PROBLEMS

1L

10.

11.

12.

13.

14.

Using the technique of separation of variables, show that there are solutions to the
three-dimensional Schroedinger equation for a time-independent potential, which can be
written

Pxp.z.t) = Ylxy,z)e” HP
where ¥(x,y,z) is a solution to the time-independent Schroedinger equation.
Verify that ®(p) = €™ is the solution to the equation for ®(¢), (7-15).

Hydrogen, deuterium, and singly ionized helium are all examples of one-electron atoms.
The deuterium nucleus has the same charge as the hydrogen nucleus, and almost exactly
twice the mass. The helium nucleus has twice the charge of the hydrogen nucleus, and
almost exactly four times the mass. Make an accurate prediction of the ratios of the
ground state energies of these atoms. (Hint: Remember the variation in the reduced
mass.)

(a) Evaluate, in electron volts, the energies of the three levels of the hydrogen atom in the
states for n = 1, 2, 3. (b) Then calculate the frequencies in hertz, and the wavelengths in
angstroms, of all the photons that can be emitted by the atom in transitions between
these levels. (c) In what range of the electromagnetic spectrum are these photons?

Verify by substitution that the ground state eigenfunction y,¢¢, and the ground state
eigenvalue E,, satisfy the time-independent Schroedinger equation for the hydrogen atom.

(a) Extend Example 7-4 to obtain from the uncertainty principle a prediction of the total
energy of the ground state of the hydrogen atom. (b) Compare with the energy predicted
by (7-22).

(a) Calculate the location at which the radial probability density is a maximum for the
n =2, | =1 state of the hydrogen atom. (b) Then calculate the expectation value of the
radial coordinate in this state. (c) Explain the physical significance of the difference in
the answers to (a) and (b). (Hint: See Figure 7-5.)

(a) Calculate the expectation value V for the potential energy in the ground state of the
hydrogen atom. (b) Show that in the ground state E = /2, where E is the total energy.
(c) Use the relation E = K + V to calculate the expectation value K of the kinetic energy
in the ground state, and show that K = — /2. These relations are obtained for any state
of motion of any quantum mechanical (or classical) system with a potential in the form
V(r) cc —1/r. They are sometimes called the virial theorem.

(a) Calculate the expectation value ¥ of the potential energy in the n = 2, [ = 1 state of
the hydrogen atom. (b) Do the same for the n = 2, [ = 0 state. (c) Discuss the results of
(a) and (b), in connection with the virial theorem of Problem 8, and explain how they
bear on the origin of the [ degeneracy.

By substituting into the equation for R(r), (7-17), the form R(r) «c !, show that it is a
solution for r — 0. (Hint: Ignore terms that become negligible relative to others as r — 0.)

Consider the probability of finding the electron in the hydrogen atom somewhere inside
a cone of semiangle 23.5° of the +2z axis (“arctic polar region”). (a) If the electron were
equally likely to be found anywhere in space, what would be the probability of finding
the electron in the arctic polar region? (b) Suppose the atom is in the state n =2, [ = 1,
m; = 0; recalculate the probability of finding the electron in the arctic polar region.

(a) Sketch a polar diagram of the directional dependence of the one-electron atom proba-
bility density for [ = 2, m; = 0. (b) At what angle 8 does the angular probability density
have its minimum value ? (c) Where does the angular probability density have a value
one-fourth its maximum value?

Consider the hydrogen atom eigenfunction y,5,. What are (a) the total energy in eV,
(b) the expectation value of the radial coordinate in A; (c) the total angular momentum;
(d) the z component of the angular momentum,; (¢) the uncertainty in the angular momen-
tum; (f) the uncertainty in the z component of the angular momentum?

Show that the sum of hydrogen atom probability densities for the n = 3 quantum states,
analogous to the sum in Example 7-5, is spherically symmetrical.
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15.

16.

17.

18.

19.

20.

21.

Show that ®(¢) = cos m;p, and ®(¢) = sin m,e, are particular solutions to the equation
for ®(yp), (7-15).

(a) Evaluate L, y,, _, for the hydrogen atom. (b) Why does the result indicate that
21 -1 is not an eigenfunction of L,_?

Prove that Lgpzﬁ,,,ml =11+ l)hzljl,,,ml. (Hint: Use the differential equation satisfied by
Oy, (0), (7-16).)

We know that ¥ = ¢** is an eigenfunction of the total energy operator e, for the one-
dimensional problem of the zero potential. (a) Show that it is also an eigenfunction of the
linear momentum operator p,,, and determine the associated momentum eigenvalue.
(b) Repeat for y = e~ **, (c) Interpret what the results of (a) and (b) mean concerning
measurements of the linear momentum. (d) We also know that y = cos kx and = sin kx
are eigenfunctions of the zero potential e,,. Are they eigenfunctions of Pop? (€) Interpret
the results of (d).

All four of the functions €™, ¢ =™ cog myp, and sin mp are particular solutions to
the equation for @(¢p), (7-15) (see Problem 15). (a) Find which are also eigenfunctions of
the operator for the z component of angular momentum L, . (b) Interpret your results.

A particle of mass p is fixed at one end of a rigid rod of negligible mass and length R.
The other end of the rod rotates in the x-y plane about a bearing located at the origin,
whose axis is in the z direction. This two-dimensional “rigid rotator” is illustrated in
Figure 7-13. (a) Write an expression for the total energy of the system in terms of its
angular momentum L. (Hint: Set the constant potential energy equal to zero, and then
express the kinetic energy in terms of L.) (b) By introducing the appropriate operators
into the energy equation, convert it into the Schroedinger equation
W W) . 0¥(pd)

4
20 002 " a

where I = uR? is the rotational inertia, or moment of inertia, and Y(¢,t) is the wave
function written in terms of the angular coordinate ¢ and the time ¢. (Hint: Since the
angular momentum is entirely in the z direction, L = L, and the corresponding operator
is L, = —iho/dp)
By applying the technique of separation of variables, split the rigid rotator Schroedinger
equation of Problem 20 to obtain: (a) the time-independent Schroedinger equation
h? d*®(p)
21 de?
and (b) the equation for the time dependence of the wave function
dT (1)
dt

In these equations E = the separation constant, and ®(¢)T(t) = ¥(¢,t), the wave function.

= E®(¢)

iE
=5 T(z)

Figure 7-13 The rigid rotator moving in the x-y
() plane considered in Probiem 20.
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23.

24.

25.
26.

(a) Solve the equation for the time dependence of the wave function obtained in Prob-
lem 21. (b) Then show that the separation constant E is the total energy.

Show that a particular solution to the time-independent Schroedinger equation for the
rigid rotator of Problem 21 is ®(¢) = ™ where m = /2IE/h.

(a) Apply the condition of single valuedness to the particular solution of Problem 23.
(b) Then show that the allowed values of the total energy E for the two-dimensional
quantum mechanical rigid rotator are
#2m?
21

(c) Compare the results of quantum mechanics with those of the old quantum theory
obtained in Problem 42 of Chapter 4. (d) Explain why the two-dimensional quantum
mechanical rigid rotator has no zero-point energy. Also explain why it is not a completely
realistic model for a microscopic system.

E= Im[=0,1,2,3,...

Normalize the functions ®(¢p) = €™ found in Problem 24.
(a) Calculate the expectation value of the angular momentum, L, for a two-dimensional
rigid rotator in a typical quantum state, using the eigenfunctions found in Problem 25.

(b) Then calculate L? and EZ, and interpret what your results have to say about the
values of L that would be obtained in a series of measurements on the system.
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