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We compute the semiclassical coherent-state propagator for a particle moving in a one-dimensional box. In
this semiclassical approach complex trajectories are stationary paths of the propagator’s asymptotic expansion
and play a fundamental role. A second semiclassical approximation is also introduced, which makes use of real
trajectories only. An application to a seemingly simple system, the infinite well, is carried out completely for
the diagonal elements, and a comparison is made among the three possible methods, those based on complex
and real trajectories and the ‘‘exact case’’ that is determined by decomposing the propagator into its eigen-
states.@S1050-2947~96!04908-6#

PACS number~s!: 03.65.Sq

I. INTRODUCTION

It is a remarkable fact how semiclassical methods have
contributed to enlarge and clarify our understanding of quan-
tum systems. The spirit of such semiclassical programs is to
describe quantum systems by classical elements only or, at
least, by classical-like elements that emerge from semiclas-
sical approximations. The quantum postulates intrinsically
describe dynamical systems by complementary schemes.
These reflect themselves in the mathematical structure of the
theory, which avoids conjugate variables to possess simulta-
neously precise measurements in a given state. A direct con-
sequence of this fact is the nonexistence of a positive definite
function with a probability interpretation associated with two
conjugate variables. However, the definition of distribution
functions with different physical interpretations and which
depend on both conjugate parameters is possible; the Wigner
@1# and Husimi@2# functions are the best examples. One very
attractive application of such distributions is the possibility
of a comparative study between classical phase-space struc-
tures and quantum mechanical ‘‘phase-space’’ pictures. The
Husimi distribution is particularly well suited for this study,
since coherent states~or Gaussian wave packets! can be re-
garded as the most similar probability distributions to classi-
cal particles. The connection between the Husimi and
Wigner distributions is that the former can be written as a
Gaussian average of the latter. This has the effect of smooth-
ing the quantum oscillations present in the Wigner distribu-
tion and allowing the classical structures to be more easily
recognized in the quantum phase-space picture.

The most natural way of introducing semiclassical ap-
proximations in quantum mechanics is through the path in-
tegral formalism developed by Feynman@3#. Its application
to the usual position or momentum propagators has been
studied in detail@4,5#, and it has given rise, in particular, to
the famous ‘‘trace formula’’@6#, which relates the density of
states to a sum over periodic orbits of the corresponding
classical system. The path integral version in the coherent
states representation was introduced by Klauder and others
@7–9#, as its advantages are highly attractive, in spite of the
mathematical difficulties in developing the approximation.
One of these advantages, in addition to the phase-space point

of view, is the freedom from caustic problems in momentum
and position representations. In this work we present a brief
review of the theory of the semiclassical approximation of
one-dimensional coherent-state propagators as developed in
detail in Ref.@12#. The main result of the theory is that the
classical-like trajectories contributing to the semiclassical
propagator exist in a complexified phase space and satisfy
mixed end-point conditions. Of course, we expect that trajec-
tories moving deep into the imaginary part of the phase
space give exponentially small contributions and can, there-
fore, be neglected. The main contribution can generally be
taken into account by considering only neighborhoods of real
trajectories. Some recent studies@10,11# have addressed the
same subject, with focus on other specific quantum systems,
using, however, a different methodology. There have been
several tentative schemes of complexification@13,14# in
semiclassical theory recently, and some of them try to im-
prove semiclassical formulas in the regions where the expan-
sion by the usual stationary~real! orbits does not work prop-
erly. The inability of semiclassical relations to treat tunneling
phenomena is well known, and some form of complex struc-
ture is needed, in the form of either a complex time@13# or
complex trajectories@14#. The approach developed in@12#
suggests a form of complexification that appears naturally as
new complex dynamical equations that connect the quantum
mechanical parameters~from the coherent-state propagators!
to the new boundary conditions for those equations.

In this paper we apply the semiclassical formula for the
coherent-state propagator to a seemingly simple system, a
particle moving in a one-dimensional box. In spite of its
simplicity, we shall see that this problem displays several
unexpected features. In addition to the complex orbit ap-
proximation ~COA! for the propagator, we also consider a
real orbit approximation~ROA! where only small neighbor-
hoods of real orbits are taken in account. Finally, we com-
pare the results of three possible methods: the COA, the
ROA, and the ‘‘exact method,’’ that is, the expansion of the
propagator in its eigenstates.

This work is organized as follows: in Sec. II we review
briefly the theory for the COA and ROA; in Sec. III we treat
the infinite well case where complex orbits are obtained, as
well as other classical elements like the energy, action etc; in
Sec. IV we determine the key ingredients for the semiclassi-
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cal approximation of the coherent-state propagator; and in
Sec. V we present the main results and discuss conclusions
and open questions.

