1 The Theory of Linear
Difference Equations Applied
to Population Growth

For we will always have as 5 is to 8 so is 8 to 13, practically, and as 8 is to
13, so is 13 to 21 almost. I think that the seminal faculty is developed in a
way analogous to this proportion which perpetuates itself, and so in the
flower is displayed a pentagonal standard, so to speak. I let pass all other
considerations which might be adduced by the most delightful study to
establish this truth.

J. Kepler, (1611). Sterna seu de nive sexangule, Opera, ed. Christian

Frisch, tome 7, (Frankefurt 4 Main, Germany: Heyden & Zimmer,

1858 -1871), pp. 722-723.

The early Greeks were fascinated by numbers and believed them to hold special
magical properties. From the Greeks’ special blend of philosophy, mathematics, nu-
merology, and mysticism, there emerged a foundation for the real number system
upon which modern mathematics has been built. A preoccupation with aesthetic
beauty in the Greek civilization meant, among other things, that architects, artisans,
and craftsmen based many of their works of art on geometric principles. So it is that
in the stark ruins of the Parthenon many regularly spaced columns and structures
capture the essence of the golden mean, which derives from the golden rectangle.

Considered to have a most visually pleasing proportion, the golden rectangle
has sides that bear the ratio 7 = 1:1.618033. . . . The problem of subdividing a line
segment into this so-called extreme and mean ratio was a classical problem in Greek
geometry, appearing in the Elements of Euclid (circa 300 B.C.). It was recognized
then and later that this divine proportion, as Fra Luca Pacioli (1509) called it, ap-
pears in numerous geometric figures, among them the pentagon, and the polyhedral
icosahedron (see Figure 1.1).
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About fifteen hundred years after Euclid, Leonardo of Pisa (1175-1250), an
Italian mathematician more affectionately known as Fibonacci (“son of good na-
ture”), proposed a problem whose solution was a series of numbers that eventually
led to a reincarnation of 7. It is believed that Kepler (1571 —1630) was the first to
recognize and state the connection between the Fibonacci numbers (0, 1, 1, 2, 3, 5,
8, 13, 21, . . .), the golden mean, and certain aspects of plant growth.

Kepler observed that successive elements of the Fibonacci sequence satisfy the
following recursion relation

Npe2 = M + N,y (1)

i.e., each member equals the sum of its two immediate predecessors.! He also noted
that the ratios 2:1, 3:2, 5:3, 8:5, 13:8, . . . approach the value of 1.2 Since then,
manifestations of the golden mean and the Fibonacci numbers have appeared in art,
architecture, and biological form. The logarithmic spirals evident in the shells of
certain mollusks (e.g., abalone, of the family Haliotidae) are figures that result from
growth in size without change in proportion and bear a relation to successively in-
scribed golden rectangles. The regular arrangement of leaves or plant parts along the
stem, apex, or flower of a plant, known as phyllotaxis, captures the Fibonacci num-
bers in a succession of helices (called parastichies); a striking example is the ar-
rangement of seeds on a ripening sunflower. Biologists have not yet agreed conclu-

1. The values ny and n, are defined to be 0 and 1.

2. Certain aspects of the formulation and analysis of the recursion relation (1) governing
Fibonacci numbers are credited to the French mathematician Albert Girard, who developed the al-
gebraic notation in 1634, and to Robert Simson (1753) of the University of Glasgow, who recog-
nized ratios of successive members of the sequence as 7 and as continued fractions (see prob-

lem 12).

Figure 1.1 The golden mean T appears in a variety
of geometric forms that include: (a) Polyhedra such
as the icosahedron, a Platonic solid with 20
equilateral triangle faces (T = ratio of sides of an
inscribed golden rectangle; three golden rectangles
are shown here). (b) The golden rectangle and
every rectangle formed by removing a square from
it. Note that corners of successive squares can be
connected by a logarithmic spiral). (c) A regular
pentagon (T = the ratio of lengths of the diagonal
and a side). (d) The approximate proportions of the
Parthenon (dotted line indicates a golden
rectangle). (e) Geometric designs such as spirals
that result from the arrangement of leaves, scales,
or florets on plants (shown here on the head of a
sunflower). The number of spirals running in
opposite directions quite often bears one of the
numerical ratios 2/3, 3/5, 5/8, 8/13, 13/21,
21/34, 34/5, . . . [see R. V. Jean (1984, 86)];

