Chap. 6 SOLUTIONS OF TIME-INDEPENDENT SCHROEDINGER EQUATIONS 228

26.
27.

28.

29.
30.

31.

Are there analogies in classical physics to the quantum mechanical concept of parity?

Are there unbound states for a simple harmonic oscillator potential? How many bound
states are there? How realistic is the potential?

Explain all aspects of the behavior of all the probability densities of Table 6-2; in partic-
ular explain the probability density for the barrier potential with energy above the top.

What are the other significant features of the systems of Table 6-2?

Considering separately each system treated in this chapter, state which of its properties
agree, and disagree, with classical mechanics in the microscopic limit. Which agree, and
disagree, with classical wave motion in that limit? Make the same classifications for the
properties of the systems in the macroscopic limit.

The cigenvalues in Figure 6-35 are equally spaced, but the lowest eigenvalues in Figure
6-22 come in closely spaced pairs. By considering the effect of a large bump in a potential
well on the eigenvalues for symmetric versus antisymmetric eigenfunctions, explain the
tendency for the eigenvalues to come in pairs in Figure 6-22.

PROBLEMS

1.

Show that the step potential eigenfunction, for E < V4, can be converted in form from
the sum of two traveling waves, as in (6-24), to a standing wave, as in (6-29).

Repeat the step potential calculation of Section 6-4, but with the particle initially in the
region x > 0 where V(x) = Vp, and traveling in the direction of decreasing x towards the
point x = 0 where the potential steps down to its value ¥(x) = 0 in the region x < 0.
Show that the transmission and reflection coefficients are the same as those obtained in
Section 6-4.

Prove (6-43) stating that the sum of the reflection and transmission coefficients equals
one, for the case of a step potential with E > V.

Prove (6-44) which expresses the reflection and transmission coefficients in terms of the
ratio E/V,.

Consider a particle tunneling through a rectangular potential barrier. Write the general
solutions presented in Section 6-5, which give the form of  in the different regions of the
potential. (a) Then find four relations between the five arbitrary constants by matching
and dyr/dx at the boundaries between these regions. (b) Use these relations to evaluate the
transmission coefficient T, thereby verifying (6-49). (Hint: First eliminate F and G, leavmg
relations between A, B, and C. Then eliminate B.)

Show that the expression of (6-49), for the transmission coefficient in tunneling through
a rectangular potential barrier, reduces to the form quoted in (6-50) if the exponents are
very large.

Consider a particle passing over a rectangular potential barrier. Write the general solu-
tions, presented in Section 6-5, which give the form of ¥ in the different regions of the
potential. (a) Then find four relations between the five arbitrary constants by matching y
and dy/dx at the boundaries between these regions. (b) Use these relations to evaluate the
transmission coefficient T, thereby verifying (6-51). (Hint: Note that the four relations
become exactly the same as those found in the first part of Problem 5, if ky; is replaced
by iky;. Make this substitution in (6-49) to obtain directly (6-51).)

(a) Evaluate the transmission coefficient for an electron of total energy 2 eV incident upon
a rectangular potential barrier of height 4 ¢V and thickness 10~ % m, using (6-49) and
then using (6-50). Repeat the evaluation for a barrier thickness of (b) 9 x 10™° m and
(c) 10"’ m

A proton and a deuteron (a particle with the same charge as a proton, but twice the mass)
attempt to penetrate a rectangular potential barrier of height 10 MeV and thickness
10~ m. Both particles have total energies of 3 MeV. (a) Use qualitative arguments to
predict which particle has the highest probability of succeeding. (b) Evaluate quantita-
tively the probability of success for both particles.
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A fusion reaction important in solar energy production (see Question 16) involves capture
of a proton by a carbon nucleus, which has six times the charge of a proton and a radius
of ¥ ~ 2 x 10715 m. (a) Estimate the Coulomb potential V experienced by the proton if
it is at the nuclear surface. (b) The proton is incident upon the nucleus because of its
thermal motion. Its total energy cannot realistically be assumed to be much higher than
10 kT, where k is Boltzmann’s constant (see Chapter 1) and where T is the internal
temperature of the sun of about 107 °K. Estimate this total energy, and compare it with
the height of the Coulomb barrier. (c) Calculate the probability that the proton can
penetrate a rectangular barrier potential of height V extending from r’ to 2r/, the point
at which the Coulomb barrier potential drops to V/2. (d) Is the penetration through the
actual Coulomb barrier potential greater or less than through the rectangular barrier po-
tential of part (c)?