II. BRIEF REVIEW OF THE THEORY

The quantum mechanical propagator for the timeT in the
coherent-state representation is defined by

K~z9* ,z8,T!5^z9ue2ıĤT/\uz8&, ~1!

where uz& is the coherent state generated by the harmonic
oscillator HamiltonianĤ05 p̂2/21v2q̂2/2,

uz&5e21/2uzu2eza
†
u0&, ~2!

with u0& the ground state,

a†5
1

A2
S q̂b1ı

p̂

c D ~3!

the creation operator, and

z5
1

A2
S qb1ı

p

c D . ~4!

The widths are given byb5A\/v andbc5\. The param-
etersq andp that label the coherent state are real numbers.

The quantity in Eq.~1! represents the probability ampli-
tude of a transition between the initial stateuz8& and the final
stateuz9& after a timeT. Later we will restrict the treatment
to the diagonal casez85z9, which is particularly important
to compute the Husimi distributions of eigenstates and the
spectrum. In this case we expect to find large values of
uK(z* ,z,T)u2 at pointsz close to a periodic orbit with period
close toT.

A. The semiclassical propagator

A semiclassical formula for the propagator~1! has been
obtained in Ref.@12# by using the path integral approach and
the steepest descent method@15#. Here we are going to re-
view very briefly the basic steps of this semiclassical deriva-
tion. We start, as usual, by dividing the timeT into N small
intervals of sizee and inserting into~1! N21 intermediate
over-completeness relations,

E uz&
d2z

p
^zu51. ~5!

In the limit whereN→`, we get

K~zN* ,z0 ,T!5 lim
N→`

E )
j51

N21
d2zj
p

3^zNue2ıĤe/\uzN21&•••^z1ue2ıĤe/\uz0&,

~6!

where we have setz95zN andz85z0 . Using standard prop-
erties of coherent states, Eq.~6! can be expressed in the form

K~zN* ,z0 ,T!5 lim
N→`

E )
j51

N21
d2zj
p

eıs/\ ~7!

where

s5 (
k50

N21

2ı\~zk11* zk2
1
2 uzku22

1
2 uzk11u2!2eH̃k11/2 ~8!

and

H̃k11/25
^zk11uĤuzk&
^zz11uzk&

. ~9!

In the semiclassical regime (\→0), the integrals in Eq.~6!
can be carried out by the steepest descent method. Such a
procedure involves the determination of all stationary phase
points, in fact a trajectory of pointszk , of s. Not all these
trajectories, however, should be included in the semiclassical
approximation. Some of them are called noncontributing and
should be left out; we will return to this point later.

The condition for a stationary solution reads

]s

]zk
50,

]s

]zk11*
50, ~10!

or, more explicitly,

2zk*1zk11* 2
ıe

\

]H̃k11/2

]zk
50, k51,2, . . . ,N21,

~11!

zk2zk112
ıe

\

]H̃k11/2

]zk11*
50, k50,1, . . . ,N22.

In the limit e→0 Eqs.~11! reduce to

ż5
2ı

\

]H̃

]z*
, ż*5

ı

\

]H̃

]z
, ~12!

andH̃(z,z* )5^zuĤuz&/^zuz&. The ‘‘smoothed’’ Hamiltonian
H̃(z,z* ) does not coincide with the classical Hamiltonian
H@q(z,z* ),p(z,z* )#. However, the difference between the
two is of order\ and, as discussed in@12#, it can be ne-
glected in this approximation.

The solution of these equations has been discussed before,
by Klauder@7# and in @12#, and the key point concerns the
boundary conditions. If we try to solve Eqs.~12! with
z(0)5z8 and z* (T)5z* , we see immediately that these
boundary conditions are much too restrictive for general so-
lutions to be found. In fact, how can there be a trajectory in
a two-dimensional phase space ifz8, z9* , andT ~five param-
eters! are given? The way out of this apparent conflict is
given by the discrete equations~11!, where we see thatz0*
andzN never appear. Therefore, we should look for solutions
of ~12! with z(0)5z8 but z* (0)Þz8* andz* (T)5z9* but
z(T)Þz9. General solutions satisfying the above conditions
exist in a complexified phase space. Similar interpretations
have been suggested in recent works@10#. Our treatment is,
however, different, since we are going to directly integrate
Eqs.~12!.
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The new complex phase space will contain stationary tra-
jectories described by new complex parametersu andv ~as
substitutes forz andz* , respectively! with

u5
1

A2
S qb1

ıp

c D , v5
1

A2
S qb2

ıp

c D . ~13!

Note that nowq andp are complex numbers and, therefore,
uÞv* in general. New Hamiltonian equations~for a com-
plex classical mechanics! are

ı\u̇5
]H

]v
, 2ı\ v̇5

]H

]u
, ~14!

and the orbits appearing in the semiclassical propagator are
those which satisfy

z85u~0!5u85
1

A2
S q8

b
1
ıp8

c D ,
~15!

z9*5v~T!5v95
1

A2
S q9

b
2
ıp9

c D ,
whereq8, p8, q9, andp9 arereal parameters. Note also that
nothing is said about the numbersu9 andv8 as far as initial
conditions are concerned. They are determined by the inte-
gration of the Hamiltonian equations~14! and will depend in
a complicated way onu8 andv9.

