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ABSTRACT 

Many discrete-time predator-prey models possess three equilibria, corresponding to 
(1) extinction of both species, (2) extinction of the predator and survival of the prey at its 
carrying capacity, or (3) coexistence of both species. For a variety of such models, the 
equilibrium corresponding to coexistence may lose stability via a Hopf bifurcation, in 
which case trajectories approach an invariant circle. Alternatively, the equilibrium may 
undergo a subcritical flip bifurcation with a concomitant crash in the predator’s popula- 
tion. We review a technique for distinguishing between subcritical and supercritical flip 
bifurcations and provide examples of predator-prey systems with a subcritical flip 
bifurcation. 

1. INTRODUCTION 

Simple nonlinear difference equations, 

N+, =fwJ~ (1) 

are commonly used to model the growth of populations with discrete, 
nonoverlapping generations. Models of this type have a long history and are 
known to possess complicated dynamics [27,28]. 

The coupled dynamics of a predator and prey may, in turn, be modeled 
as a system of first-order difference equations: 

N 1+1 =f(N,&), (24 
P t+1 = g(N,d’t). P) 

Such systems are especially relevant to the study of arthropod predator-prey 
and host-parasitoid interactions [12], but they also appear in mathematics 
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and physics literature as mappings of the plane or as idealized Poincare 
maps [2,10,14]. 

Nicholson and Bailey [34,35] pioneered the use of discrete-time 
host-parasitoid models. They assumed density-independent growth of the 
host, a linear functional response, and random encounters between the host 
and the parasitoid. Their equations exhibit growing oscillations for all 
plausible parameter values. In contrast, many natural systems maintain 
coexistence at an equilibrium. Moreover, a stable equilibrium is the goal of 
many biological control programs [8]. As a result, there has been consider- 
able interest in the factors that affect the stability of host-parasitoid or 
predator-prey equilibria, factors such as density dependence, functional 
response, age structure, spatial heterogeneity, and aggregation 
[4,5,12,13,31,33,44]. 

A number of discrete-time predator-prey models possess three fixed 
points or equilibria that correspond to (1) extinction of both species, (2) 
extinction of the predator with survival of the prey at its carrying capacity, 
and (3) coexistence of both species. In Section 3 of this paper, we consider 
the stability of the equilibrium of coexistence as it arises in a discrete-time 
Lotka-Volterra model. In Sections 4 and 5, we use simple linear stability 
analysis, center manifold theory, and bifurcation theory to examine the 
various ways in which this fixed point loses its stability. We highlight an 
‘ L unexpected’ ’ subcritical flip bifurcation that produces a crash in the 
predator’s population. The same bifurcation occurs in at least three other, 
equally well-known models. These are presented in Section 6. We relegate 
our concluding comments to Section 7. 

The models we study have been in the literature for some time. It is not 
our aim to exhaustively review them. Instead, we wish to remind the reader 
that a linear analysis is not always sufficient to illuminate the nature of a 
bifurcation. In particular, there is a tendency to assume that all flip 
bifurcations are supercritical, that they will always produce a stable 2-cycle 
in the vicinity of the now unstable equilibrium. We show that this is false 
for four simple predator-prey models. 

2. THE MODEL 

Early on, Lotka [25] and Volterra [43] proposed the simple predator-prey 
model 

$=bNP-dP, 

where N and P are the densities of the prey and predator populations, 
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respectively. The parameters r and K are the intrinsic rate of growth and 
the carrying capacity of the prey; e, b, and d measure the foraging 
efficiency, the birth rate, and the death rate of the predator. The equations 

P I+1 = bN,P,+(l- d)P,, WJ) 

first studied by Maynard Smith [30], are a discrete-time analog of (3). They 
are obtained by replacing the derivatives in (3) with divided differences, 

dN Nt+h- Nt dp Pt+h- pt 
x= h 9 df= h 7 

by scaling the generation time h to 1, and by forcing predators to die after 
one generation (d = 1). After resealing Equations (4) via 

X, = N,IK, yt = eP,lbK, and c= bK, (6) 

we obtain 

x,+I=(f+l)x,-rx:-cx,y,, (7a) 

Yt+1 = cx,y,. (7b) 

This mapping has the undesirable property that it may generate negative 
numbers of individuals. However, the simple algebraic form of (7) greatly 
facilitates its analysis in comparison with those models that do preserve 
first-quadrant invariance. Other models, of both classes, are discussed in 
Section 7. 

