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The semiclassical approximation of the coherent-state propagator requires the computation
of complex trajectories satisfying special boundary conditions. In this paper we present a
method for the determination of such trajectories for one-dimensional polynomial potentials.
We also compute the semiclassical propagator for the case V(q)=1¢?*/2 + fq* and compare
the results with an “exact” calculation.  © 1996 Academic Press, Inc.

1. INTRODUCTION

The semiclassical limit of quantum theory has attracted the attention of physicists
since its inception. The definition of “tunneling time” and the exact way classical
chaos is recovered from quantum mechanics are examples of questions that remain
open. Among the several developments occurred in the past 30 years, there is the
semiclassical theory for the coherent-state propagator, given by

K(Z”, Z’, T) — <ZH| eleT/lz |Z’>,

where |z) is the harmonic oscillator coherent-state (see next section for a precise
definition). The study of the dynamical evolution of |z, ) is attractive because it
represents the time evolution of what most closely approximates a classical point in
phase space, that is, a Gaussian distribution with minimum uncertainty. The
coherent-state propagator represents the probability amplitude of the time evolved
wave-packet to be another coherent-state at z”. If the classical dynamics does not
affect significantly the shape of the initial packet, we expect to find large amplitudes
for the state |z”) whose center corresponds to the classically evolved center of |z,
according to Ehrenfest’s theorem.

A semiclassical formula for K(z”, z', T') can be obtained with the help of the path-
integral formulation [ 1-3]. It turns out that, in the limit # — 0, K(z", z’, T') can be
written in terms of classical trajectories only, similarly to the usual coordinate
propagator {x"| e "7/ |x"%, with the difference that the trajectories contributing
to K(z", z', T') are generally complex, although T remains a real parameter, even in
presence of tunnelling. In particular this method is suitable for problems lacking
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usual (real) trajectories in phase space. Several schemes of complexification have
been recently studied [4-6], aiming at an improvement in the semiclassical descrip-
tion in these particular regions. Some of these schemes, however, treat the time as
a complex variable, which turns out to be difficult to interpret physically.

In a recent paper [ 7] we studied in detail the one-dimensional problem of a par-
ticle in a box. Although the complexification of phase space required by the semi-
classical theory turns the problem into a two-dimensional effective problem, the
simplicity of the Hamiltonian still allowed for an analytical solution of the semi-
classical propagator. In this paper we deal with the more generic situation of
smooth one-dimensional Hamiltonians. We present a numerical method based
upon the monodromy method [ 8], that allows the complete determination of the
complex trajectories within the context of the semiclassical approximation to
the coherent-state propagators [9] in which the time is a real variable. We apply
the method to the quartic Hamiltonian (A >0, f>0)

H=3p*+54°+Bq",

and compute the exact and semiclassical propagators, comparing results.

This paper is organized as follows: in Section 2 we review the main semiclassical
formulas; in Section 3 we present the numerical algorithm to compute the complex
trajectories; in Section 4 we apply the method to the quartic Hamiltonian, comput-
ing trajectories as well as the propagators. Section 5 is devoted to the conclusions.

2. COMPLEX ORBITS AND THE SEMICLASSICAL PROPAGATOR

The coherent-state propagator is defined by

K(z", 2, T) =" e " |2, (1)
where
2y =e 121 |0 (2)

is the harmonic oscillator coherent-state, |0) is the ground state and

v L (4, p _1 (4 P>
‘ _ﬁ<b+lc>’ Z_ﬁ<b+lc ’

with bc=h. In (3) the parameters ¢ and p are real numbers corresponding to the
average value of the operators ¢ and p. In Ref. [9] a semiclassical approximation
for (1) was obtained by writing (1) as a path-integral and solving it by the steepest
descent method [10]. The result is that K(z", z', T') can be written as a sum over
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contributions (see Egs. (7) and (8) below) from complex trajectories obeying the
equations
OH 0H
i = — h= ——— 4
thu F th Eo (4)

with

and special boundary conditions

1 q/ p/ qr/ pr/>
0O =——(— —=u =7 T = — =" = "*' 6
u(0) ﬁ<b+lc> u =z, o( \/< —1 V' =z (6)