Expandings up to second order around the stationary
paths and doing the quadratic Gaussian integrals gives the
final coherent-state semiclassical approximation@12#

Kscl~z9* ,z8,T!5(
j
A ı

\

]2Sj
]u8]v9

expF ı\ Sj~v9,u8,T!

2
1

2
~ uv9u21uu8u2!G , ~16!

where the sumj is performed over all possible stationary
trajectories that connect the pointsu8 andv9 in the timeT,
andS is thecomplex action

Sj~v9,u8,T!5E
0

TF ı\2 ~v j u̇ j2 v̇ juj !2H~uj ,v j !Gdt
2
ı\

2
~v9uj91u8v j8!. ~17!

It can be shown that the functionSj (v9,u8,T) obeys the
relations

]S

]v9
52ı\u9,

]S

]u8
52ı\v8,

]S

]T
52H, ~18!

as if u andv were conjugate variables.
Both the Hamiltonian and the action computed for such a

general solution are complex numbers, and we will denote
them byH5H11ıH2 andS5S11ıS2 , respectively. As is
easily seen, the usual classical mechanics is contained in the
equations above. In fact, if

u~ t !5v* ~ t ! ~19!

for 0<t<T, a real trajectory is obtained. In this case
H250, and all variables assume real values. Also, if
z85z9, then this orbit is periodic with periodT.

It is useful to define real phase-space variables by

q5x11ıp2 ,

p5p11ıx2 . ~20!

If the HamiltonianH is an analytical function, then it is
possible to write Eqs.~14! in terms of the real part
H1(x1 ,p2 ,p1 ,x2) only and get

ẋ15
]H1

]p1
, ṗ152

]H1

]x1
, ẋ25

]H1

]p2
, ṗ252

]H1

]x2
.

~21!

Therefore, the one-dimensional complex dynamics can be
described as a two-dimensional real mechanical system. For
the sake of comparison to other results we will call Eq.~16!
the complex orbit approximation~COA!.

B. Contributing and noncontributing trajectories

The semiclassical approximation of Eq.~6! leads to the
determination of all stationary trajectories satisfying Eqs.
~14! and ~15!. There are cases, however, in which the con-
tribution of a given stationary trajectory far exceeds the ex-
pected value of the original function, which does not corre-
spond to any reasonable physical behavior whatsoever. To
understand why these trajectories have to be excluded we
recall that the semiclassical approximation treated here con-
siders the asymptotic limit of integrals of the type

I~l!5E
C
g~z!elw~z!dz, ~22!

whereC is some previously defined curve andl is a very
large parameter. The steepest descent method involves the
deformation of the original contourC into the steepest de-
scent paths emanating from the stationary points~also called
critical points!. It so happens that some of these points may
lead to a contribution larger than the very integral defined
over the original contourC. When this happens such a criti-
cal point obviously cannot be taken into account in the final
approximation. An outstanding simple example of a noncon-
tributing stationary point is given by the asymptotic limit of
the Airy function defined by (n51,2,3)

Fn~s!5
1

2pıECnesz2z3/3dz, w~z!5z2
z3

3
, s→`,

~23!

with the curvesCn defined in@15#. One of the curves (C1)
cannot be deformed into a contour emanating from the sta-
tionary pointz̄51 simply because the resulting contribution
from this point is much larger than the integrand defined
over the originalC1 ~see Ref.@15#!. In other cases the defor-
mation of the curveC in ~22! through some stationary points
is prohibited by the Cauchy theorem~see@15#, p. 268, the
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example of the Hankel function of typej ). In all cases these
stationary phase points are calledinadmissibleor noncon-
tributing. There is, however, no general method which en-
ables the direct discrimination of the noncontributing points.
This determination is generally madea posteriori. In the
process of selecting contributing and noncontributing points,
not only technical but also physical arguments may be in-
voked in order to discriminate the anomalous outcome of
inadmissible points@16#.

In the case of the functional given by~6! the situation is
the same~asymptotic limit forl215\→0). The integration
is defined over all phase space, and the complexification
scheme may reveal stationary trajectories@critical points
from s8(z)50# whose contribution is larger than the maxi-
mum value expected ofuK(z9,z,T)u, which is 1. As every
integrand entering into Eq.~6! is also limited, it follows that
no stationary path which leads to a contribution larger than 1
can be taken into account in the final approximation. They
are accordingly callednoncontributing trajectories. They
have also been noticed in other systems@10#, and in the
present system they can be easily discriminated, as we will
see.

C. Example

As a simple application of the semiclassical approxima-
tion described above, we present the harmonic oscillator. As
the generator of the coherent-state basis, the semiclassical
approximation to the harmonic oscillator coherent-state
propagator is exact. The Hamiltonian is

H5
1

2
p21

v2

2
q2 ~24!

or

H5\vuv, ~25!

so that Eqs.~14! are

u̇1ıvu50, v̇2ıvv50. ~26!