3. STABILITY ANALYSIS 

The three fixed points of (7) and the eigenvalues associated with each are 
summarized in Table 1. X* will be referred to as the “coexistence 
equilibrium.” It is of fundamental interest to know if there is a region in 

TABLE I 

Fixed Points and Associated Eigenvalues of the Discrete-Time Lotka-Volterra Model 

Fixed points Eigenvalues 

x0 = (0,O) 
x’ = (1,O) 

$=r+l, $=o 
2,=1-r, &=c 

x*= 1 4c--l) ( c’ c* 1 A:,*= l- &(r* [r’+4rc(l- c)]“*) 
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parameter space [the (c, r) plane] for which this equilibrium is locally stable 
(i.e., has eigenvalues of magnitude less than 1). The easiest way to 
determine such a region is to apply the Jury conditions [17] to the 
community matrix [the Jacobian of (7) evaluated at X*], 

There are three ways that an eigenvalue may exit the unit circle in the 
complex plane, and, in this instance, there are three Jury conditions: 

I-trJ(X*)+detJ(X*)>O, Pa) 

l+trJ(X*)+detJ(X*)>O, Pb) 

l-detJ(X*)>O. (oc) 

The first two conditions guarantee that real eigenvalues larger than + 1 or 
less than - 1 do not exist. The third precludes truly complex eigenvalues 
from lying outside the unit circle. When these conditions are applied to (8), 
the following region in parameter space (Figure 1) is found to admit a 

FIG. 1. The region of the parameter plane corresponding to the stability of the 
coexistence equilibrium X* of models (7) and (26). X* loses its stability via a 
transcritical, subcritical flip, or Hopf bifurcation as the boundaries labeled T, SF, or H 
are traversed. 
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locally stable X*: 

l<c<2, 

r < 4c/(3 - c) . 
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(10) 

(11) 

4. LOCAL BIFURCATIONS 

At the boundary T in Figure 1, we observe a transcritical bifurcation. 
X* moves from the fourth to the first quadrant; it passes through and 
exchanges stability with X’ (Figure 2). In effect, an increase in the 
predator’s birth rate or the prey’s carrying capacity allows the predator to 
invade the system. 

As we continue to increase c, we observe a Hopf bifurcation (Figures 1 
and 3). To the left of H, X* is a stable focus. To the right of H, we 
observe an unstable focus and an attracting invariant circle. This Hopf 
bifurcation is an example of Rosenzweig’s [39] paradox of enrichment [24]: 
we destabilize the predator-prey steady state by increasing the prey’s 
carrying capacity. There are two exceptions to this Hopf bifurcation. They 
occur at r = 4 and r = 6, where there are strong 1:4 and 1:3 resonances (cf. 
[ 161, [2 11). At r = 4, the eigenvalues of X* are fourth roots of unity. X* 
yields to a stable 4-cycle. At r = 6, the eigenvalues are third roots of unity, 

0.20 . 

0.00 ,*’ .- x’ .’ I’ 
Y 

I’ ,’ ,’ ,’ 
#’ 

-0.20 - ,/’ x* 
_____ unstable 

I’ 
8’ _ stable 

,’ 
.I’ 

-0.40 
0.80 0.90 

FIG. 2. Bifurcation diagram showing a 
in model (7). Predator numbers are plotted 
c. 

1.00 1.10 1.20 
C 

transcritical bifurcation between X* and X’ 
for r = 1 and various values of the parameter 
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0.2 ' 
1.9 2.0 2.1 2.2 2.3 2.4 

C 

FIG. 3. Bifurcation diagram showing a Hopf bifurcation of X* in model (7). For 

r = 3.1 and for each of 1000 values of c in the range 1.9-2.4, we allowed 1000 

convergence iterations and plotted predator numbers from the next 350 iterates. Other 

bifurcations (including secondary Hopf bifurcations) can be seen for larger values of c. 

and we observe an unstable 3-cycle. For larger values of c, the invariant 
circle generated by the Hopf bifurcation deforms and breaks apart, giving 
rise to a strange attractor (Figure 4). This breakup has been studied in detail 
for related discrete-time mappings [2,3,32]. 