Verify by substitution that the standing wave general solution, (6-62), satisfies the time-
independent Schroedinger equation, (6-2), for the finite square well potential in the region
inside the well.

Verify by substitution that the exponential general solutions, (6-63) and (6-64), satisfy the
time-independent Schroedinger equation (6-13) for the finite square well potential in the
regions outside the well.

(a) From qualitative arguments, make a sketch of the form of a typical unbound standing
wave eigenfunction for a finite square well potential. (b) Is the amplitude of the oscillation
the same in all regions? (c) What does the behavior of the amplitude predict about the
probabilities of finding the particle in a unit length of the x axis in various regions?
(d) Does the prediction agree with what would be expected from classical mechanics?

Use the qualitative arguments of Problem 13 to develop a condition on the total energy of
the particle, in an unbound state of a finite square well potential, which makes the
probability of finding it in a unit length of the x axis the same inside the well as outside
the well. (Hint: What counts is the relation between the de Broglie wavelength inside the
well and the width of the well)

(a) Make a quantitative calculation of the transmission coefficient for an unbound particle
moving over a finite square well potential. (Hint: Use a trick similar to the one indicated
in Problem 7.) (b) Find a condition on the total energy of the particle which makes the
transmission coefficient equal to one. (c) Compare with the condition found in Problem
14, and explain why they are the same. (d) Give an example of an optical analogue to
this system.

(a) Consider a one-dimensional square well potential of finite depth V5 and width a. What
combination of these parameters determines the “strength” of the well—i.e., the number
of energy levels the well is capable of binding? In the limit that the strength of the well
becomes small, will the number of bound levels become 1 or 0? Give convincing justifica-
tion for your answers.

An atom of the noble gas krypton exerts an attractive potential on an unbound electron,
which has a very abrupt onset. Because of this it is a reasonable approximation to
describe the potential as an attractive square well, of radius equal to the 4 x 1071%m
radius of the atom. Experiments show that an electron of kinetic energy 0.7 eV, in regions
outside the atom, can travel through the atom with essentially no reflection. The phenom-
enon is called the Ramsauer effect. Use this information in the conditions of Problem 14
or 15 to determine the depth of the square well potential. (Hint: One de Broglie wave-
length just fits into the width of the well. Why not one-half a de Broglie wavelength?)

A particle of total energy 9V, is incident from the —x axis on a potential given by

SVO x<0
V=0 O0<x<a
Vo xX>a

Find the probability that the particle will be transmitted on through to the positive side
of the x axis, x > a.
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Figure 6-37 Two eigenfunctions considered in Problem
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Verify by substitution that the standing wave general solution, (6-67), satisfies the time-
independent Schroedinger equation, (6-2), for the infinite square well potential in the
region inside the well.

Two possible eigenfunctions for a particle moving freely in a region of length a, but
strictly confined to that region, are shown in Figure 6-37. When the particle is in the state
corresponding to the eigenfunction iy, its total energy is 4 eV. (a) What is its total energy
in the state corresponding to ¥y ? (b) What is the lowest possible total energy for the
particle in this system?

(a) Estimate the zero-point energy for a neutron in a nucleus, by treating it as if it were in
an infinite square well of width equal to a nuclear diameter of 10~ *# m. (b) Compare your
answer with the electron zero-point energy of Example 6-6.
(a) Solve the classical wave equation governing the vibrations of a stretched string, for
a string fixed at both its ends. Thereby show that the functions describing the possible
shapes assumed by the string are essentially the same as the eigenfunctions for an infinite
square well potential. (b) Also show that the possible frequencies of vibration of the string
are essentially different from the frequencies of the wave functions for the potential.
(a) For a particle in a box, show that the fractional difference in the energy between
adjacent eigenvalues is

AE, 2n+1
E, o

(b) Use this formula to discuss the classical limit of the system.