The complex trajectories that satisfy the boundary conditions
~15! are easily determined as

u~ t !5u8e2ıvt, v~ t !5v9eıv~ t2T!. ~27!

Notice thatu(t)Þv* (t) in general, except in the special case
whereu85v9* andT52np/v. The action is

S~v9,u8,T!52ı\u8v9e2ıvT, ~28!

and the propagator is finally given by

K~z9* ,z8,T!5expF2
ıvT

2
1z8z9* e2ıvT2

1

2
~ uz9u21uz8u2!G .

~29!

D. Approximation by real trajectories

Complex trajectories have complex actions. IfS2 is posi-
tive the trajectories give an exponentially small contribution
to the semiclassical propagator. We would then expect that
only slightly complex orbits give a substantial contribution

and a quadratic expansion around real orbits would retain the
essential information. Assuming that the classical motion is
bounded, we see that through each phase-space point (q,p)
with H(q,p)5E ~one degree of freedom! there is a periodic
orbit with periodt5t(E). Therefore, as discussed in@12#, if
T is close tot, i.e.,

T5t1dT, ~30!

an expansion of the action is possible:

S~z* ,z,T!.S~z* ,z,t!1
]S

]T
dT1

1

2

]2S

]T2
d2T. ~31!

The coefficients of this expansion can be calculated with
the help of Eqs.~18! and give

]S

]T
52H~u8,v8!52E0 , ~32!

]2S

]T2
52

]H

]T
52

]H

]v8

]v8

]T
52

ı

\

]H

]v8

]2S

]u8]T
, ~33!

whereE0 is the energy of the real orbit around which the
approximation is made. Using also the relation

HS ı\ ]S

]v9
,v9D52

]S

]T
~34!

and differentiating both sides with respect tou8, we can
further simplify ~33! and get

]2S

]T2
52u̇v̇

]2S

]u8]v9
52a. ~35!

Substituting these approximations into~16! we find

K̃scl~z* ,z,T!5(
j
A ı

\

]2S~z* ,z,t j !
]u8]v9

expF ı\ Sj~z* ,z,t j !
2uzu22

ı

\
E0dT2

ı

2\
adT2G , ~36!

which we call the real orbit approximation~ROA!.
As we will see in the explicit example of a particle in a

box, Eq. ~36! does provide a good approximation to the
propagator for most values ofq, p, andT.

In the next sections we will compute the propagator for a
particle moving in a box of an infinite square-well potential
according to the three available methods: the complex orbit
approximation, the real orbit approximation, and by expand-
ing the propagator in its eigenstates:

K~z9* ,z8,T!5 (
n51

`

^z9un&^nuz8&e2ıEnT/\ ~37!

whereun& is the eigenstate

^xun&5S 2L D sinS npx

L
2
np

2 D , n51,2,3,. . . , ~38!

whose energy is

54 1811SEMICLASSICAL APPROXIMATIONS TO THE . . .



En5
\2p2n2

2L2
. ~39!

We call the propagator determined by~37! the exact case
since it will work as the standard quantum calculation to
which semiclassical methods will be compared. In Eq.~37!,
the Husimi functions are determined by

^nuz&5S 1

Apb
D 1/2E

2`

`

^nux&

3expF2
~x2q!2

4b2
1

ı

\
p~x2q/2!Gdx. ~40!

Since the infinite sum in Eq.~37! is not numerically treat-
able, it is necessary to introduce a cutoff. Our numerical
calculations for the exact propagator~see Sec. V! include up
to 400 eigenstates, so as to make the square value of the
modulus ofK(z* ,z,0) very close to 1 for most of the phase-
space region under study.

III. THE INFINITE WELL SYSTEM

The infinite well system is described by the Hamiltonian
function

H~q,p!55
p2

2
, uxu<

L

2
,

`, uxu.
L

2
.

~41!

Although this Hamiltonian is not analytical, it can be seen as
a limit of an analytic set of Hamiltonians of the form

Hn~q,p!5
p2

2
1S 2qL D 2n ~42!

for n→` and the real equations~20! and ~21! may be ap-
plied. Therefore, the associated two-dimensional Hamil-
tonian is given by

H1~x1 ,p2 ,p1 ,x2!55
1

2
~p1

22x2
2!, x1

21p2
2<

L2

4
,

`, x1
21p2

2.
L2

4
.

~43!

The system is then transformed into a circular infinite well
where the particle bounces in a particular way against the
potential walls. The boundary conditions~15! imply the fol-
lowing bonds on the solutions of the system~21!:

x1~0!2x2~0![x182x285q8,

p1~0!1p2~0![p181p285p8,
~44!

x1~T!1x2~T![x191x295q9,

p1~T!2p2~T![p192p295p9,

where q8, p8, q9, p9, and T are given, and we have set
c5b51. We will specifically treat wave packets of mini-
mum uncertainty throughout this work.

A. Integration

According to~21!, the equations of motion are given by

ẋ15p1 , ẋ250,

ṗ150, ṗ25x2 , ~45!

and a straightforward integration yields

x1~ t !5
T~q92q8!12~p91p8!

