CHAPTER 8

8.1 The one-dimensional scattering problem

In a scattering experiment a beam of parﬁcies is scattered by a target, and
the scattered particles are detected. The interaction between the beam and
target takes place in a small volume of space. The region where the beam is
prepared and the region where the scattered beam is detected are both outside
the region of interaction between the beam and the target. Thus both in the
initial and the final states the particles in the beam behave as free particles.
Scattering processes are transitions from one free-particle state to another as
a result of an interaction which takes place within a small volume. These
features are all illustrated in the following one-dimensional example.

Cons1der a single nartlcle of mass m and momentum p moving free]v in
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H, = p*[2m. 8.1)

The momentum p commutes with H,. Thus H, and p can be simultaneously
diagonalized. The eigenfunctions are plane waves:

VU, = eikx (8.2a)

P = hky (8.2b)
(hk)?

Hoyy, = ) Y. (8.20)
m

The energy spectrum is continuous and doubly degenerate since the eigen-
value (8.2c) depends only on the magnitude of k£ and not on the sign. Any
linear combination of the degenerate eigenfunctions v, and y_; is also an
cigenfunction, e.g.
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where A, B and J are constants.

The momentum eigenfunctions (8.2) describe travelling waves. The
function (8.3a) is a linear combination of two travelling waves in opposite
directions. The function (8.3b) describes a standing wave.

The Hamiltonian (8.1) is invariant under a reflection about the origin. The
parity P thus commutes with the Hamiltonian and a complete set of simul-
taneous eigenfunctions of H and P can be found. The even and odd parity
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Yro = cos kx (8.4a)
Yy = sin kx (8.4b)
Pyro = Yo (8.52)
Py = —Yuy. (8.5b)

Let us now add to the Hamiltonian (8.1) a potential ¥/, which is confined to a
finite region bounded by the value |x|=X.

2

H=L_ Ly (8.62)
2m
V(x)=0 for |x| > X. (3.6b)

The eigenvalue spectrum for E=0 is not changed by the added potential. It
is still continuous and doubly degenerate. The form of these eigenfunctions
is also not changed in the region outside of the potential. One can find

elg_,.nﬁ_,ncti()ns which behave like anv of the f‘ree-parﬁ(‘le eicenfunctions
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he connection between the wave functions in the positive and
negative domains. A wave function which has the form (8.2a) for x> X,
must be some linear combination (8.3a) in the region x < — X, but we do not
know a priori which linear combination. This depends upon the potential V.

Let ¢*)(x) be an eigenfunction of H which has the form (8.2a) of a single
plane wave for x> X:

Y (x) = Sel*™ for x> X (8.7a)

where S is a numerical coefficient. Then for x < — X, this eigenfunction has
tha farm (R 2a)
11
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Y(x) = e + Re ¥ for x < —X, (8.7b)
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where R is a numerical coefficient, and we have chosen the normalization
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very simple physical interpretation. For x < — X, there are waves travelling
in both directions, whereas for x> X, there is only an ‘outgoing’ wave
moving to the right. The first term on the right-hand side of (8.7b) can be
interpreted as an incident wave, the second term as a reflected wave and the
wave function (8.7a) as a transmitted wave. Then R and S are the reflection
and transmission coefficients for the potential V. They can be determined by
the explicit solution of the Schrodinger equation, including the region of the
potential.

8.2 Reflection and rotation symmetry and phase shifts

Suppose that the potential is invariant under reflections,
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VixX) = V{—X) {0.0d)

[P,V]=0 (8.8b)

Then the Hamiltonian (8.6) and the parity operator P can be simultaneously
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Vo = cos(kx + 69) (x > X),; Yo =cos(kx —dy) (x< —X) (8.9a)
Yy = sin(kx + 6;) (x > X); Yy = sinkx — 6;) (x < —X). (8.9b)
These states differ from the corresponding free-particle parity eigenstates
(8.4) by the ‘phase shifts’, 6, and 6,. The values of these phase shifts depend

upon the potential ¥ and are obtained by the explicit solution of the
Schrodmger equatlon

Y = ety 4 iet Py, = 4% 4 2™ (x > X) (8.10a)
— eikx + %(eziao _ eZibl)e—ikx (x < —X) (810b)
Thus:

S — %(CZiég + eZi&;) — %[(eZiéo _ 1) + (e2i61 _ 1)] + 1

=1+ Y ie'sing, (8.11a)
1=0,1
R — _&_(e:ﬁ&o _ 62551) — %t(‘el':i('fo _ 1) _ (‘62551 _ 1)]
= ¥ i(=D'e?sin g, (8.11b)

I=0,1
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The transmission and reflection coefficients are determined completely by
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Let us now express these results in a language which is more easily gener-
alized to the physical three-dimensional case. The one-dimensional reflection
symmetry of the potential, eq. (8.8a) can also be called invariance under a
180° rotation about an axis perpendicular to the x-axis. The natural gener-
alization to three dimensions is full rotational invariance under an arbitrary
rotation. Since the most convenient coordinates for discussing rotational
invariance in three dimensions are spherical polar coordinates, our one-
dimensional resuits will be more easily generalized to three dimensions if we
express them in terms of ‘one-dimensional polar variables’. We therefore
define

r = |x| (8.12a)