If the intrinsic rate of growth of the prey becomes large and (11) is 
violated, the bifurcation behavior of X* is more complicated (Figure 5). 
We focus here on the situation for small c = 1.1. As r increases, the fixed 
point X’ goes through the series of period-doubling bifurcations that is the 
hallmark of the logistic map [27,28]. The first such period doubling gives 
rise to the 2-cycle 

k= r+2-Jr2_4 
I 

( 2r 30 , 
1 

2 = r+2+G 
2 

( 
2r 30 . 

1 
( 124 
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FIG. 4. Collapse of an invariant circle. System (7) was iterated 10,000 times, after a 

transient of 1000 iterations, for the initial conditions (x, = 0.5, y0 = 0.8). As c 

increases, the invariant circle (a), which resulted from a Hopf bifurcation, becomes 

kinked (b), locks into a lo-cycle, undergoes a secondary Hopf bifurcation (c), and 
eventually becomes a strange attractor (d). 
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FIG. 4. (Continued) 
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FIG. 5. Bifurcation diagram showing a supercritical flip bifurcation of X ‘, a subcriti- 

cal flip bifurcation of X*, and a transcritical bifurcation of J!? and _? in model (7). Prey 
numbers are plotted for c = 1.1 and various values of the parameter r. 

All of the order-2” cycles of this period-doubling sequence reside on the 
prey axis. Since X’ was already a saddle point, they are all unstable. 

At the same time, the stable fourth-quadrant 2-cycle, 

~=~~,.~*)={tx,IY*),(x2~Yz)}~ 034 

x, = 
r-c(r+2)+[r(c+1)(4c-3r+cr)]“2 

2c(c- r) 
, w 

l+r(1- x,) 1 
Yl= -- 

C c”( x,)2 ’ 
(134 

x2 = 
r-c(r+2)-[r(c+l)(4c-3r+cr)]“2 

2c(c- r) 
, (134 

1+r(1- x2) 1 
Y2 = 

-- 
C c”( x2)2 ’ 

t 134 

moves into the first quadrant through 2, exchanging stability with it in a 
transcritical bifurcation. Both X* and the prey-axis 2-cycle 2 are now 
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stable. The existence of multiple stable states in nature is a topic of some 
debate [7,29,36,40-421. However, this model clearly allows for their 
existence. At one attractor, the predator coexists with the prey; at the other, 
the predator is absent. The stable manifolds of the saddle-like 2-cycle J? 
appear to separate the basins of attraction. Finally, as the boundary (11) is 
crossed, x collides with X*. J? is destroyed and X* becomes 
unstable-via a subcritical flip bifurcation-leaving 2, and extinction of 
the predator, as the only alternative (see Figure 6). 

For larger values of c, larger values of r are required to violate (11). 
Therefore, X’ will have gone through more than one period doubling by 
the time X* becomes unstable, and the prey-axis attractor will be of higher 
order (4,8,16,. . .) than 2. If r > 2.57 when the subcritical flip bifurcation 
occurs, the dynamics on the prey axis will be chaotic [26]. In general, 
trajectories will approach the prey axis rapidly. However, for some initial 
conditions there is a long transient, leading to the fountain phenomenon of 
Hadeler and Gerstmann [l l] (Figure 7). If r > 3, the logistic map is no 
longer invariant on the interval (0,4/3) and trajectories will diverge to 
infinity. 

5. AN APPLICATION OF CENTER MANIFOLD THEORY 

To formally ascertain the (sub- vs. supercritical) nature of the flip 
bifurcation that occurs as inequality (11) is violated, we would like to apply 
the following proposition put forward by Whitley [45] concerning a local 
bifurcation of a one-parameter family of one-dimensional maps, (CL, x) -+ 

%(x): 

PROPOSITION I (Subcritical Flip Bifurcation) 

Let F: R x W + W be a one-parameter family of C3 maps satisfying 

(1) F(P,~) = 0 and (2) Z$(a,,O) = -1. 