41T2
t1q8

1
2~q92q8!2T~p91p8!

41T2
,

p2~ t !5
2~q92q8!2T~p91p8!

41T2
t1p8 ~46!

2
T~q92q8!12~p91p8!

41T2
,

x2~ t !5
2~q92q8!2T~p91p8!

41T2
,

p1~ t !5
T~q92q8!12~p91p8!

41T2
.

We call solutions~46! direct trajectories, since no bounce
occurs in the interval 0<t<T. It must, however, be empha-
sized that relations~15! do not automatically lead to the also
necessary conditions

ux18u<
L

2
, up28u<

L

2
, ux19u<

L

2
, up29u<

L

2
~47!

that are applied independently in order to sort out the correct
solutions from the general ones.

Reflection at the boundary gives rise to a change in the
sign of the complex momentum,

p1→2p1 , x2→2x2 , ~48!

since the complex energy is a constant of motion. We call
n the trajectoryorder, which is equal to the total number of
bounces during the time evolution. Ifx̄1

( j ) and p̄2
( j ) are the

points where thej th collision occurs at the timet j , the par-
ticle position and momentum are

p1
~ j11!~ t !5~21! j p18 , x1

~ j11!~ t !5p1
~ j11!~ t2t j !1 x̄1

~ j ! ,
~49!

x2
~ j11!~ t !5~21! j x28 , p2

~ j11!~ t !5x2
~ j11!~ t2t j !1 p̄2

~ j ! ,

for t j<t<t j11 . The collision points are related by thebor-
der relation

x̄ 1
21 p̄2

25
L2

4
. ~50!
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The relations between two successive reflections are

x̄ 1
~ j11!5p1

~ j11!D1 x̄1
~ j ! ,

p̄2
~ j11!5x2

~ j11!D1 p̄2
~ j ! , ~51!

D5t j2t j21 .

It is easy to see that every possible solution can be classified
according to two main types depending on the sign of the
final momentum:even trajectories(n even! andodd trajec-
tories (n odd!. The final momentum is therefore

p195~21!np18 ,
~52!

x295~21!nx28 .

Relations~44! enable us to write connection formulas for the
initial and final positions. We easily find that, for even tra-
jectories,

x195p18~T2nD!1x18 ,
~53!

p295x28~T2nD!1p28 ,

and for odd trajectories,

x1952p18@T1D~n21!22tn#1x18 ,
~54!

p2952x28@T1D~n21!22tn#1p28 .

By substituting relations~44! in ~53! and ~54!, the complex
momentum is easily found. Forn even (n>2),

p18
~n!5

~T2nD!~q92q8!12~p91p8!

41~T2nD!2
,

~55!

x28
~n!5

2~q92q8!2~T2nD!~p91p8!

41~T2nD!2
,

and forn odd (n>1),

p18
~n!5

q92q8

2tn2T2D~n21!
,

~56!

x28
~n!52

p91p8

2tn2T2D~n21!
.

This is but a partial calculation, sincep1 andx2 still depend
on the collision timetn and onD, which are found with the
help of relation~50!. We only need to have suitable relations
for x̄1 and p̄2 . These come from the last bounce~even tra-
jectories,n>2)

x̄ 1
~n!5q92x282p18~T2tn!,

~57!
p̄2

~n!5p182p92x28~T2tn!,

and ~odd trajectories,n>1)

x̄ 1
~n!5q91x281p18~T2tn!,

~58!
p̄2

~n!5x28~T2tn!2p182p9.

Since two variables (D and tn) must be determined, two
equations are required. Applying relation~50! again for the
(n21)th collision gives~even trajectories,n>2)

x̄ 1
~n!5q92x282p18

~n!~T2tn2D!,
~59!

p̄2
~n!5p182p92x28

~n!~T2tn2D!,

and ~odd trajectories,n>1)

x̄ 1
~n!5q91x281p18

~n!~T2tn2D!,
~60!

p̄2
~n!5x28

~n!~T2tn2D!2p182p9.

Next we are going to analyze these solutions according to
their order and determine equations for the time variables in
~55! and ~56!. We will specifically treat diagonal elements,
so that from now on we will restrict the former equations to
the caseq85q95q andp85p95p.

B. Analysis of complex trajectories

1. n50

For n50 there is no bounce, but Eqs.~47! limit the
phase-space region where a direct trajectory can be found. In
general, these solutions are found in regions of low momen-
tum and for small timesT. They also dominate the phase
space forT→0. Applying relations~47! to the direct trajec-
tories ~46!, we get the existence conditions

T2p214pqT2B2~41T2!,0,
~61!

T2p224pqT2B2~41T2!,0,

with

B25
L2

4
2q2. ~62!

Figure 1 shows an example~for T51.0) of the existence
regions in phase space for even and odd trajectories with
several orders. Then50 region is the first shaded area
around the linep50.

