the eigenstate
Complex trajectories have complex actionsSfis posi- (2} . (nmx nm _
tive the trajectories give an exponentially small contribution Xm={r|sin /=] n=123..., (39

to the semiclassical propagator. We would then expect that
only slightly complex orbits give a substantial contribution whose energy is
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k2202 whereq’, p’, 9", p”, and T are given, and we have set
En=—%7 (39  c=b=1. We will specifically treat wave packets of mini-
mum uncertainty throughout this work.
We call the propagator determined K§7) the exact case
since it will work as the standard quantum calculation to A. Integration
which semiclassical methods will be compared. In £7),

the Husimi functions are determined by According to(21), the equations of motion are given by

L X;=p1, X=0,
<n|2>=(m> J7w<n|x> p1=0, P2=Xz, (45)

and a straightforward integration yields
(40)

xex;{ (x _q)2+ | p(x g/2) |d
- 2 n ”
4b T(q"=q')+2(p"+p’)
. L . . . 4+T?
Since the infinite sum in Ed37) is not numerically treat-
able, it is necessary to introduce a cutoff. Our numerical 2(q"—q’)-T(p"+p’)

Xy (t)=

t+q’

calculations for the exact propagatsee Sec. Yinclude up 1572 :

to 400 eigenstates, so as to make the square value of the

modulus ofK(z*,z,0) very close to 1 for most of the phase- 2(q"—q" )~ T(p"+p )

space region under study. p,(t)= 4+T2 p’ (46)

I1l. THE INFINITE WELL SYSTEM ” , 1 ,
T(g"—q")+2(p"+p’)

The infinite well system is described by the Hamiltonian 4+T? '
function y b
2(9"=q")=T(p"+p’)
p2 L XZ(t): 4+T2 ’
PR IX|< =,
H(q,p)= 41 T(q" Q)+2(D"+P)
(a,p) (41 Dy(t)= 2
o, |X|>§

We call solutions(46) direct trajectories since no bounce
Although this Hamiltonian is not analytical, it can be seen agoccurs in the interval &t<T. It must, however, be empha-

a limit of an analytic set of Hamiltonians of the form sized that relation§l5) do not automatically lead to the also
necessary conditions
p2 2q 2n
Ho(a.p) =5+ (42 L L L

L
xilsz. lpad=3, X<z, lpal=5 47
for n—o and the real equation®0) and (21) may be ap-
plied. Therefore, the associated two-dimensional Hamilthat are applied independently in order to sort out the correct
tonian is given by solutions from the general ones.
Reflection at the boundary gives rise to a change in the
sign of the complex momentum,

1 L2
E(pi_xg), xi+p3= R
Hi(X1,P2,P1,X2) = ) P17 P, Xom Xy, (48)
o, x§+ p§>—_ since the complex energy is a constant of motion. We call
4 43 n the trajectoryorder, which is equal to the total number of
43 pounces during the time evolution. ¥ andp%’ are the
The system is then transformed into a circular infinite wellpoints where thgth collision occurs at the timg , the par-
where the particle bounces in a particular way against th&cle position and momentum are
potential walls. The boundary conditiofs5) imply the fol-

lowing bonds on the solutions of the systépi): PP =(=Dip;, xI P ()=pf P t—t)+xP,
L . o . 49

X1(0) —Xa(0)=x; —x;=0, xg V(O =(=1lx;, pYPO)=xg P (t-t)+py
p1(0)+px(0)=p;+ps=p’, for tj<t<t;,,. The collision points are related by ther-

(44)  der relation
X1(T)+X2(T)=X{+x3=0",

p1(T) —p2A(T)=p1—po=p", X1+p2="". (50
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The relations between two successive reflections are

79+1):p(11+1)A+§(11),

I =Xt VA + Y,

2 (52

A:tj_tj_l.

It is easy to see that every possible solution can be classified
according to two main types depending on the sign of the

final momentumeven trajectoriegn ever) andodd trajec-
tories (n odd). The final momentum is therefore

pi=(—1)"p;1,

(52
X5=(—1)"%;.

