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Abstract
We present a resolution of the Klein paradox within the framework of one-particle relativistic
quantum mechanics. Not only reflection becomes total but the vacuum remains neutral as well.
This is accomplished by replacing the physical pair production process with virtual negative
energy ‘incidence’ within the barrier in a similar manner to what is done with virtual sources
in optics and image charges in electrostatics.

PACS numbers: 03.65.Pm, 03.65.Nk, 03.65.Ca

The physics and mathematics of the Dirac equation are
very rich and illuminating. However, this is true only if
one includes the complete solution space of the equation.
It is well known that the Dirac equation has positive as
well as negative energy solutions [1]. The negative energy
solutions are the subject of various interpretations that wax
and wane throughout the history of the equation. However,
since the equation is linear, the complete solution must be
a linear combination of the two. Physical and mathematical
results and interpretations thereof are correct only if the
full contribution of the complete solution is accounted for.
Klein’s paradox [2] results from the conventional solution
of the Dirac equation for a potential step of height V that
is larger than 2m, where m is the rest mass of the particle
(h̄ = c = 1). If the energy of the particle is in the range
+m < E < V − m (known as the Klein energy zone), then
partial reflection and not total reflection will result although
the energy is lower than the height of the barrier. We will show
that this paradox results from eliminating part of the negative
energy solution under the potential step without accounting
for the physical pair production process. We also give a
proper interpretation of these solutions based on optical and/or
electrostatic models. The traditional resolution of the paradox
uses tools outside one-particle relativistic quantum mechanics
where particle/anti-particle pair creation is employed. In this
paper, we show that the paradox could be resolved within
quantum mechanics by including virtual negative energy
solutions under the barrier that are usually removed in the
conventional treatment. We gauge these negative energy
solutions with our own interpretation in which we follow a
procedure similar to that in optics where virtual sources are
included in the unphysical region to obtain the correct solution
in the physical region. An alternative to this interpretation of
the negative energy solution is also found in electrostatics

Figure 1. The physical configuration associated with the Klein
paradox problem. The height of the potential step is V > 2m and the
energy is in the range V − m > E > +m. The positive (negative)
energy continuum is the region with the lighter (darker) shade. The
solid line represents the vector potential V and the dashed lines
represent ±m or V ± m. The energy level is indicated by the
dashed-dotted line.

where virtual image charges are added to obtain the correct
solution.

Figure 1 shows the configuration associated with the
Klein paradox. The typical interpretation is that a beam of
electrons with energy in the range [+m, V − m] incident
from the left gets partially reflected at the barrier1. To
account for the electrons transmitted into the barrier, concepts
such as ‘charged vacuum’ and spontaneously produced
electron–positron pairs and so on come into play. In most of
the earlier attempts at resolving the paradox, principles and
tools like these, which come from fields outside relativistic
quantum mechanics (e.g. second quantization, quantum field

1 The literature is rich in contributions to this problem. One may consult, for
example, [3] and references therein.

0031-8949/11/025001+04$33.00 Printed in the UK & the USA 1 © 2011 The Royal Swedish Academy of Sciences

http://dx.doi.org/10.1088/0031-8949/83/02/025001
mailto:haidari@mailaps.org
http://stacks.iop.org/PhysScr/83/025001


Phys. Scr. 83 (2011) 025001 A D Alhaidari

Figure 2. The square barrier problem with the height of the barrier
being larger than 2m. Electrons are represented by the outlined
arrows ( ) and anti-electrons are represented by the solid arrows
( ).

theory and many particle physics), are deployed. In our
opinion, however, a successful resolution of the paradox
must come about from within the framework of one-particle
relativistic quantum mechanics where the paradox was
originally posed. The assertion that the theory at strong
coupling is not sufficient for describing this scattering process
is debatable since the theory is found to be correct even at
higher energies where E > V − m [1]. To address the paradox
properly, it helps first to look at the square barrier problem
with a particle beam incident from left (see figure 2). The
solution of the wave equation to the right of the square
barrier consists of positive energy plane waves traveling in
the ±x-directions. However, the physical boundary conditions
allow only for transmitted waves to the right. On the other
hand, in the potential step problem the solution of the Dirac
equation to the right of the barrier (x > 0) in the Klein energy
zone consists of negative energy plane waves traveling in
the ±x-directions. Here, however, we will not dismiss the
virtual plane wave solutions of negative energy anti-electrons
traveling to the left and incident on the barrier. We will utilize
this part, which is usually missing from the conventional
solution, in the resolution of the paradox and we give it
a proper interpretation. The following is a brief technical
presentation of the full solution that results in a resolution of
the paradox.