2. n51

If we definej152t12T and apply Eqs.~58! in ~50! we
easily get

B2j1
214pqj12~41T2!p250 ~63!

which immediately gives

t15
T

2
1

1

4B2 @4pq6upuAL2~41T2!24q2T2#. ~64!

3. n even (>2)

If we substitute Eqs.~57! and~59! in relation~50! and use
the definitions
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jn52tn2T2nD,

jn2152tn2T2~n22!D, ~65!

an5T2nD,

two quadratic equations are obtained:

p2jn
214pqjn2B2~41an

2!50,
~66!

p2jn21
2 14pqjn212B2~41an

2!50.

Since the coefficients in Eqs.~66! are the same and the so-
lutions are

j652
2q

p
6

1

upu
AL21an

2B2 ~67!

we takejn5j1 andjn215j2. By definition ~65! we have

~jn212jn!
254D2, ~68!

which results, together with~67!, in a quadratic equation for
D:

D2~B2n22p2!22B2nD1L21B2T250. ~69!

It is easy to see that Eq.~69! contains among its solutions the
real one. In this particular casean50, and it gives

D5
L

upu
. ~70!

The general solutions are

D65
B2nT6A~p22B2n2!L21p2T2B2

B2n22p2
. ~71!

The last bounce timetn is calculated by summing
jn1jn21 , or

tn5
1

2 FT1D~n21!2
2q

p G . ~72!

4. n odd (>3)

Again we substitute Eqs.~58! and ~60! in ~50! with the
definition

jn5jn2152tn2T2D~n21! ~73!

and a pair of equations is also obtained:

B2jn
214pqjn2$41@T2D~n21!#2%p250,

~74!
B2jn21

2 14pqjn212$41@T2D~n11!#2%p250.

Given ~73!, possible solutions exist if

@T2D~n21!#25@T2D~n11!#2; ~75!

that isD50 orD5T/n. Taking the only reasonable solution

D5
T

n
, ~76!

we find by summingjn
61jn21

6 that

tn5
1

2 FTS 2n21

n D1
1

2
~jn

61jn21
6 !G ~77!

with

jn
61jn21

6 52
4pq

B2 6
2upu
B2 AL21SBTn D 2. ~78!

However, it must be pointed out that general solutions for
tn andD are still limited by the ‘‘causal’’ requirement

0,D,tn,T. ~79!

The number of solutions will strongly depend on the param-
etersq, p, andT. While odd trajectories for a givenp ~low!,
q, andT may present a multitude of possible solutions~sev-
eral orders!, even trajectories in general are unique inn for
small values ofT. The phase space is also far from being
completely covered by complex orbits. In semiclassical
terms the regions of phase space that lack complex trajecto-
ries are related to very low probability transition amplitudes.
In fact, we will see that for such regions the semiclassical
approximation is zero. Figure 1 shows the regions of exist-

FIG. 1. The dashed area shows the phase-space regions where
diagonal real and complex orbits@with u8(0)5z and v9(T)5z* #
for T51.0 can be found:~a! trajectories withn even (n50 in the
first half diamond,n52 in the second diamond, etc.!; ~b! trajecto-
ries withn odd fromn51 to n55.
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ence of solutions for even trajectories and odd trajectories
whenT51.0. We see that odd trajectories are limited to a
small area aroundp50, and solutions of several orders exist
for some points in phase space. On the other hand even tra-
jectories are restricted to diamond shaped areas for each or-
der. As the value ofp increases the number of bounces in-
creases accordingly. In Fig. 2 are shown some examples of
trajectories forT51.0 in the complexq plane together with
the well boundary. Then50 trajectory corresponds to a di-
rect orbit with end pointsq51.0 andp52.5. The odd tra-
jectory n51 has q51.0 and p51.0 and the even orbit
n54 hasq51.0 andp521.0.

IV. THE PROPAGATOR

We now proceed to the determination of the COA, Eq.
~16!. According to Eq.~15!, we can write

u9~n!5v91A2ı~21!np~n!,
~80!

v8~n!5u82A2ıp~n!,

with n50,1,2,. . . , p(n)5p1
(n)1ıx2

(n) , andu85v9* ~diago-
nal elements!. For the infinite well system~and also for qua-
dratic one-dimensional systems! the action does not contain
the integral part, so that

Sn~v9,u8,T!52
ı\

2
@v9u9~n!1u8v8~n!# ~81!

or by ~80!

Sn~v9,u8,T!52
ı\

2
$u821v921ıA2p~n!@2u81~21!nv9#%

~82!

is the complex action for the infinite well.
A direct substitution of the trajectories in the argument of

the exponential in~16! shows that, for odd trajectories, it
may happen that

S25ImFSn~v9,u8,T!1
ı\

2
~ uv9u21uu8u2!G,0, ~83!

which implies an abnormal increase in the final amplitude
@ uK(z* ,z,T)u2}exp(2S2)@1#. This unexpected behavior is
related to the problem of noncontributing stationary trajecto-
ries ~see Sec. II B! and they should not enter into the final
semiclassical approximation. In fact, we will see that the
contribution from direct trajectories is indeed enough for a
good approximation in phase-space regions of low momen-
tum ~in Fig. 1 the area of odd trajectories shrinks to the line
p50 asT→`). In the following analysis we will, therefore,
consider even trajectories only, since they dominate almost
all the phase space.