0 i > 0: Q=7n if x<00. (Rl’)h)
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In the one-dimensional case # has only two values, 0 and =, for the forward
and backward directions respectively. However the dependence of the wave
functions and the scattering process on this two-valued angular variable

alreadv gives considerable insight into the angular dependence for the three-
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In three-dimensional SLdTICI'lIlg pI'ODlCIIlS, a LOIIIDIII&UOI’I of cartesian and
polar coordinates is often used, to write a wave function as a linear combi-
nation of an incident plane wave and an outgoing spherical wave. The wave
function (8.7) can be rewritten as a single equation in this form, using our
one-dimensional polar variables (8.12)

YO = e + g@)e™;  (r > X) (8.13a)

where
g0) =S —1 (8.13b)
g(n) = R. (8.13¢)

The first term e'* in eq. (8.13a) is present not only for x < — X but also for
x>X. It descrlbes therefore, not only the incoming incident wave but also
an outgoing wave which would be the complete solution of the Schréodinger
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(8.13a) thus describe an unperturbed incident wave which is
solution in the absence of the potential and a scattered wave
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the scattered amplitude.
The separation of the wave function into unperturbed and scattered waves
differs from the separation in eqs. (8.7) into incoming and outgoing waves,
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where the outgoing waves include the continuation of the incident wave after
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pears as an additional term in the expression (8.13b) relating the forward
scattering amplitude g(0) to the transmission coefficient S. There is no such
additional term in the relation (8.13c) between the backward scattering
amplitude g(n) and the reflection coefficient R.

These two alternative descriptions are both useful in the treatment of
scattering phenomena. The division into incoming and outgoing waves is
convenient for the discussion of conservation of probability, which requires
that the current carried by the incoming waves be equal to the current carried
by the outgoing waves. The division into an unperturbed wave and a
scattered wave is useful for the treatment in perturbation theory where one
begins with the unperturbed wave as the zero-order solution and calculates
the scattered wave by a method of successive approximations.

8.3 Conservation of probability and the optical theorem

From conservation of probability th

l8)

g process have the same wave number and velocity, the
currents are all proportional to the densities, with the same proportionality
factor. Thus the sum of the densities of the two outgoing waves must be
equal to the density of the incoming wave.

IR + |S]? = 1. ' (8.14)

Note that the solution (8.11) satisfies this condition.
The total scattered intensity is the sum of the intensities of the forward and
backward scattered waves (in the three-dimensional case it would be the

integral of the scattered intensity over all angles).

12O + lgm|* = [RI + IS — 1]> = 2Re(1-5) = —2Re g(0),  (8.15)

where we have need ea (R 14)
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he function g(6) is dimensionless and its square defines a scattering
probability. In three dimensions, the scattering amplitude is naturally defined
(o give it the dimensions of length and its square defines the scattering cross
section. The extra factor with dimensions of length arises naturally in three-
timensions because the free-particle solution corresponding to an outgoing
wave is e /r rather than e, The three-dimensional analog of eq. (8.13a) is

Y (%) = e - F(@)e!*/r (8.16a)
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is the scattering amnhtude havmg the dimensions of length Let
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This relates f(f) to a dimensionless amplitude g(0) which is the natural
generalization of the function g(0) appearing in the one-dimensional case.
We therefore define for the one-dimensional scattering amplitude

1

£\ = o(O), (R 160)
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Substituting eq. (8.16c) into eq. (8.15), we obtain:
E IfO)I* = —2k Re[ikf(0)] = 2k~ Im[f(0)]. (8.17)
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imaginary part of the forward scattering amplitude is called the ‘optical
theorem’. In the three-dimensional case the numerical factor is 4x instead of
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amplitudes and a linear right-hand side. The non-linearity arises because the
scale of the wave functions has already been set by normalizing the coef-
ficient of the incident wave to unity in the right-hand side of eq. (8.14). The
occurrence of the imaginary part of an amplitude on the right-hand side of
eq. (8.17) does not indicate a physical significance to the absolute phase in
a wave function. This is a relative phase because the absolute phase of the
wave function has been fixed by choosing the coefficient of the incident wave
to be real.

The scattering amplitude f@O) is very sim ply expressed in terms of the

f(9)=k"1 3 e“"ei"' sin &, (8.18)

1=0,1

backward The parity symmetry of the potential becomes a rotational symme-
try, expressmg the invariance of the potential with respect to all changes of
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momentum. The two parity eigenstates (8.9) are thus replaced by an infinite
discrete series of angular momentum eigenstates each having its own phase
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shift. The expansion of a scattering wave function into angula moment
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scattering amplitude (8.18) is also expressed as the sum of the contributions
of the partial waves with each contribution expressed as a function of the
corresponding phase shift.
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8.4 The S-matrix

The wave function (8.13) can be expressed as the sum of incoming and out-
going waves by writing the first term in polar coordinates as well as the
second term.
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onstruct another solution of the Schrodinger equation from eq.
performing a reflection on this wave function. In polar coordinates