Relations(44) enable us to write connection formulas for the
initial and final positions. We easily find that, for even tra-

jectories,

X1=p1(T—nA)+xg,

(53
p5=X(T—nA)+p,,
and for odd trajectories,
X1=—pi[T+A(N—1)—2t,]+ X1,
(54)

p5=—X[T+A(n—1)—2t,]+p;.

By substituting relation$44) in (53) and(54), the complex
momentum is easily found. Far even (=2),

(T—=nA)(Q"—q")+2(p"+p")

pl(m=

! 4+(T—nA)? '
(55

cm 2@ =a) = (T=nA)(p"+p’)

z 4+(T—nA)? ’

and forn odd (n=1),
p,(n): qrr_qr
Lo 2t,-T-A(n-1)

(56)

p/I+ p/

r(n)— _
X2 2t —T—A(N—1)

This is but a partial calculation, singg andx, still depend

on the collision time&,, and onA, which are found with the
help of relation(50). We only need to have suitable relations

for x, andp,. These come from the last bounaven tra-
jectories,n=2)

X =q"—x,—pyT—ty),
(57)
PP =pi—p"—x5(T—t,),

and (odd trajectoriesn=1)

1813
X =q"+x5+py(T—ty),

(58
Py =x5(T—t)—p1—p"-

Since two variables A andt,) must be determined, two
equations are required. Applying relati¢h0) again for the
(n—1)th collision gives(even trajectoriesp=2)

XV =q"=x5—piM(T—t,—A),

(59
P =pi—p"—xM(T—t,—A),
and (odd trajectoriesn=1)
X =q"+x5+p M(T—t,—A),
(60)

PP =x"(T—t,—A)=p;—p".

Next we are going to analyze these solutions according to
their order and determine equations for the time variables in
(55 and (56). We will specifically treat diagonal elements,
so that from now on we will restrict the former equations to
the casey’=q"=q andp’'=p"=p.

B. Analysis of complex trajectories
1. n=0

For n=0 there is no bounce, but Eq#7) limit the
phase-space region where a direct trajectory can be found. In
general, these solutions are found in regions of low momen-
tum and for small timedI. They also dominate the phase
space forT— 0. Applying relations(47) to the direct trajec-
tories (46), we get the existence conditions

T?p?+4pqT—B?(4+T?)<0,
61
T2p?—4pqT—B?(4+T?)<0, (61
with

LZ
2_- 2
B 7~ a (62
Figure 1 shows an examplgor T=1.0) of the existence
regions in phase space for even and odd trajectories with
several orders. The=0 region is the first shaded area
around the lingp=0.

2.n=1

If we defineé;=2t;—T and apply Eqs(58) in (50) we
easily get
B2¢1+4pgé; — (4+T%)p’=0 (63)

which immediately gives

T 1
ti=5 + 7g2[4Pa=[pVLA(4+T%) - 40°T?].  (64)

3.neven &2)

If we substitute Eqs(57) and(59) in relation(50) and use
the definitions
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FIG. 1. The dashed area shows the phase-space regions where

diagonal real and complex orbifsvith u’(0)=z andv"(T)=2z*]
for T=1.0 can be found(a) trajectories withn even (=0 in the
first half diamondn=2 in the second diamond, eXc(b) trajecto-
ries withn odd fromn=1 ton=5.

£,=2t,—T—nA,
£n-1=2t,—T—(n—2)A, (65)
an=T—nA,
two quadratic equations are obtained:
p’ér+4paé,—B(4+af) =0,
(66)

p2¢2_,+4pqgé,_1—BX(4+a3)=0.

Since the coefficients in Eq$66) are the same and the so-
lutions are

2 1
e RN L2

6

b (67)

we take&, =& and &, =& . By definition (65) we have
(gn—l_gn)2:4A2a

which results, together witt67), in a quadratic equation for
A:

(68)

A%(B?n%—p?)—2B%nA+L2%+B2T?=0. (69
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It is easy to see that E¢69) contains among its solutions the
real one. In this particular case,=0, and it gives

L
A=|—|. (70)
The general solutions are
. BT+ (p?-Bn?)L*+p*T?B?
A= BZnZ—p? - (72)
The last bounce timet, is calculated by summing
§n+§n,l, or

(72

T+A(n—1)—2ﬂ.

tn:z

4. n odd &3)