note that these are the ratios of successive
Fibonacci numbers, (f) Logarithmic spirals (such
as those obtained in (b) are common in shells such
as the abalone Haliotis, where each increment in
size is similar to the preceding one. See D. W.
Thompson (1974) for an excellent summary. [(a and
b) from M. Gardner (1961), The Second Scientific
American Book of Mathematical Puzzles and
Diversions, pp. 92-93. Copyright 1961 by Martin
Gardner. Reprinted by permission of Simon &
Schuster, Inc., N.Y., N.Y. (d) from G. Gromort
(1947), Histoire abrégée de 1’ Architecture en Gréce
et & Rome, Fig 43 on p. 75, Vincent Fréal & Cie,
Paris, France. (e) from S. Colman (1971), Nature’s
Harmonic Unity, plate 64, p. 91; Benjamin Biom,
N.Y. (reprinted from the 1912 edition). (f) D.
Thompson (1961), On Growth and Form (abridged
ed.) figure 84, p. 186. Reprinted by permission of
Cambridge University Press, New York.]
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sively on what causes these geometric designs and patterns in plants, although the
subject has been pursued for over three centuries.?

Fibonacci stumbled unknowingly onto the esoteric realm of 7 through a ques-
tion related to the growth of rabbits (see problem 14). Equation (1) is arguably the
first mathematical idealization of a biological phenomenon phrased in terms of a re-
cursion relation, or in more common terminology, a difference equation.

Leaving aside the mystique of golden rectangles, parastichies, and rabbits, we
find that in more mundane realms, numerous biological events can be idealized by
models in which similar discrete equations are involved. Typically, populations for
which difference equations are suitable are those in which adults die and are totally
replaced by their progeny at fixed intervals (i.e., generations do not overlap). In
such cases, a difference equation might summarize the relationship between popula-
tion density at a given generation and that of preceding generations. Organisms that
undergo abrupt changes or go through a sequence of stages as they mature (i.e.,
have discrete life-cycle stages) are also commonly described by difference equa-
tions.

The goals of this chapter are to demonstrate how equations such as (1) arise in
modeling biological phenomena and to develop the mathematical techniques to solve
the following problem: given particular starting population levels and a recursion re-
lation, predict the population level after an arbitrary number of generations have
elapsed. (It will soon be evident that for a linear equation such as (1), the mathemat-
ical sophistication required is minimal.)

'To acquire a familiarity with difference equations, we will begin with two
rather elementary examples: cell division and insect growth. A somewhat more elab-
orate problem we then investigate is the propagation of annual plants. This topic will
furnish the opportunity to discuss how a slightly more complex model is derived.
Sections 1.3 and 1.4 will outline the method of solving certain linear difference
equations. As a corollary, the solution of equation (1) and its connection to the
golden mean will emerge.

1.1 BIOLOGICAL MODELS USING DIFFERENCE EQUATIONS
Cell Division

Suppose a population of cells divides synchronously, with each member producing a

daughter cells.’ Let us define the number of cells in each generation with a subscript,

that is, M,, M., . . . , M, are respectively the number of cells in the first, second,
. , nth generations. A simple equation relating successive generations is

Mn+] = aMn. (2/‘

2. An excellent summary of the phenomena of phyllotaxis and the numerous theories that
have arisen to explain the observed patterns is given by R. V. Jean (1984). His book contains nu-
merous suggestions for independent research activities and problems related to phyllotaxis. See
also Thompson (1942).

3. Note that for real populations only 2 > 0 would make sense; a < 0 is unrealistic, and
a = 0 would be uninteresting.
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Let us suppose that initially there are M, cells. How big will the population be after
n generations? Applying equation (2) recursively results in the following:

My = a(aM _1) = a[a(aM,._z)] soeee = a"+lM0. (3)
Thus, for the rnth generation
M,, = a"Mo. (4)

We have arrived at a result worth remembering: The solution of a simple linear dif-
ference equation involves an expression of the form (some number)”, where n is the
generation number. (This is true in general for linear difference equations.) Note that
the magnitude of a will determine whether the population grows or dwindles with
time. That is,

la] > 1 M, increases over successive generations,
la] <1 M, decreases over successive generations,
a =1 M, is constant.