In the conventional relativistic units, h̄ = c = 1, the
steady-state Dirac equation for this one-dimensional (1D)
problem could be written as follows [1]2:m+V (x)− E −

d

dx
d

dx
−m + V (x)− E

 (
ψ+(x)
ψ−(x)

)
= 0. (1)

The potential enters the equation as the time component of
a vector with vanishing space component. For x < 0, where
V (x)= 0, this equation relates the two spinor components as
follows:

ψ∓(x)=
1

m ± E

d

dx
ψ±(x), (2)

which is not valid for E = ∓m. We also obtain the
following Schrödinger-like second-order differential

2 Multiplying one of the two spinor components by i results in an equi-
valent representation of the Dirac equation that is identical to equation (1)
except that the two off-diagonal elements are replaced by i d

dx .

equation: (
d

dx2
+ E2

− m2

)
ψ±(x)= 0. (3)

Now, since E = ∓m belongs to the negative/positive energy
spectrum, equations (2) and (3) with the top/bottom sign
are valid only for positive/negative energy, respectively. We
should emphasize that equation (3) does not give the two
components of the spinor that belong to the same energy
subspace. One has to choose one sign in equation (3) to
obtain only one of the two components and then substitute
that into equation (2) with the corresponding sign to obtain the
other component. The positive and negative energy subspaces
are completely disconnected. This is a general feature of the
solution space of the Dirac equation, which is overlooked
more often than not. Now, for x > 0, the same analysis follows
but with the substitution E → E − V .

We start by giving the traditional partial solution of
the problem (see footnote 1). The positive energy spinor
wavefunction in the Klein energy zone (m < E < V − m) for
x < 0 is

ψ(x)=
1

√
1 +α2

(
1
iα

)
eikx +

A
√

1 +α2

(
1

−iα

)
e−ikx , (4)

where k =
√

E2 − m2 and α =
√
(E − m)/(E + m). This

solution represents two positive energy electron beams: one
beam of unit amplitude incident from the left and another
reflected beam of amplitude A. For x > 0, the negative energy
solution representing the transmitted beam is

ψ(x)=
B√

1 +β2

(
−iβ

1

)
e−i px , (5)

where p =
√
(V − E)2 − m2 and β =

√
(V − E − m)/(V − E + m). One should note that for

positive (negative) energy, e±iqx is a wave traveling in the
± x (∓ x)-direction, respectively, where q is the positive
wave number or linear momentum. Matching the spinor
wavefunction at x = 0 gives

A = (αβ − 1)/(αβ + 1), B =
2iα

αβ + 1

√
1 +β2

1 +α2
. (6)

The traditional solution stops here with the interpretation
that the reflection amplitude is R = A and the transmission

amplitude is T = B
√
β

α
1+α2

1+β2 . Of course, reality gives |T |
2 +

|R|
2
= 1. However, the resulting reflection coefficient, |R|

2,
is less than unity3 although the beam energy is less
than the height of the barrier. Moreover, the missing
electrons penetrating the potential step make the negative
energy continuum (vacuum) negatively charged. These two
unexpected and paradoxical results were first reported
80 years ago in a classic paper by Klein [2]. The traditional
resolution of this paradox is shown in figure 3 [4]. It
is interpreted as follows: at the barrier, pair production
takes place in which electrons of flux |T |

2 are reflected to

3 In fact, the value of this reflection coefficient falls within the range
(2m/V )2 6 |R(E)|2 6 1 with |R| = 1 at E = +m and E = V − m while
|R| =

2m
V at E =

1
2 V .

2
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Figure 3. Representation of the traditional resolution of the Klein
paradox where spontaneous pair production takes place at the
barrier. Positive and negative energy states are created with an equal
flux, |T |

2.

Figure 4. Virtual negative energy incidence is included as a mirror
image of the traditional solution. This results in the transmission
and reflection coefficients |T |

2 and |R|
2, respectively.

the left and an equal flux of anti-electrons is transmitted
into the barrier. Thus, overall reflection of electrons to
the left becomes total since |T |

2 + |R|
2
= 1. Nonetheless,

the vacuum becomes positively charged. Moreover, pair
production means that one has to use tools and resort to
concepts outside one-particle relativistic quantum mechanics
where the original problem was presented.

Now, we present our approach to the resolution of the
paradox, which is carried out entirely within relativistic
quantum mechanics. We do that by including the part of the
solution that was eliminated in the conventional treatment. As
explained above, it is a plane wave solution of virtual negative
energy anti-electrons traveling to the left under the barrier
and incident on it. Charge, parity and time (CPT) symmetry
of the Dirac equation dictates that we incorporate it as a
mirror image of the traditional solution (see figure 4). The
mathematical solution of the Dirac equation (1) in the Klein
energy zone with the vector potential depicted in figure 1
(without the arrows) could be representing positive energy
electrons incident on the barrier from the left, but it could as
well be representing negative energy anti-electrons incident
on the barrier from the right. It will turn out that the correct
solution includes both scenarios while at the same time
satisfying the physical boundary conditions. The inclusion of
the virtual incident beam is analogous to what is usually done
in optics and electrostatics. For example, the following optical
model gives a proper interpretation of the negative energy