Apply the normalization condition to show that the value of the multiplicative constant
for the n = 3 eigenfunction of the infinite square well potential, (6-79), is B3 = /2/a.

Use the eigenfunction of Problem 24 to calculate the following expectation values, and
comment on each result: (a) X, (b) p, (c) x2, (d) p>.

(a) Use the results of Problem 25 to evaluate the product of the uncertainty in position
times the uncertainty in momentum, for a particle in the n = 3 state of an infinite square
well potential. (b) Compare with the results of Example 5-10 and Problem 13 of Chapter
5, and comment on the relative size of the uncertainty products for then = 1, n = 2, and
n = 3 states. (¢} Find the limits of Ax and Ap as n approaches infinity.

Form the product of the eigenfunction for the n =1 state of an infinite square well
potential times the eigenfunction for the n = 3 state of that potential. Then integrate it
over all x, and show that the result is equal to zero. In other words, prove that

o0

J Y1(x)¥3(x)dx =0

(Hint: Use the relation: cos u cos v = [cos(u + v) + cos(u — v)]/2.) Students who have
worked Problem 36 of Chapter 5 have already proved that the integral over all x of the
n = 1 eigenfunction times the n = 2 eigenfunction also equals zero. It can be proved that
the integral over all x of any two different eigenfunctions of the potential equals zero.
Furthermore, this is true for any two different eigenfunctions of any other potential.
(If the eigenfunctions are complex, the complex conjugate of one is taken in the integrand.)
This property is called orthogonality.

Apply the results of Problem 20 of Chapter 5 to the case of a particle in a three-
dimensional box. That is, solve the time-independent Schroedinger equation for a particle
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moving in a three-dimensional potential that is zero inside a cubical region of edge length
a, and becomes infinitely large outside that region. Determine the eigenvalues and eigen-
functions for the system.

Airline passengers frequently observe the wingtips of their planes oscillating up and down

with periods of the order of 1 sec and amplitudes of about 0.1 m. (a) Prove that this is

definitely not due to the zero-point motion of the wings by comparing the zero-point
energy with the energy obtained from the quoted values plus an estimated mass for the
wings. (b) Calculate the order of magnitude of the quantum number n of the observed
oscillation.

The restoring force constant C for the vibrations of the interatomic spacing of a typical
diatomic molecule is about 10® joules/m?. Use this value to estimate the zero-point energy
of the molecular vibrations. The mass of the molecule is 4.1 x 1072 kg.

(a) Estimate the difference in energy between the ground state and first excited state of the
vibrating molecule considered in Problem 30. (b) From this estimate determine the energy
of the photon emitted by the vibrations in the charge distribution when the system makes
a transition between the first excited state and the ground state. (c) Determine also the
frequency of the photon, and compare it with the classical oscillation frequency of the
system. (d) In what range of the electromagnetic spectrum is it?

A pendulum, consisting of a weight of 1 kg at the end of a light 1 m rod, is oscillating with
an amplitude of 0.1 m. Evaluate the following quantities: (a) frequency of oscillation,
(b) energy of oscillation, (c) approximate value of quantum number for oscillation,
(d) separation in energy between adjacent allowed energies, (e) separation in distance
between adjacent bumps in the probability density function near the equilibrium point.

Devise a simple argument verifying that the exponent in the decreasing exponential,
which governs the behavior of simple harmonic oscillator eigenfunctions in the classically
excluded region, is proportional to x2. (Hint: Take the finite square well eigenfunctions of
(6-63) and (6-64), and treat the quantity (Vo — E) as if it increased with increasing x in
proportion to x2.)

Verify the eigenfunction and eigenvalue for the n = 2 state of a simple harmonic oscillator
by direct substitution into the time-independent Schroedinger equation, as in Example
6-7.
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