Then there is a unique branch of fixed points x(p) for p near p, with 
x&) = 0. If the eigenvalue X(,U) = (aF/ax)(x(p), 1~) satisfies 

(3) $J <o and also (4) 

then there are intervals (P,, pLc) and (cl,, p2) and E > 0 such that 

(i) If PE( p,, pc), then F, has one stable fixed point and one unstable 
orbit of period 2 in (- E, E). 
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(a) 

Y 

Fro. 6. Schematic phase portraits of model (7) for c - 1.1 and r increasing through 
the boundary SF in Figure 1. (a) Before the transcritical bifurcation between X and X, 
the only attractor in the first quadrant is the stable fixed point X*. (b) Just after the 
transcritical bifurcation, there are two attractors in the first quadrant: X* and the 2-cycle 
on the x axis, X. (c) After the subcritical flip bifurcation of X*, the predator suffers a 
population collapse, and trajectories are drawn to the 2-cycle X. 
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FIG. 6. (Continued) 

(ii) Zf pc(p,, p2), then F; = F,o F, has a single fixedpoint in (- E, E) 
that is an unstable fixed point of F,. 

Of course, we are concerned with a two-dimensional system of differ- 
ence equations, and so the proposition does not apply directly. However, by 
applying a technique from center manifold theory [6], we can reduce the 

dimension of the system to 1, for CL near pC and X near X*. 
First, we make the change of variables 

u, = x, - l/c, 

VI = y, - r(c - 1)/c 

in system (7). This translates the fixed point X* 
coordinate plane; system (7) becomes 

( 14a) 

( 14b) 

to the origin of the (u, u) 

u,+,=f(u,,u,)=-ruf+ ( c- r - c2u, 
C 1 

u,- VI, w 

ut+1= g(u,v u,> = c2ul+r(c-1) 
C 

u +v * I’ 

Near u* = 0, v* = 0, r = 4c/(3- c) we assume that there 

w-4 

is a center 
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0.0 0.5 1 .o 1.5 
X 

FIG. 7. The fountain phenomenon (cf. Hadeler and Gerstmann [ll]). After the 
subcritical flip bifurcation of X*, most trajectories are rapidly drawn down to an 
attractor on the x axis. However, some trajectories experience a long transient that 
appears as a shower in the phase plane. In this instance, a single trajectory based at 
(x, = 0.76, y, = 0.44) was followed for 50,000 iterations. 

manifold of the form 

Ut = h( u,) = au, + Puf + yu: + o( 24;‘). (16) 

Substituting this expression into (15b), we obtain the relation 

~(%+J = &J+t))* (17) 

But ur+1 can be written as 

U 1+1= f(G e4)v (18) 

by Equations (15a) and (16). Combining (17) and (18) yields 

h(f(u,, Nut))) = 44, +G)). (19) 

By equating coefficients of powers of u,, we produce the coefficients CY, /3, 
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and y in the power series for h. These have been calculated and are 
presented in the appendix. 

Now, with an expression for h(u,) in hand, we study the reduced system 

(18), 

Uf+I = ( l+Y)u,-(r+orc+/3)u: 

-(/3c++:-~cu;l. (20) 

For 

4c 
CL= r, l%=rc==- and F=.f, (21) 

we have checked the conditions of Proposition 1, and they are satisfied. 
This implies that the bifurcation is indeed subcritical. Figure 8 shows 
f of(u,, h(u,)) before and after the subcritical flip bifurcation. 

Note that in the expansion for h it is necessary to keep terms of up to 
third order in U, because the fourth condition in Proposition 1 concerns the 
coefficient of the cubic term in F 0 F. It should be emphasized that in the 
preceding analysis we have held c constant in order to avoid any codimen- 
sion-2 bifurcations. 