Again we substitute Eqg58) and (60) in (50) with the
definition
En=E&n-1=2t,—T—-A(n—-1) (73
and a pair of equations is also obtained:

B%¢,+4paé,—{4+[T—A(n—1)]3p?=0,
B2&_ 1 +4pqé, 1 —{4+[T—A(n+1)]%p?=0. (74
Given (73), possible solutions exist if
[T-A(N—1)]P=[T-A(n+1)]% (75

thatisA=0 or A=T/n. Taking the only reasonable solution

A= o (76)
we find by summingg, +&,_, that
tniHZ”_l +1(§§+§§1)} 7
2 n 2
with
bntén 1= %i% 2+(87T)2. (78)

However, it must be pointed out that general solutions for
t, andA are still limited by the “causal” requirement

0<A<t,<T. (79
The number of solutions will strongly depend on the param-
etersq, p, andT. While odd trajectories for a givem (low),

g, andT may present a multitude of possible solutidesv-
eral order§, even trajectories in general are uniquenirior
small values ofT. The phase space is also far from being
completely covered by complex orbits. In semiclassical
terms the regions of phase space that lack complex trajecto-
ries are related to very low probability transition amplitudes.
In fact, we will see that for such regions the semiclassical
approximation is zero. Figure 1 shows the regions of exist-
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FIG. 2. Complex diagonal trajectories for=1.0 in thex;-p, P

plane. Then=0 trajectory hagy=1.0 andp=2.5; n=1, q=1.0,
andp=1.0; andn=4, q=1.0, andp=21.0. The circle represents
the potential boundary.

FIG. 3. Imaginary part of the phasg, as a function ofp for
g=0 andT=1.0. WhenX,=0, the momenta take real values ac-
cording top=nL/p.
ence of solutions for even trajectories and odd trajectories
whenT=1.0. We see that odd trajectories are limited to awhich implies an abnormal increase in the final amplitude
small area aroun=0, and solutions of several orders exist [|K(z*,z,T)|?xexp(—3,)>1]. This unexpected behavior is
for some points in phase space. On the other hand even treelated to the problem of noncontributing stationary trajecto-
jectories are restricted to diamond shaped areas for each aies (see Sec. Il B and they should not enter into the final
der. As the value op increases the number of bounces in- semiclassical approximation. In fact, we will see that the
creases accordingly. In Fig. 2 are shown some examples @bntribution from direct trajectories is indeed enough for a

trajectories forT=1.0 in the complexq plane together with
the well boundary. Th@=0 trajectory corresponds to a di-
rect orbit with end pointgj=1.0 andp=2.5. The odd tra-
jectory n=1 hasg=1.0 andp=1.0 and the even orbit
n=4 hasq=1.0 andp=21.0.

IV. THE PROPAGATOR

We now proceed to the determination of the COA, Eq.
(16). According to Eq.(15), we can write

u//(n):vrr+ \/El(_ 1)np(n)’

v’(”)zu’—\/Zp(”),

with n=0,1,2,..., pM=p{"+x{"V, andu’=v"* (diago-
nal elements For the infinite well systenfand also for qua-
dratic one-dimensional systejrthe action does not contain
the integral part, so that

(80)

"o Ih myr(n) 1. r(n)
Sn(v u 1T):_E[U u +tu'v ] (81)

or by (80)
1%
Sn(U",U’,T):— E{u12+v//2+I\/Ep(n)[_u/_,r_(_l)nv//]}

(82

is the complex action for the infinite well.

A direct substitution of the trajectories in the argument of
the exponential in(16) shows that, for odd trajectories, it
may happen that

1h
S,=Im Sn(v",u’,T)+E(|v”|2+|u’|2) <0, (83

good approximation in phase-space regions of low momen-
tum (in Fig. 1 the area of odd trajectories shrinks to the line

p=0 asT—®). In the following analysis we will, therefore,

consider even trajectories only, since they dominate almost

all the phase space.
For direct trajectories, and consequently the0 region,

the semiclassical approximation is analytically given by

18T p?

1+1 ,BT} (84)

Keel(Z¥,2,T)=(1+ |/8T)‘1/2exp{

with 8= 1/4.