The new variables u and v are independent complex numbers not necessarily com-
plex conjugate of each other. This means that ¢ and p are themselves complex
variables. As explained in [ 7, 9], such extension to a complex phase space is indeed
necessary, and it comes out naturally from the steepest descent approximation. In
(4) H is the classical Hamiltonian obtained by substituting the inverse of the trans-
formation (5) into H(q, p). The final semiclassical formula for (1) reads

l "o 71 "2 2
K2 00=X e e rs @l D3P | @
with
r lh . : lh "on
S, T):J0 {Z(Ujuj—vjuj)—H(uj, vj)} dt—z(v u;+u'v;) (8)

being the complex action of the jth trajectory. The sum over j in (7) is performed
over all possible (complex) classical trajectories compatible with the conditions (6).
The function S obeys the relations

S ., 0S8 oS
=5 —1hv =3 _H_ﬁ' 9)

Similar to S the new Hamiltonian H is a complex function, and it is convenient
to write both these functions in terms of real and imaginary parts as S=S,; + 15,
and H= H,+1H,. In the special case where S, =0 and H, =0, then, for all times
t, we have

u(t) =v*(1), (10)

and the trajectory is real.
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In this paper we shall be mainly concerned with the development of a special
numerical method for the determination of general solutions of (4) and, conse-
quently, the numerical determination of (8). For the sake of simplicity we shall pre-
sent our method for systems with one degree of freedom only, i.e., systems whose
complex versions have two freedoms. The generalization for any number of
freedoms is straightforward [9].

Let us define new real variables x,, x,, p; and p,, so that

q=Xx;+1p,,
p=Dp+1xXs, (11)

then Egs. (4) become

. 1/0H, 0H, _ 1 /0H, O0H,
Y1=5 + o =5 + ,

0 Ox ox 0

P1 2 1 P> (12)
el(m gy, Lo o
272\ dp, ox, ) P2=7 ox, 0p,)

If now we restrict H to analytic functions only, which does not imply any serious
loss at all, we can rewrite these equations in terms of the real part of H only

. OH, . 0H,

X, = = —

: apl’ P ox,’ |
L_oH, . oH, (13)
2= 5])2’ D= axz-

Equations (13) are the usual Hamilton’s equations for a 2-degree of freedom
system.

Most of the Hamiltonians of interest are analytic, specially the polynomial poten-
tials

H=3p>+ Y q,q" (14)

Nevertheless the particle in a box [7] is an example where a non-analytic
Hamiltonian system was treated by Eq. (13). In this case, however, the Hamiltonian
function is seen as the limit of a polynomial potential of large degree,

1 2 2n
H[n/lwellzipz—}_nli_’nlo {<Lq> }a (15)

with L the size of the one-dimensional box.
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Finally the boundary conditions (6) in the new coordinate system are given by

b

x(0)= =2 x(0) =4,

(16)
Pi(0)+5 px(0)=p,
PT) =4 poT) =P’

3. NUMERICAL ALGORITHM

The numerical method described here follows very closely the monodromy matrix
method developed by M. Baranger et al. [ 8] to compute periodic orbits. Given an
initial tentative orbit, the method iterates this initial guess for a number of times
according to the linearized dynamics of the system, as in the usual Newton’s
method. The iteraction session ends when the final corrected trajectory satisfies
Eq. (13) with a given accuracy. The initial tentative trajectory should necessarily
obey conditions (16), which remain unchanged during the iteration process.

In terms of the phase space vector r=(x,, X5, p, P»), Eq. (13) can be written in
the following compact form (summation convention)

0H (r;)
R (17)
with 7, given by

00 -1 0

00 0 -1
= 18
4 1 0 O 0 (18)

01 0 0

Dividing the time interval 7 into (N—1) equal parts of size ¢e=T/(N—1),
Eq. (17) assumes the discrete form

OH\[7"]

(n+1) _ .(m)
r; =r"+ed or,

(19)
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where 7" =3(r"*D +r") and r!” =r,(ne). Assuming that an initial guess r!",
n=1,2, .., N satisfying conditions (16) is available, we compute a correction Ar!"
by imposing that r'") + Ar{" satisfies (19) to first order in 4r!". Using