6. OTHER MODELS 

The presence of a subcritical flip bifurcation is not unique to model (7). 
In fact, we have found subcritical flip bifurcations in at least three other 
models: 

N i+,=N,exp[r(l-~)-tPl]. (224 

P t+, = WP,; W) 

N ,+,=N,exp[r(l-$)-eP,]. (234 

P 1+1 = N,[l-exp(-eP,)]; (23b) 

and 

N t+1 (244 

bNt Pt 
pt+l= N,+ A ’ PW 

Model (22) replaces the logistic prey growth and mass-action functional 
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FIG. 8. Plots of f 0 f(u,, h(u,)). (a) Just before the subcritical flip bifurcation 
(r = 3.7, (Y = -0.696884, p = - 10.0029, y = 155.033), there is a stable fixed point and 
an unstable 2-cycle. (b) After the bifurcation (r = 4.2, o! = -0.651669, fi = -3.17159, 
y = 0.690623), the 2-cycle has disappeared and the fixed point has become unstable. In 
both cases, c = 1.5. 

response of model (4) with a Ricker curve [37]. It has been used by Kot 
[ 18,191 and Kot and Schaffer [20] as the descriptor of growth in discrete-time 
growth-dispersal models. Converting it to a dimensionless form by the 
transformations 

x, = N,IK, yt = eP,lr, and c=bK (25) 
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yields 

X ?+I = x,exp I[ r(l - x, - YJ] 9 (264 

Y t+ I = CXtYt. Gw 

This model possesses a coexistence equilibrium at the point 

1 
x*=7, 

C-l y*=- 
c . (27) 

The linearization of (26) about (27) is identical to (8), and so the stability 
region for the coexistence equilibrium is again given by the inequalities (10) 
and (11). 

An advantage of this model over (7) is that it maintains first-quadrant 
invariance. However, the exponential function makes the center manifold 
calculations harder. Because the system of equations 

X t+2 = Xt 7 (284 

Yr+2 = Yt WV 

is now transcendental, we are also prevented from obtaining a closed-form 
expression for the unstable 2-cycle responsible for the subcritical flip 
bifurcation. However, numerical experiments show that such a bifurcation 
does occur, with a resultant crash in the predator’s population. 

Model (23), due to Beddington et al. [4], arises in the study of 
host-parasitoid interactions. It is an extension of Nicholson and Bailey’s 
model [34,35] and incorporates the effects of density dependence among the 
prey. It can be nondimensionalized to 

X f+l = x,ev[ dl- xt) - Yt] 9 

yt+,=cxt[l-exp(-Yt)l. 

(294 

Gw 

A linear stability analysis near the unique coexistence equilibrium of (29) 
produces the stability region shown in Figure 9. Numerical simulations 
show that the flip bifurcation is subcritical. In this instance, the parasitoid 
goes extinct. 

System (24) is a special case of a model studied by Hadeler and 
Gerstmann [ 111. It is a variant on and a discretization of the system 
proposed by Rosenzweig [39]; it incorporates a Type II functional response 
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FIG. 9. The region of the parameter plane corresponding to the stability of the 
coexistence equilibrium X* of model (29). X* loses its stability via a transcritical, 
subcritical flip, or Hopf bifurcation as the boundaries labeled T, SF, or H are traversed. 

[ 151. One dimensionless form of (24) is 

Figure 10 depicts the stability region, in the (c, r) parameter plane, for the 
equilibrium 

,*=Y 
c-l ’ 

y* = rx*( 1 - x*) ) (31) 

in the case y = 1. The region looks similar for other values of y. 
Hadeler and Gerstmann [l l] may have been aware of this subcritical flip 

bifurcation. In particular, they note the existence of an unstable 2-cycle in 
the neighborhood of the stable equilibrium of coexistence. 

7. DISCUSSION 

Supercritical flip bifurcations frequently occur in maps of the interval. 
This is the situation, for example, in the logistic map and Ricker curve. 
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FIG. 10. The region of the parameter plane corresponding to the stability of the 
coexistence equilibrium X * of model (30) for y = 1. X* loses its stability via a 
transcritical, subcritical flip, or Hopf bifurcation as the boundaries labeled T, SF, or H 
are traversed. 