) = Sgoe " + [g(n — 0) + Sp,le™; r> X, (8.19b)
where the subscript n indicates that the incident wave is in the backward
direction. Egs. (8.19a) and (8.19b) can be combined in the form

§7 = Sp—one ™ + [g(0' — 0) + Sgp1e™;  r>X. (8.19)

Any linear combination of eqs. (8.19a) and (8.19b) is also a solution of
the Schrodinger equation. Since any function of the two-valued variable 0
can be expressed as a linear combination of dy, and d4,, We can construct
solutions with an incoming wave e~ **" multiplied by an arbitrary function of
0. Let ¢(0) and ¢,(0) be any two orthonormal functions of 0 in the two-
dimensional vector space defined by the values =0 and 0==. Then we can

construct the two corresponding solutions by combining the solutions
(8.192) and (8.19b):

Ve = GuOWED + d(m” = X 006" (8.20a)

=0,n
u/zf;"') = P (n — Qe + ¥ S¢ﬁ¢ﬁ(0)e“"; r>X, a=12 (8.20b)
: B=1,2
where
Sep = 2 Op(O)[g(0" — 0) + gq-10,(0"). (8.20c)

0.0



208 ONE-DIMENSIONAL SCATTERING CH. 8

is called the S-matrix and gives the amplitude of the out-
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Conservation of probability requires that the total intensity of outgoing
waves be equal to the intensity of incoming waves for any linear combination
S UM (x=1, 2) of the states (8.20b). Since the functions ¢, and ¢, are
orthonormal, equating intensities of outgoing and incoming waves gives
2 U,S5U.Sy = X ULU,. ‘ (8.21a)

21

aBy

Since this must hold for all values of the coefficients U,,

> Sa_ﬂs;ﬁ = Oy (8.21b)
=1,2
Thus the S-matrix is unitary.
If there is no potential, the outgoing wave is the same as the incoming

wave and the S-matrix is seen from eq. (8.20b) to be eaual to the unit matrix.

)
Using the unitarity relation (8.21b) we can

corresponding solutions
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AR, r>X, a=1,2. (8.22a)
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These solutions have a single outgoing wave and a sum of incoming waves,
rather than a single incoming wave and a sum of outgoing waves. Note that
a function having these properties can also be generated from any solution
(8.20b) by interchanging 0 and 7 —6 and taking the complex conjugate
W@ — O = ¢i0) ™ + T Sydsn — 0)e™™.  (8.22b)

0—1
P 1

Substituting the functions (8.22b) into the Schrédinger equation shows that
they are solutions if the potential is real, i.e. if the potential is invariant
under time reversal. In that case the solutions (8.22a) and (8.22b) must
descr1be the same phyS1ca1 states, differing only by phases. This gives con-
posed by time reversal invariance. For ’rhc case

(8.19), time r Versal invariance requires the S-matrix to be s ymmetrtc This

agrees with an intuitive picture of time reversal which would require the
transition probaulhty from state a to state B to be the same as that from

The S-matrix can be diagonalized for a reflection-symmetric potential by
choosing the parity eigenstates (8.9) as our basic states. In polar coordinates,
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these are
Yo = cos(kr + 8,) = e~ o[ ik 4 g2id0gikr],  p 5 X (8.23a)
l.lll — eiﬂ sin(kr + 51) — éie—icheio[e—ikr _ eZicheikrl; r> X. (8.23b)

These two can be combined with new normalization and phase factors in the
form

Y, = eP[e~ir 4 (—1)leidteitr, (8.23¢c)
This can also be written in a form resembling eq. (8.20b)
U, = — [ela=Og-ikr 4 o2id10i0gikr) (8.23d)

By comparison with eqs. (8.20b) we see that

-matrix is
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S”r = eZi(fx&”,. (8.24b)

A knowledge of the S-matrix gives a complete description of the scattermg
process The S-matrix glves th a si
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well as elastic, the S-matrix relates all possible states which are coupled
together by the scattering process, the indices a and § take on values for all
possible ‘channels’ rather than just the two values for the forward and back-
ward channels. There are some schools of thought in particle physics which
see the S-matrix as the most basic and fundamental quantity in particle
physics, since the elements of the S-matrix are measured in scattering experi-
ments rather than the Hamiltonian or other dynamical variables like fields.
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As an example of multichannel scattering processes we can consider parti-
cles havmg additional internal degrees of freedom, such as electric charge.

'This introduces the possibility of inelastic processes, such as charge exchange
TN . tering e A AAIL: o b Alncdin qgnndbactiaey £ anci A dlan Gnndbaseciaey A~ A 1on ~an
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by a potent1al due to a nucleon held fixed at the origin. The motion of the
nucleon is neglected, but it can be either a proton or a neutron and exchange
‘harge with the kaon which can be either a K* or K°. If the dt}al state is a

¥ya

and a neutron, a charge exchange scattering can occur to a finai state
which is a K° and a proton. The n—p and K°-K* mass differences are
neglected so that charge exchange occurs with no change in energy or