OH [r\ + 4r™]  0H,[r"] +62H1[r(”’)]

~ Ar 20
or, or, or, or,, T (20)
we find that A4r"” must satisfy
VO A D = ) A 4 o), (21)
where
n n n aHl[f(n)]
R = —(r" 7] ))+8fjkTa (22)
¢ OPHL[F™]
V=6, —= gy, (23)
27 oy
and
e O0*H,[r™]
UM =0,+= Jp — . 24
i =0ty Sk o (24)

Multiplying both sides of (21) by [ ¥"]~!, and using this equation recursively
starting from Ar'?, gives

AV(N_FI)Z,%AV(O)'FQ, (25)
where
N—1 N
B = Z H (V_l%)(k)] V—‘”'gg(’>+ V_l(m%(o), (26)
I=1 Lk=i+1
and
N
=11 (v=ra™. (27)
m=0

Here .# plays the role of monodromy matrix for the non-closed trajectory.
We finally connect Ar'¥+1 to 4r'® by imposing the boundary conditions. Rela-
tions (16) imply that



464 XAVIER AND DE AGUIAR
b
Ax,(0) =— 4x,(0),
C

4

4p,(0) = A

4p>(0),

Ax(T)= *é Axy(T),

Ap\(T) = Ap:(T),

and the initial and final corrections can be expressed in terms of a single 4-vector
W, by

1 0 0 0\/4x,0)
b0 0 0| dx(T)
ArO — ¢/ 1 =AW 29
' 0 0 1 0/ 4p,0) M (29)
0 0 —b/c 0/ \4p(T)
and
0 1 0 0)\/dx(0)
0 —¢b 0 0 Ax(T)
AFNHD = =AW, 30
g 0 0 0 1 || 4p,0) v (30)
0 0 0 bjc) \Ap(T)

Substituting (29) and (30) back into (25), we finally have

W, =(dg—MAy) " B,
1 0 N (31)

Ar(o):Ao(AO—%AN)_] :@,

which, together with Eq. (25), determine the correction for the whole orbit. The
whole process is then iterated until the desired precision.

The convergence of the method is guaranteed provided the initial tentative trajec-
tory is sufficiently close to the solution. The convergence velocity depends also
naturally on the distance of the initial guess from the final solution. In some cases
there are more than one trajectory satisfying the same boundary conditions and,
depending on the initial guess, the above algorithm will converge to one or another
of these trajectories. As we will see, for general potentials of the form (14), in order
to obtain complex trajectories, real orbits may be used as initial tentative trajec-
tories. For the computation of diagonal elements z” =z’ of the propagator (1), for
example, the real orbits are necessarily periodic. In the case of the quartic well, for
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Fic. 1. Sequence of non-diagonal complex trajectories in the \/i Re(u) —ﬂ Im(u) plane for
q¢ =-80, ¢"=0.0, p'=59, p"=79, and M =15 between the times 7,=0.001 and 7=4.5. The
numbers on Figs. 1-5 represent the value of j in Eq. (39) (A=0, f=0.2).

instance, for a given point (g, p) in phase space, there is in general no periodic orbit
corresponding to the time 7. However, there is a periodic orbit with period (g, p),
and this is the orbit that enters the algorithm as the tentative trajectory. In this way
real orbits constitute the skeleton upon which complex solutions in phase space can
be built.

The complete determination of the semiclassical propagator (7) also requires the
calculation of the second variation of the action. There is a relation between this
quantity and the “monodromy matrix” .# of the characteristic trajectory which
enables its numerical determination. Let du’, Ju”, ov' and Jv” be small dis-
placements from a given trajectory (67 =0); then, according to (9)

1
" —[S0—S5uSwS:'] S8t ' _ [ou'
5u — h [ ut D uv uv 5” E % 5” , (32)
o’ ov’ ov’
_SuuSu_vl _thu_vl
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2.0 T T T T T T ‘ T T T T T v T

\/—2— Im(u)

20 -1.0 00 1.0 20 30 40 50 6.0 7.0
;/5 Re(u)

F1G. 2. Sequence of diagonal complex trajectories with ¢'=¢" =6.0, M =20, and p'=p"=1.0
between the times 7, =0.001 and T,=4.0 (1=0, f=0.2).

where
0*S GRAY 0%S
S =_= S =—"" S =—. 33
uu au,za uv au, au,/’ vv av,/z ( )
Therefore,
0*S ~

———=th(M,)" 34
(), (34)

where .7, is the lower right element of ./Z.