However, Allwright [l] has pointed out that this situation is not generic, 
even for the “one-hump functions” that one commonly finds in population 

ecology. He gives as examples 

Xl, I = F(x,) = vv[W - x,>] (32) 

and 

g(u)=u(exp[2(l-u)]-(u-l)3exp[-3(u-l)2]]. (33b) 

Although F and fi have nearly the same shape (Figure 1 I), at r = 1 the 
former exhibits a supercritical flip bifurcation whereas the later exhibits a 
subcritical flip bifurcation. As Whitley [45] shows, this can be attributed to 
the fact that (32) has a Schwarzian derivative, 

SF(x) = ~-- (34) 
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0.0 0.5 1.0 1.5 2.0 2.5 

X 

FIG. 11. An example of superficially similar unimodal maps with differevt bifurcation 
behaviors. F(x) (solid line) has a supercritical flip bifurcation, whereas F(x) (broken 
line) has a subcritical flip bifurcation. Each is plotted at r = 1. (After Allwright [l].) 

which is negative at r = 1, x = 1, whereas the opposite is true for (33). If 
the Schwarzian derivative, evaluated at the fixed point and the bifurcation 
value of the parameter, is negative (positive), then a subcritical (supercriti- 
cal) bifurcation is impossible. This provides a quick test that will reveal the 
criticality of a flip bifurcation. 

When predator and prey interact, the situation is more complicated. We 
must first reduce the system to one dimension via center manifold theory. 
Ordinarily this would be considered tedious. However, with the increasing 
availability of symbolic manipulators it is, in fact, reasonable. 

Our own investigation suggests that subcritical flip bifurcations are not to 
be dismissed out of hand. In at least four instances, the four models 
discussed in this paper, prey alone exhibit supercritical flip bifurcations 
whereas the corresponding predator-prey system exhibits a subcritical 
bifurcation. For each model, a small increase in the growth rate of the prey 
leads to a radical change in the dynamics of the community. The conse- 
quences of this are especially dire: the predator is driven to extinction (cf. 

WI 7 [391). 
Finally, we note that subcriticality is not restricted to flip bifurcations or 

to difference equations. Guckenheimer et al. [9] and Levin 1231 have 
observed a subcritical bifurcation associated with strong resonance in a 
simple age-structured model, whereas Lauwerier and Metz [22] have ana- 
lyzed subcritical Hopf bifurcations in host-parasitoid models. In turn, 
Rinaldi et al. [38] have observed subcritical flip bifurcations in the Poincare 
map of a system of differential equations that model a seasonally perturbed 
predator-prey community. 



64 MICHAEL G. NEUBERT AND MARK KOT 

It is a pleasure to thank Celeste Berg, Eric Funasaki, Mark Lewis, 
Therese Mar, Mike McCann, and Rebecca Tyson for suggestions and/or 
discussions. We are also grateful to the Department of Energy (DE- 
FGO69OER61034) and to the National Science Foundation (BSR- 
8907965) for their support. 

APPENDIX 

These are the coefficients in the expansion of the center manifold (16): 

p= 6c3-6c4+2c4~-~2~2+(2~3-4~4+~3~)[-4~(l-l;c)+~z/~2]“2 

-18c2+18c3+8cr-14c2r+2c3r+2r2 

(35b) 

y = a/v, w 

6= -8c4r5+c”(-72+512r+88r2+16r3) 

+ cl’( 144- 1276r - 1096r2 - 188r3) 

+ c”( -72+976r +2248r* +848r3) 

+ c”( -212r - 1628r2 - 1156r3 +20r4) 

+ c7(404r2 +580r3 - 176r4) 

+ c”( - lOOr +220r”) 

+ c’( -76r4 + 12r5) 

+ [ c”( -348- 120r -28r*) + c”(720+784r + 192r2) 

+c9(-372-IlOOt--476r2+12r3) 

+ c8(420r +348r2 -72r’) + c’( -36r2 + 140r3) 

’ 12 

I 
, (35d) 

E=(-9C2+9c3+4cr-7c2r+c3r+r2)2, 

17 = 16c2r - 24c3r + 12c2r2 -4r3 
(35e) 

-(16c3-12c2r+3cr2) -4r+qfr’ 
[ 

‘12 

C2 1 
- c3 (35f) 
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