An Insect Population

Insects generally have more than one stage in their life cycle from progeny to matu-
rity. The complete cycle may take weeks, months, or even years. However, it is cus- -
tomary to use a single generation as the basic unit of time when attempting to write a
model for insect population growth. Several stages in the life cycle can be depicted
by writing several difference equations. Often the system of equations condenses to
a single equation in which combinations of all the basic parameters appear.

As an example consider the reproduction of the poplar gall aphid. Adult female
aphids produce galls on the leaves of poplars. All the progeny of a single aphid are
contained in one gall (Whitham, 1980). Some fraction of these will emerge and sur-
vive to adulthood. Although generally the capacity for producing offspring
(fecundity) and the likelihood of surviving to adulthood (survivorship) depends on
their environmental conditions, on the quality of their food, and on the population
sizes, let us momentarily ignore these effects and study a naive model in which all
parameters are constant.

First we define the following:

a, = number of adult female aphids in the nth generation,
P» = number of progeny in the nth generation,

fractional mortality of the young aphids,

f = number of progeny per female aphid,

r = ratio of female aphids to total adult aphids.

m

Then we write equations to represent the successive populations of aphids and
use these to obtain an expression for the number of adult females in the nth genera-
tion if initially there were a, females:
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Each female produces f progeny; thus
Prer = fan. (5)

no. of proglny \no. of females in
in{n + 1)st previous generation
generation no. of offspring per female

Of these, the fraction 1 — m survives to adulthood, yielding a final proportion of r
females. Thus :

A+ = r(l - m)pn'H- (6)

While equations (5) and (6) describe the aphid population, note that these can be
combined into the single statement

Qn+y =fr(1 = m)a,. (7)
For the rather theoretical case where f, r, and m are constant, the solution is
ar = [fr(1 — mao, (8)

where @, 1s the initial number of adult females.

Equation (7) is again a first-order linear difference equation, so that solution (8) fol-
lows from previous remarks. The expression fr(1 — m) is the per capita number of
adult females that each mother aphid produces.

1.2 PROPAGATION OF ANNUAL PLANTS

Annual plants produce seeds at the end of a summer. The flowering plants wilt and
die, leaving their progeny in the dormant form of seeds that must survive a winter to
give rise to a new generation. The following spring a certain fraction of these seeds
germinate. Some seeds might remain dormant for a year or more before reviving.
Others might be lost due to predation, disease, or weather. But in order for the
plants to survive as a species, a sufficiently large population must be renewed from
year to year.

In this section we formulate a model to describe the propagation of annual
plants. Complicating the problem somewhat is the fact that annual plants produce
seeds that may stay dormant for several years before germinating. The problem thus
requires that we systematically keep track of both the plant population and the re-
serves of seeds of various ages in the seed bank.

Stage 1: Statement of the Problem

Plants produce seeds at the end of their growth season (say August), after which they
die. A fraction of these seeds survive the winter, and some of these germinate at the
beginning of the season (say May), giving rise to the new generation of plants. The
fraction that germinates depends on the age of the seeds.
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Stage 2: Definitions and Assumptions

We first collect all the parameters and constants specified in the problem. Next we
define the variables. At that stage it will prove useful to consult a rough sketch such

as Figure 1.2.
Parameters:
y = number of seeds produced per plant in August,
a = fraction of one-year-old seeds that germinate in May,
B = fraction of two-year-old seeds that germinate in May,
o = fraction of seeds that survive a given winter.
In defining the variables, we note that the seed bank changes several times during
the year as a result of (1) germination of some seeds, (2) production of new seeds,
and (3) aging of seeds and partial mortality. To simplify the problem we make the
following assumption: Seeds older than two years are no longer viable and can be
neglected. '
Yeark = n Yeark =n + 1 Yeark =n + 2
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Figure 1.2 Annual plants produce v seeds per plant
each summer. The seeds can remain in the ground
for up to two years before they germinate in the
springtime. Fractions a of the one-year-oid and 3

of the two-year-old seeds give rise to a new plant
generation. Over the winter seeds age, and a
certain proportion of them die. The model for this
system is discussed in Section 1.2.


























































