The matrix .#Z is connected to the 4 x 4 matrix .#, whose elements are m;, by
Eq. (11). Notice that, since .# is a complex 2 x 2 matrix, it has 8 elements so that
among the 16 elements of .# only § are independent. A simple calculation shows

that
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myy my, mys My
niy, %) my3 UG
M = s (35)
My My My —Mmy
—Myy n,s —my nyy

~ c b
R(. ‘17):é|:m11 +m22+bm12+cm21} >

~ 7 1 c
3( /vu)=_§ m14—m23+zm24—5m13 .

Since .# is a by-product of the numerical method just described, we can compute
the semiclassical approximation (7) completely.

17.5
15.0 !
12.5
10.0
7.5
5.0 :
2.5 !
0.0 -

/2 Im(u)

0.0 2.5 5.0 7.5 10.0 12.5

FiG. 3. Sequence of 10 diagonal complex trajectories (first family from a set of 30 trajectories) for
¢ =q"=80, p'=p" =150, M=30 with T,=0.0001 and T,=5.5 (A1=0, §=0.2).



468 XAVIER AND DE AGUIAR
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Fi1G. 4. Sequence of 5 diagonal complex trajectories from a set of 10 (M =10, family determined
from the real guess) which satisfy the same boundary conditions as in Fig. 3, but with 7,=3.5 and
Tr=15.5. These trajectories are very close to the corresponding real orbits (1=0, f=0.2).

4. NUMERICAL APPLICATION

In this section we apply the method developed above to compute complex classi-
cal trajectories and the semiclassical propagator for the system described by

1 y)
H=5p2+§q2+ﬂq“, (37)

with A>0 and f>0. In the coordinates given by (11) the real Hamiltonian is

1 A A 1

Hy =3 pi+7xi =5 p3—5 X3+ Bxi+ p3—6xip3). (38)
Figures 1-5 show a sequence of several complex trajectories in the \/5 R(u)—

ﬂ 3(u) plane for several values of T. In each of these figures we show the trajec-

tories with fixed values of ¢', ¢”, p’, p”, and time

T,= T+ (Tp—Ty) L=V (39)
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Fi1G. 5. Sequence of complex diagonal trajectories satisfying ¢' =¢" =8.0, p’' = p”" =15.0, and M =20
between 7, =0.7 and 7= 1.3. The real solution is for 7=1.003 (A=0, f#=0.2).

for the jth trajectory (j=1, .., M, the value of j is represented on each figure by a
number). In these calculations we have used #=1 and also ¢=1, but A=0 and
£ =0.2. Figure 1 shows examples of non-diagonal trajectories in which ¢’ = —8.0,
q"=0.0, p'=59, p"=179. The 15 trajectories showed are from 7,=0.0001 to
Tr=4.5. The first orbit (j= 1) was calculated using a harmonic oscillator trajectory
as the initial guess. The next trajectory (j=2), in its turn, uses the j=1 trajectory
as the initial guess and so on. This procedure allows the computation of the whole
family very easily. Figure 2 represents a sequence of 20 diagonal orbits for which
qd=q"=60, p'=p" =10, T,=0.0001, and T,=4.0. The initial guess was again
provided by the harmonic oscillator. Figure 3 represents a family of 10 diagonal
trajectories from a set of 30 (M =30) for ¢’ =¢" =8.0, p'=p"=15.0, T, =0.0001,
Tr=15.5, and initial guess from a harmonic oscillator trajectory. In Fig. 4 there is
a family of 5 trajectories from a set of 10 (M = 10) satisfying the same boundary
conditions as in Fig. 3 with T,=3.5, T,=35.5, and each trajectory was calculated
from an initial guess provides by a real periodic orbit of H through ¢=0.8 and
p=150. The difference between both kinds of solutions is best seen by the
imaginary part of the action. For periods T~4.8, a complex trajectory (j=26)
calculated from the harmonic oscillator (Fig. 3) gives S, ~ 123.0 while, for one of
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Fi1G. 6. S,(T) plot for the trajectories of Fig. 5. The trajectory with j=11 is the closest one to the
real orbit (7=1.003) for which S, =0.

the trajectories (j=4) of the family determined from the real quartic orbit (Fig. 4),
S, ~0.08. Although both trajectories satisfy the same boundary conditions, they
give very different contributions for the propagator as seen from (7).