For direct trajectories, and consequently then50 region,
the semiclassical approximation is analytically given by

Kscl~z* ,z,T!5~11ıbT!21/2expF ıbTp211ıbTG ~84!

with b51/4.
The behavior ofS2 ~83! as function ofp at q50 is de-

picted in Figs. 3 and 4 forT51.0 andT512.0, respectively,
in the case of even trajectories. The imaginary part of the

FIG. 2. Complex diagonal trajectories forT51.0 in thex1-p2
plane. Then50 trajectory hasq51.0 andp52.5; n51, q51.0,
andp51.0; andn54, q51.0, andp521.0. The circle represents
the potential boundary.

FIG. 3. Imaginary part of the phaseS2 as a function ofp for
q50 andT51.0. WhenS250, the momenta take real values ac-
cording top5nL/p.

FIG. 4. Imaginary part of the phaseS2 as a function ofp for
q50 and T512.0. As T increases, several orbits with different
orders can contribute to the same phase pointz.
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phaseS2 goes to zero at the real orbit, and assumes positive
values for complex orbits. This shows that the propagator
amplitude is maximal at the real orbits and goes smoothly to
zero outside them. For low momentum, asT increases, sev-
eral orders can contribute to the amplitude, which means
semiclassically that several semiclassical paths exist connect-
ing the initial and final states.

We still have to determine the amplitude or second varia-
tion of the action]2S/]u8]v9. Starting with Eq.~18!,

2ı\v85
]S

]u8
, ~85!

and using~80!, it gives

]2S

]u8]v9
52\F S ]p1

~n!

]q9
2

]x2
~n!

]p9
D 1ıS ]x2

~n!

]q9
1

]p1
~n!

]p9
D GU

q,p

.

~86!

The derivatives in relation~86! require the determination of
the collision times for general elements (q8Þq9 and p8

Þp9); the final derivatives must then be calculated at the
diagonal elements. It is then straightforward to get

]p1
]q9

U
q,p

5
an

41an
2 2

8anp

~41an
2!2

]an

]q9
U
q,p

,

]p1
]p9

U
q,p

5
2

41an
2 2

8anp

~41an
2!2

]an

]p9
U
q,p

,

~87!
]x2
]q9

U
q,p

5
2

41an
2 2F 2p

41an
2 2

4an
2p

~41an
2!2G]an

]q9
U
q,p

,

]x2
]p9

U
q,p

52
an

41an
2 2F 2p

41an
2 2

4an
2p

~41an
2!2G]an

]p9
U
q,p

,

with an given in Eqs.~65! and

]an

]q9
U
q,p

5
2pqan

214~q212p2!an

anp~4B22p2/n2!28p2~2q1pT/n2!
,

]an

]p9
U
q,p

52
2~B222p2/n2!an

214p~2pT/n227q!an18q214@2B22~pT/n!2#

pan~4B
22p2/n2!28p2~2q1pT/n2!

. ~88!

Equations~82! and ~86! to ~88! determine the semiclassical
propagator completely. In the next section we are going to
compare the ‘‘exact’’ with the real and complex orbit ap-
proximations.

V. RESULTS AND CONCLUSION

In order to present some numerical comparisons between
the exact result, the COA, and the ROA, we have fixed
L52p, \51, and also the coherent-state widthsb5c51.
To compute the ROA for the propagator at the phase point
z and timeT, we first find the real orbit through this point. If
t0 is its period, we take itsmth repetition such that
uT2mt0u is as small as possible. The final expression in this
case is

uK̃scl~z* ,z,T!u25U ]2S

]u9]v8
~q,p,t!UexpF ı

2\
~a*2a!dT2G ,

a5uu̇u2
]2S

]u9]v8
~q,p,t!, ~89!

dT5T2t, t5mt0 .

Figures 5 to 7 show contour plots ofuK(z* ,z,T)u2 for
T50.5, 1.0, and 1.5, respectively. In each of these figures
we show the exact result, the COA, and the ROA. These
figures show a probability concentration around periodic tra-
jectories, corresponding to the fact that the amplitude ex-

presses the correlation between the initial quantum state rep-
resented byuz& and the final stateuz,T&. In the vicinity of a
periodic orbit, clearlyuz&;uz,T& and the amplitude exhibits
a large value. AsT increases, the number of periodic orbits
with period proportional toT grows accordingly, so that the
number of ‘‘scars’’ of periodic orbits in the quantum phase-
space maps also increases. From the comparison of the three
approximations we see that the COA~b! has aq dependence
which is not present in the ROA~c!. This dependence disap-
pears in the real approximation, because the same real orbit
is used to approximate the amplitude in every phase-space
point in theq line. Since this periodic orbit is characterized
by the momentum only, the set of points near it will assume
the same amplitude. Thep dependence is otherwise given by
the exponential in~89!.

