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enberg picture to be nonlinear. Since it involves an integral over all space, it can
e interpreted somewhat casually as describing the effect of all the particles on a
ingle one. The effective potential
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an be calculated only if the solution of the equation of motion is already known,
nus suggesting an iteration procedure to generate a self-consistent solution. Such
:chniques for solving the many-body problem are, indeed, frequently applied (see
“hapter 22).

From the equation of motion (21.73) for the field operators, we can now derive
ae wave equation in configuration space for an n-particle system. The time-depen-
ent wave function is defined by introducing the time into (21.56) and writing
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a
Ve apply ih P to both sides of this equation and replace the time derivatives of the

eld operators by the expression on the right-hand side of (21.73). The noninter-
cting part of the Hamiltonian is easily seen to lead to a sum of n separate terms in
1e wave equation, one for each particle. The interaction term is reduced by use of
1e commutation or anticommutation relations for the field operators, moving
5! (r) to the left in successive steps and recognizing that (0|¢s}(r) = 0. When the
ermutation properties of the wave function are taken into account, the wave equa-
‘on in configuration space is obtained as
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(21.76)

'his equation has the form expected for any n-particle configuration-space wave
quation. The permutation symmetry of ¢(r,oy, ry05, ..., r,o,) is conserved as a
unction of time. ‘

Exercise 21.11. Complete the steps in the derivation of (21.76) from (21.75).

'‘roblems

. (a) Show that if V(r) is a two-particle interaction that depends only on the distance
r between the particles, the matrix element of the interaction in the k-representation
may be reduced to

<k3k4|V|k1k2> = ok; + k; — ks — ky)

e’ J V(r) e~ @3

where #q is the momentum transfer (ks — k).
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7.

(b) For this interaction, show that the mutual potential energy operator is

1
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where F(q) is the Fourier transform of the displacement-invariant interaction.

. Show that the diagonal part of the interaction operator V', found in Problem 1 in the

k-representation, arises from momentum transfers ¢ = 0 and q = k, — Kk, respec-
tively. Write down the two interaction terms and identify them as direct (q = 0) and
exchange (q = kK, — k) interactions. Draw the corresponding diagrams (Figure 21.1).

. In the k-representation, calculate the matrix element of the interaction in Problem 1

for the screened Coulomb potential Ve  */ar and plot it as a function of g. For.
bosons and fermions, construct the corresponding two-particle interaction operator V'
for identical particles in terms of the creation and annihilation operators in k-space.

Defining the momentum space annihilation operator®

b®) = f (p|P(r) d*r

derive the commutation (or anticommutation) relations for ¢(p) and ¢'(p). For the
Bose-Einstein case, show that the mixed commutator of field operators in coordinate
and momentum space is

(), '] = (p|r)

In the second-quantization formalism, define the additive position and total momen-
tam operators

r= f Gire@) &Pr and p = f o (Ppd(p) &°p

and prove that for bosons their commutator is
[r, pl = AN 1

where N is the operator representing the total number of particles. Derive the Hei-
senberg uncertainty relation for position and momentum of a system of bosons, and
interpret the result.

. Local particle and current density operators at position r are defined in the second-

quantization formalism as
p) = [ WaEHae = o) v
and
0 = o [ d Wy se - 1 + 807 — DV Ibe)

{a) Show that the expectation values of these operators for one-particle states
are the usual expressions.

(b) Derive the formulas for the operators p(r) and j(r) in the momentum rep-
resentation.

Two identical bosons or fermions in a state
T =4 cidialal¥® = A D da! > call0)
ij ¥ i

3For simplicity in Problems 4—6 we suppress any spin reference to spin variables.
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are said to be uncorrelated (except for the effect of statistics). If D le:]? =
> |di]* = 1, determine the normalization constant A in terms of the sum
S = ctd.

(a) In this state, work out the expectation value of an add1t1ve one-particle op-
erator in terms of the one-particle amplitudes c¢; and d; and the matrix elements
(i Kj)

(b) Show that if § = 0, the expectation value is the same as if the two particles
with amplitudes ¢; and d; were distinguishable.

(c) Work out the expectation value of a diagonal interaction operator in terms
of ¢;, d;, and the matrix elements {(ij|K|k€) = . Show that the result is the
same as for distinguishable particles if the states of the two particles do not overlap,

., if ¢;d; = 0 for all i.

. A state of n identical particles (bosons or fermions) is denoted by |¥™),

For n = 1, the probability of finding the particle in the one-particle basis state
i is the expectation value (D |N;| D), (See Exercise 21.1.)

(a) For n = 2, prove that the probability of finding both particles in the one-
particle basis state { is the expectation value of N,(N; — 1)/2.

(b) For n = 3, obtain the function of N; whose expectation value is the proba-
bility of finding all three particles in the same basis state i.

(¢) For n = 2, show that the expectation value of N,;N; is the probability of
finding the two particles in two different basis states, i # j. Prove that the probability
of finding one particle in basis state i and the other particle not in basis state i is the
expectation value of N, (2 — N,).

0