The behavior of%,, (83) as function ofp at q=0 is de-
picted in Figs. 3 and 4 fof = 1.0 andT=12.0, respectively,
in the case of even trajectories. The imaginary part of the

10.0
8.0
6.0
o~
“l

0.0

FIG. 4. Imaginary part of the phasg, as a function ofp for
g=0 and T=12.0. AsT increases, several orbits with different
orders can contribute to the same phase paint
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phase>,, goes to zero at the real orbit, and assumes positivezp”); the final derivatives must then be calculated at the
values for complex orbits. This shows that the propagatodiagonal elements. It is then straightforward to get
amplitude is maximal at the real orbits and goes smoothly to

zero outside them. For low momentum, Rsncreases, sev- s __ % 8anp dan
eral orders can contribute to the amplitude, which means aq" ap 2T a?  (4+a?)? aq” qp’
semiclassically that several semiclassical paths exist connect- ' ’
ing the initial and final states. ap1 2 8a,p Jdag
We still have to determine the amplitude or second varia- -l = 2" 22 oo |
; ; : ; d 4+ 4+ J
tion of the actions?S/au’ gv”. Starting with Eq.(18), P g an  (4+an)®ap a.p @
IS MKyl 2 2p 4aﬁp -(?an
—lhv :W' (85) (9(]” ap 4+a§ 4+aﬁ (4+a§)2- &q” q'py
and using(80), it gives x| ey 2p 4a?p oa,
#S [(apgﬂ axgm) (ax;m apgm” M|,  Atan [4taq (4+ap)?]op”]
T o o " I " + " .
U’ du 9" Ip 9" Ip WPeg) with «,, given in Egs.(65) and
o : . o d 2pgad+4(g%+2p?)
The derivatives in relatioi86) require the determination of i,’,‘ = qu 2 2(q Zp Jan =,
the collision times for general elements’¢q” and p’ aq" |, @nP(4B°—p°/n%)—8p“(2q+pT/n%)
|
day, 2(B2—2p?/n?)a?+4p(2pT/n?—7q) an+ 8%+ 4[2B%— (pT/n)?] -
ap” qp__ pa,(4B2—p?/n?)—8p(2q+pT/n?) : (88)

Equations(82) and (86) to (88) determine the semiclassical presses the correlation between the initial quantum state rep-
propagator completely. In the next section we are going taesented byz) and the final statéz, T). In the vicinity of a
compare the “exact” with the real and complex orbit ap- periodic orbit, clearly|z)~|z,T) and the amplitude exhibits

proximations. a large value. AS increases, the number of periodic orbits
with period proportional td grows accordingly, so that the
V. RESULTS AND CONCLUSION number of “scars” of periodic orbits in the quantum phase-

In order to present some numerical comparisons betweepPac® Maps also increases. From the comparison of the three
the exact result, the COA, and the ROA, we have fixed?PProximations we see that the CQ# has aq dependence

L=27 #=1. and also the coherent-state widthsc=1.  Which is not present in the ROf). This dependence disap-
To compute the ROA for the propagator at the phase poinP€ars in the real a}pproximation, pecau_se the same real orbit
z and timeT, we first find the real orbit through this point. If 1S used to approximate the amplitude in every phase-space
7o is its period, we take itsmth repetition such that Pointin theq line. Since this periodic orbit is characterized

|T—m7| is as small as possible. The final expression in thi?y the momentum only, the set of points near it will assume
case is the same amplitude. Thedependence is otherwise given by

the exponential in89).
The most important difference between the ROA and the

2
|Rsc|(2*,Z,T)|2= %,_S,(q'pj) eXF{L(a*—a)gl—z}, COA is the lack of probability amplitude near the line
Ju”dv 2h p=0 for the real approximation. The COA uses direct com-
plex trajectories in this region, as we have already discussed.
) 2 In fact, the number of distinct orbits used in the ROA is
a:|U|2W(q,D,T), (89 much smaller than in the COA where, for each phase-space

point, there is a different complex trajectory.
As far as the absolute probability amplitude is concerned,
ST=T—71, 7=mmg. the good agreement of the semiclassical procedures with the
exact propagator can be appreciated in Fig. 8, where we

Figures 5 to 7 show contour plots dK(z*,z T)|? for  show|K(z*,z,T)|? as function ofp for q=0. Parts(a), (b),