Figure 5. Optical analogue model of the atomic process. (a) The
flat mirror located at x = 0 corresponds to the discontinuity of the
vector potential. (b) The region behind the mirror to the right where
the imaginary light source is located corresponds to the negative
energy continuum.

solution, which is missing from the conventional treatment
of the problem: The discontinuity of the vector potential at
x = 0 in the Klein energy zone acts as a perfectly reflecting
plane mirror. Figure 5 gives the optical analogue of the atomic
process. Incidence and full reflection of light from a light
source in front of the plane mirror (left region in figure 5(a))
could be replicated by replacing the mirror (solid vertical
line in figure 5(a)) with a partially transmitting plane glass
(broken vertical line in figure 5(b)) and placing an identical
source of light behind the glass in the unphysical region (see
figure 5(b)). The back of the flat mirror (right region) where
the virtual light source is located corresponds to the negative
energy continuum. The figure shows the optical beams that
correspond to the reflected and transmitted electronic beams
R,R, T and T . It is easy to use symmetry arguments and show
that |R|

2 + |T |
2
= 1. An alternative interpretation is also found

in the mirror charges method widely used in electrostatics (see
below). These ‘mirror models’ (optical or electrical) could be
used in all problems with such physical configuration in which
the vector potential has a discontinuity larger than 2m and the
negative energy region extends to infinity.

Therefore, we proceed by including the negative energy
solution under the barrier as virtual anti-electrons incident
from the right. That is, for x > 0 it reads as follows:

χ(x)=
1√

1 +β2

(
iβ
1

)
ei px +

C√
1 +β2

(
−iβ

1

)
e−i px . (7)

This represents a combination of two negative energy beams
of anti-electrons within the potential step. One beam is
incident on the barrier from the right with unit amplitude and
the other is reflected to the right with an amplitude C. For
x < 0, the corresponding solution is

χ(x)=
D

√
1 +α2

(
1

−iα

)
e−i kx , (8)

which represents a transmitted beam of electrons to the left
with amplitude D. Continuity of the spinor wavefunction χ(x)
at x = 0 gives

C = (αβ − 1)/(αβ + 1), D =
2iβ

αβ + 1

√
1 +α2

1 +β2
. (9)

Thus, the reflection amplitude in this case is R= C and the

transmission amplitude is T = D
√
α
β

1+β2

1+α2 . Consequently, the

3



Phys. Scr. 83 (2011) 025001 A D Alhaidari

Figure 6. Representation of our proposed resolution of the Klein
paradox within one-particle relativistic quantum mechanics (no pair
production).

Figure 7. The complete solution of the Klein paradox: (1) total
reflection of positive and negative energy waves and (2)
particle/anti-particle conservation leaving a neutral vacuum.

observed overall reflection of electrons to the left becomes
total since ∣∣R−

∣∣2
≡ |R|

2 + |T |
2
= 1. (10)

Likewise, the overall reflection of anti-electrons to the right is
also total, ∣∣R+

∣∣2
≡ |R|

2 + |T |
2
= 1. (11)

Figure 6 illustrates the complete process, which is
summarized in figure 7. In the analogous electrostatic
problem, positive and negative charges are induced at the
boundary. Those with the same sign as the source charge will
be displaced to infinity whereas those with the opposite sign
will remain at the boundary. The latter are then replaced by
the fictitious negative image charge. The process of charge
induction at the boundary is equivalent to the process of
pair creation at the potential barrier. In analogy, the virtual
incident negative energy waves we introduced under the
potential step do induce part of the real positive energy
reflected waves, which is given by equation (8).

The above results constitute a resolution of the
80-year-old paradox: total reflection without charging the
vacuum. The missing part from the traditional solution that
we reintroduced is, in fact, a mirror image of the traditional
solution. One can also show that this mirror model is
equivalent to the boundary condition that the current density,
J(x), vanishes at x = 0, where J (x)= −iψ(x)†σ3σ1 ψ(x),
σ3 = (

+1
0

0
−1 ) and σ1 = (

0
1

1
0 ). In general, an incident wave

packet, which is sharply centered within the Klein energy

zone (+m < E < V − m), will be totally reflected with zero
probability of penetrating the potential barrier. However,
if the wave packet is sharply centered within the energy
range V ± m, then again it will be totally reflected but with
non-vanishing probability of barrier penetration. On the other
hand, if the wave packet is sharply centered around an energy
greater than V + m, then partial reflection and transmission
will occur. Now, if the energy spectrum of the wave packet
extends over all three energy zones, then a linear combination
of these scenarios will occur.

Finally, we would like to note that the understanding,
interpretation and earlier attempts at a resolution of the Klein
paradox presented a few challenges in theoretical physics
that lead to significant contributions, which proved to be
very enriching and fruitful (see, for example, [5]). Unlike
early attempts to resolve the paradox [4], the present one is
carried out entirely within one-particle relativistic quantum
mechanics where the original paradox was presented.
Moreover, the negative energy continuum (vacuum) remains
neutral. We believe that the resolution of the paradox offered
here might have implications as significant as the original
paradox itself.
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