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where the + sign pertains to Bose-Einstein statistics and the — sign to Fermi-Dirac
statistics. Also consider the Maxwell-Boltzmann limit.

In the next chapter, the formalism developed here will be applied to the deri-

vation of the Planck distribution for photons in thermal equilibrium.

Problems

1.

Consider a system of identical bosons with only two one-particle basis states,
al, ¥ and ol ,, ¥?. Define the Hermitian operators x, p,, y, p, by the relations
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where ¢ is an arbitrary real constant, and derive the commutation relations for these
Hermitian operators. Express the angular momentum operator (22.6) in terms of these
“‘coordinates’’ and ‘‘momenta,’’ and also evaluate $2. Relate $* to the square of the
Hamiltonian of an isotropic two-dimensional harmonic oscillator by making the iden-
tification ¢ = Vmw, and show the connection between the eigenvalues of these op-
erators.

(a) Using the fermion creation operators a},,, appropriate to particles with angular
momentum j, form the closed-shell state in which all one-particle states m = —j to
+j are occupied.’ \

(b) Prove that the closed shell has zero total angular momentum.

(c¢) If a fermion with magnetic quantum number m is missing from a closed shell
of particles with angular momentum j, show that, for coupling angular momenta, the

hole state may be treated like a one-particle state with magnetic quantum number —m
and an effective creation operator (—1) " "a;,,.

. Consider the unperturbed states af,, - - af,, *+* @}a,|0) of n spin one-half particles,

each occupying one of n equivalent, degenerate orthogonal orbitals labeled by the
quantum number k, and with m, = *£1/2 denoting the spin quantum number associated
with the orbital k. Show that in the space of the 2" unperturbed states a spin-inde-
pendent two-body interaction may, in first-order perturbation theory, be replaced by
the effective exchange (or Heisenberg) Hamiltonian
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where S, is the localized spin operator
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For a Fermi gas of free particles with Fermi momentum py, calculate the ground state
expectation value of the pair density operator
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in coordinate space and show that there is a repulsive interaction that would be absent
if the particles were not identical. Show that there is no spatial correlation between
particles of opposite spin.
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.. Calculate in first order the energies of the 'S, P, and ' D states arising from the atomic
configuration p® (two electrons with £ = 1 in the same shell). Use the multipole
expansion '
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for the interaction energy between the electrons, and show that the term energies may
be expressed as
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where (7y,) is the radial integral
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.. Apply the Hartree-Fock method to a system of two ‘‘electrons’” which are attracted
to the coordinate origin by an isotropic harmonic oscillator potential mw?®r*/2 and
which interact with each other through a potential V = C(x’ — r")2. Solve the Hartree-
Fock equations for the ground state and compare with the exact result and with
first-order perturbation theory.