T=0.5, 1.0, and 1.5, respectively. In each of these figuresnd(c) show results foilT=0.5, 1.0, and 1.5, respectively,

we show the exact result, the COA, and the ROA. Thesavith solid lines representing the amplitude as calculated by

figures show a probability concentration around periodic trathe COA, while circles display the ROA, and dot-dashed

jectories, corresponding to the fact that the amplitude exlines represent the exact propagator. The widths of the semi-
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classical approximations are slightly smaller than those givesatisfying the necessary boundary conditions in a generic
by the exact propagator. Figures 9 and 10 showone-dimensional situation. The method and its application to
|K(z*,z,T)|? versusq at fixed values op. In Fig. 9 we have a smooth potential will be presented elsewhere.
choserp=1.125, such that the orbits contributingkonever Our calculations also point out an important result: con-
hit the potential boundaryn(=0), while in Fig. 10 we have trary to our initial expectations, it is not true that there is
chosen p such that the orbits hit the boundary twice always a complex orbit fronu(0)=u’ to v(T)=v" in the
(n=2). In both figures part&), (b), and(c) show results for time T for all u’, v”, andT. For a fixedT, at the phase-
T=0.5,T=1.0, andT= 1.5, respectivelynotice that Fig. 9 space regions where such orbits do not exist, the semiclassi-
does not show the ROA, which is zero for=0). From these cal propagator is zero. From the numerical results, we see
figures we see that thedependence of the COA interpolates that this is, however, not critical, since the exact propagator
between the maximum and minimum values reached by théself is very small at these places. On the other hand, com-
smooth exact propagator, although it is very abrupt. plexification is thought to save semiclassical methods from
From the results presented in this paper, we see that thHéeir inability to treat some dynamical systems where real
semiclassical methods are very successful in describing thigajectories may not exist. Now, we have seen an example
infinite well potential, for which the poorest agreementwhere, for a great part of the phase-space, even complex
would in principle be expected due to the discontinuity of thetrajectories do not exist.
potential. We believe that the results should improve for Another interesting result of the paper was the computa-
smoother potentials. This system was treated at a “semiandion of odd trajectories, assembled around the Ipe0.
lytical” level, that is, we have developed analytically the These were seen to result in a nonphysical contribution to the
main relations as far as possible, and then numerical calcypropagator at this line because they exceed the limiting value
lation was used. It is not difficult to see that a similar treat-of K(z*,z,T). From a more physical point of view, we no-
ment of other potentials is hardly possible, and then numeritice that the even trajectories are the natural analytical con-
cal methods must be applied thoroughly. We have alreadtinuation of the real periodic orbits. The odd trajectories, on
developed a numerical algorithm to compute complex orbitshe other hand, possess no physical interpretation whatso-

40.0 ' (b) . (9)
300 1 F 1 f 1
& 200 - 1L 1L | FIG. 6. Contour plots ofK(z*,z,T)|? (nor-
: malized for T=1.0: (a) the exact caseb) the
_ B complex approximatiogCOA), and(c) the ROA.
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FIG. 7. Contour plots ofK(z*,z,T)|? (nor-
malized for T=1.5: (a) the exact caseb) the
complex approximatiogCOA), and(c) the ROA.

FIG. 8. Absolute value ofK(z*,zT)|? at
g=0: (@ T=0.5, (b) T=1.0, and(c) T=1.5.
Solid line is the COA, dot-dashed line represents
the exact propagator, and circles the ROA.

FIG. 9. Absolute value ofK(z*,zT)|? at
p=1.125 (=0) for different times:(a) T=0.5,
(b) T=1.0, and(c) T=1.5. Solid line represents
the COA and dot-dashed line the exact propaga-
tor.
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ever. Indeed, a real trajectory with initiadj (o) that bounces accessible by real dynamidthey would connect different
just once at the wall has its momentum changed in sign angarts of the propagated packebuggestive as it seems, tun-
can never return to the same phase-space point before bouneling effects, in particular, could be studied in this way.
ing again at the opposite wall. In this sense odd trajectories

are unphysical and should be discarded. This conclusion is

also justifieda posteriori since the contributions from direct ACKNOWLEDGMENTS

trajectories totally account for the propagator fz£0.
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