In Fig. 5 a sequence of 20 diagonal complex trajectories obtained from a periodic
orbit initial guess is depicted for the conditions ¢’ =¢"=8.0, p'=p”" =15.0,
T,=0.7, and T=1.3. There is a real solution here for 7 =1.003 which corresponds
to a closed trajectory in the complex phase space. As we move from orbit to orbit
the imaginary part of the action goes through a minimum as is seen in Fig. 6. The
minimum (S, =0) is attained at the periodic (real) orbit with 7'=7. Consequently
the amplitude of the propagator [{q”, p”"|q’, p’, T>|* at this point experiences a
maximum. This will be valid for the whole phase space, i.e., the amplitude will be
a maximum for every phase space point localized at a periodic orbit with period
commensurable with the time 7.

Before proceeding to the determination of K ,(z", z', T'), let us briefly describe
how the exact propagator is computed. We write the spectral decomposition

K(z", 2", T) = Z (" [ny<n|z"y e BT, (40)

n=1
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where |n) represents an eigenstate of H with eigenvalue E,. The overlap {n|z) is
determined by

—1/2 . _ 2
iy =(—=) [l ew| ~ELi pe g ax @

4h>

1
Jrb
and it constitutes the Bargmann wave function [11] of the eigenstate
Y. (x)=<n|x). These eigenstates are computed numerically by diagonalizing the

Hamiltonian in the basis
1 1
put)= [rsin| e (23], (42)

where the parameter L is chosen according to the method described in Ref. [12].
We have used 250 basis states ¢,, and obtained around 150 eigenstates ¥, with very
good accuracy.

a b

12.0 T T T 12.0 T T T
6.0 - ] 6.0 T
== 0.0 - 1 0.0 - 1
-6.0 T . -6.0 ]

_12.0 1 i 1 _12'0 | L Il
S0 25 00 25 5.0 50 25 00 25 5.0

Q Q

FiG. 7. Countour plots of |K(z*,z T)|*> (normalized) for T=0.5: (a) quantum calculation,
(b) semiclassical method (4 =1.0 and f=0.1).
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The sum over n in the exact propagator given by (40) was truncated at
n=100=N. The convergence is inferred by the value of |K(z*,z 0)|> which
remains close to one at all phase space points. In other words

K(z,z,0)~

n

I M=

(zlny{n|z) =1—oa, (43)

with o ~0. Since the time evolution of a quantum state is linear, the difference
between the time evolved truncated propagator and its complete expansion (40)
will never exceed the measure given by o.

In Figs. 7-9 we show a sequence of isoprobability curve plots of
|K(q, p, q, p, T)|* (diagonal elements) calculated according to the semiclassical
method (b) and the exact case (a). In these calculations the parameters in the
Hamiltonian (37) have values 41 =1.0 and f=0.1 (with again 2=1.0 and ¢ =1.0).
In all figures a sequence of 16 equally spaced curves between the values 0 and 1 are
shown. For each point in the phase space in the case (b) a complex diagonal orbit
was determined and its weight in the propagator was calculated. The same