The most important difference between the ROA and the
COA is the lack of probability amplitude near the line
p50 for the real approximation. The COA uses direct com-
plex trajectories in this region, as we have already discussed.
In fact, the number of distinct orbits used in the ROA is
much smaller than in the COA where, for each phase-space
point, there is a different complex trajectory.

As far as the absolute probability amplitude is concerned,
the good agreement of the semiclassical procedures with the
exact propagator can be appreciated in Fig. 8, where we
show uK(z* ,z,T)u2 as function ofp for q50. Parts~a!, ~b!,
and ~c! show results forT50.5, 1.0, and 1.5, respectively,
with solid lines representing the amplitude as calculated by
the COA, while circles display the ROA, and dot-dashed
lines represent the exact propagator. The widths of the semi-
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classical approximations are slightly smaller than those given
by the exact propagator. Figures 9 and 10 show
uK(z* ,z,T)u2 versusq at fixed values ofp. In Fig. 9 we have
chosenp51.125, such that the orbits contributing toK never
hit the potential boundary (n50), while in Fig. 10 we have
chosen p such that the orbits hit the boundary twice
(n52). In both figures parts~a!, ~b!, and~c! show results for
T50.5, T51.0, andT51.5, respectively~notice that Fig. 9
does not show the ROA, which is zero forn50). From these
figures we see that theq dependence of the COA interpolates
between the maximum and minimum values reached by the
smooth exact propagator, although it is very abrupt.

From the results presented in this paper, we see that the
semiclassical methods are very successful in describing the
infinite well potential, for which the poorest agreement
would in principle be expected due to the discontinuity of the
potential. We believe that the results should improve for
smoother potentials. This system was treated at a ‘‘semiana-
lytical’’ level, that is, we have developed analytically the
main relations as far as possible, and then numerical calcu-
lation was used. It is not difficult to see that a similar treat-
ment of other potentials is hardly possible, and then numeri-
cal methods must be applied thoroughly. We have already
developed a numerical algorithm to compute complex orbits

satisfying the necessary boundary conditions in a generic
one-dimensional situation. The method and its application to
a smooth potential will be presented elsewhere.

Our calculations also point out an important result: con-
trary to our initial expectations, it is not true that there is
always a complex orbit fromu(0)5u8 to v(T)5v9 in the
time T for all u8, v9, andT. For a fixedT, at the phase-
space regions where such orbits do not exist, the semiclassi-
cal propagator is zero. From the numerical results, we see
that this is, however, not critical, since the exact propagator
itself is very small at these places. On the other hand, com-
plexification is thought to save semiclassical methods from
their inability to treat some dynamical systems where real
trajectories may not exist. Now, we have seen an example
where, for a great part of the phase-space, even complex
trajectories do not exist.

Another interesting result of the paper was the computa-
tion of odd trajectories, assembled around the linep50.
These were seen to result in a nonphysical contribution to the
propagator at this line because they exceed the limiting value
of K(z* ,z,T). From a more physical point of view, we no-
tice that the even trajectories are the natural analytical con-
tinuation of the real periodic orbits. The odd trajectories, on
the other hand, possess no physical interpretation whatso-

FIG. 5. Contour plots ofuK(z* ,z,T)u2 ~nor-
malized! for T50.5: ~a! the exact case,~b! the
complex approximation~COA!, and~c! the ROA.

FIG. 6. Contour plots ofuK(z* ,z,T)u2 ~nor-
malized! for T51.0: ~a! the exact case,~b! the
complex approximation~COA!, and~c! the ROA.
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FIG. 7. Contour plots ofuK(z* ,z,T)u2 ~nor-
malized! for T51.5: ~a! the exact case,~b! the
complex approximation~COA!, and~c! the ROA.

FIG. 8. Absolute value ofuK(z* ,z,T)u2 at
q50: ~a! T50.5, ~b! T51.0, and~c! T51.5.
Solid line is the COA, dot-dashed line represents
the exact propagator, and circles the ROA.

FIG. 9. Absolute value ofuK(z* ,z,T)u2 at
p51.125 (n50) for different times:~a! T50.5,
~b! T51.0, and~c! T51.5. Solid line represents
the COA and dot-dashed line the exact propaga-
tor.
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ever. Indeed, a real trajectory with initial (q,p) that bounces
just once at the wall has its momentum changed in sign and
can never return to the same phase-space point before bounc-
ing again at the opposite wall. In this sense odd trajectories
are unphysical and should be discarded. This conclusion is
also justifieda posteriori, since the contributions from direct
trajectories totally account for the propagator forp.0.

The application of complex semiclassical dynamics to
nondiagonal elements of the propagator is also possible,
though more complicated. Such a calculation would enable
the study of the time evolution of Gaussian wave packets,
with complex trajectories connecting phase-space points not

accessible by real dynamics~they would connect different
parts of the propagated packet!. Suggestive as it seems, tun-
neling effects, in particular, could be studied in this way.
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