1.0 . ® T

0.2 -

0.0 : :
-12.0 -6.0 0.0 6.0 12.0
P

FiG. 10. |K(z* z, T)|* at ¢=0.0 for T=0.5. The solid represents the quantum calculation and the
circle-dashed line the semiclassical approximation (4= 1.0 and f=0.1).
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probability is shown in (a) as determined by the eigenfunction decomposition. The
agreement between (a) and (b) is excellent for a broad range of values of T. In
Fig. 7 (T =0.5), the phase space maps exhibit a maximum at the origin. As 7— 0
the area of the most exterior curve (minimum) grows infinitly and for every
phase space point the amplitude is very close to one, as it should be
(|K(q, p, q, p,0)]*>=1). From the semiclassical point of view, as T— 0, the only
complex trajectories are free-particle-like solutions. Note that for a semiclassical
method based entirely on ordinary (non-complex) trajectories the amplitude for
diagonal elements with p ~ 0 would be zero since there is no possible real trajectory
that satisfies the boundary conditions required. In Figs. 8§ and 9 the case T=3.5
and T=7.0 are shown. Again the agreement is excellent. We can note regions of
local maxima around periodic orbits. In fact, for every periodic trajectory charac-
terized by a period 7 which is commensurable with the time 7 of the propagator,
a maximum is expected as a consequence of the constructive interference between
the initial and final wave-packet. In Figs. 10-12 we show absolute curves of
amplitudes at the line ¢ =0 and for the times 7=0.5 (Fig. 10), T=3.5 (Fig. 11),
and T=7.0 (Fig. 12). Dashed-lines represent the semiclassical results while solid-
lines the eigenfunction decomposition. The plots show that there is also good agreement

1.0

08

0.2 r

0.0

&
-12.0 12.0

FiG. 11. |K(z* z, T)|* at ¢=0.0 for T=3.5. The solid represents the quantum calculation and the
circle-dashed line the semiclassical approximation (4= 1.0 and f=0.1).
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1.0

0.8

0.2

0.0

-12.0 12.0

FiG. 12. |K(z*,z T)|* at ¢=0.0 for T=7.0. The solid represents the quantum calculation and the
circle-dashed line the semiclassical approximation (4= 1.0 and f=0.1).

between the absolute squares of |K(q, p,q, p, T)|*> as determined by the two
methods. As T— oo the density of periodic orbits increases proportionally. There-
fore it will always be possible to find a periodic orbit at a point (¢, p, ) which is

nearly commensurable with 7.

5. DISCUSSION

We have presented a general method for computing complex trajectories subjec-
ted to the special boundary conditions required by the semiclassical coherent-state
propagator K(z",z', T).

The method was applied to a quartic potential, Eq. (37), and several families of
such trajectories were computed.

A previous example of semiclassical evaluation of K(z”,z', T) has been con-
sidered in Ref. [ 7] for the problem of a particle in a one-dimensional box. In that
case, due to the simplicity of the Hamiltonian, the complex trajectories could be
determined analytically. One of the most interesting results in Ref. [7] is the
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absence of “diagonal” trajectories (with ¢' =¢" and p’ = p”) in several regions of the
phase space, yielding K, ,(z, z, T) =0 there.

In the present case of the quartic potential no such regions were found: for every
phase space point ¢, p and T we were able to find at least one complex trajectory
satisfying conditions (6). In some cases more than one trajectory was found, but
only one of them would contribute significantly to the propagator. We attribute this
fact to the smoothness of the potential.

Another interesting point in connection to the results in Ref. [ 7] is the seeming
absence, for the quartic potential, of the so called “noncontributing trajectories”,
i.e., complex trajectories whose imaginary part of the action, S,, is negative. As dis-
cussed in [7], these trajectories give non-physical contributions to approximation
of K and should not be taken into account. For the particle-in-a-box system, these
trajectories were concentrated on a thin (the thickness actually depends on T')
phase space strip around p =0. In the present situation, the dynamics in regions
around p =0 is essentially harmonic and, in this case, it is easy to show that S, > 0.
At higher values of p (or higher energies) the quartic term dominates, and the
dynamics become similar to that of the particle-in-a-box. In the present case,
however, noncontributing orbits were not found. That does not mean, of course,
that they do not exist, but it indicates that, if they exist then they are deeply buried
in the complex plane, far from our search region.

The results we have obtained for the propagator show a strong agreement
between the amplitude determined by its eigenfunctions decomposition (exact quan-
tum result) and by the semiclassical formula. The great value of this semiclassical
method lies in its ability to determine the overlap between coherent-states for which
there is no real trajectory available. Tunnelling is perhaps the most dramatic exam-
ple where the existence of “trajectories,” in spite of their being complex, would
enable the definition of tunnelling times. Results in this direction will be published
elsewhere in the future.
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