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Spatial heterogeneity (patchiness) in certain predator-prey situations has 
been observed even though their environment appears homogeneous. 
As a model mechanism to explain this patchiness phenomenon we propose 
a predator-prey interaction system with diffusive effects. We show 
that when the diffusion of the prey is small compared with that of the 
predator the non-linearity which we call a hump effect in the prey inter- 
action, is a key mechanism for the system to exhibit, asymptotically in 
time, stable heterogeneity in a bounded domain with zero flux boundary 
conditions. The model can reasonably be applied to certain terrestrial 
plant-herbivore systems. 

1. Introduction 

In several predator-prey situations spatial heterogeneity, known as patchiness, 
has been observed even though the environment appears homogeneous. 
For example, Cassie (1963) reported that, depending on the circumstances, 
plankton display such patchiness. Various theoretical models have been 
proposed to explain this planktonic behaviour, for example, by Stavn 
(1971), Platt (1972), Plesset & Whipple (1974), Steele (1974) and Okubo 
(1976). The classic Lotka-Volterra model in which the prey and predator 
diffuse, namely 

ap a2p 
5 = 4~+(a--kQY 

aQ a2Q ‘;ii = d,,x,-@-WQ 
1 

, (1) 
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was proposed by Steele (1974). Here P and Q represent the phytoplankton 
(prey) and the zooplankton (predator) respectively, a, k, b and h are positive 
constants and dP and de the respective diffusion coefficients. He suggested 
that in a finite one-dimensional (x) domain with dp = dQ and zero flux 
conditions on the boundaries, that is aP/ax = 0 = @/ax, the system (1) 
could exhibit patchiness. However, Murray(1975) proved that in this situation 
the system (1) cannot exhibit steady spatially heterogeneous solutions: this 
is typical of such conservative systems. The apparent “patchiness” found by 
Dubois (1975) is actually a transient behaviour which comes from an initial 
disturbance. 

Mimura (1978) considered the system (1) when a and b are functions of 
P and Q respectively, namely 

; = d,‘$+[a(P)-kQ]P 

aQ - = d “Q-[b(Q)-hP,Q ’ 
I 

(2) 

at Qax2 
where k and h are positive constants. He showed that if a(P) and b(Q) are 
monotonic non-increasing and non-decreasing functions of P and Q res- 
pectively then the population densities P(x, t) and Q(x, t) are spatially 
homogeneous, asymptotically for large time in a bounded domain with zero 
flux boundary conditions. His result holds for two- and three-dimensional 
domains as well. 

Whatever the form of the interaction terms if the solutions are bounded 
Conway, Hoff & Smoller (1977) have proved that if the diffusion of both 
species is sufficiently large there can be no spatial structure in bounded 
domains with zero flux. Their results cover a wider class of systems than that 
studied here. This is as would be expected heuristically. 

Within the framework of the system (2) Segel & Jackson (1972) and Levin 
& Segel(1976) proposed a predator-prey model for patchiness using Turing’s 
(1952) idea, and said that an autocatalytic effect in the prey could give 
patchiness. Okubo (1976) also suggested that Turing’s idea would be applic- 
able to the modelling of patchiness. 

In this paper we consider the model (2) where a(P) exhibits an Allee 
effect, or what can be described as a hump effect, and show that patchiness 
exists when diffusivity of the prey dp is small and in particular small compared 
with that of the predator dQ. Such a situation is primarily motivated by the 
study of plant-herbivore systems with small plant diffusion dp. There are 
rather crucial differences between the Segel & Jackson (1972) model and ours 
in this case. A major difference is that although for finite dp both models 
exhibit similar heterogeneous behaviour, for small dp this is not the case as 



DIFFUSIVE PREY-PREDATOR MODEL 251 

described below: we also discuss this analytically in the mathematical 
appendix B. If dP -+ 0 the non-linear effects of the Segel & Jackson (1972) 
model will give rise to very large and progressively narrower spike-like 
structures for the prey with P = 0 almost everywhere in the domain. On 
the other hand with the model discussed here an Allee effect leads to two 
quite different broad subdomains where P = 0 and P # 0: these are shown 
in results given in Figs 5 and 6. The model we analyse in this paper is fairly 
robust in its patchiness behaviour but the existence of it depends on appro- 
priate interplay between diffusion and the predator-prey interaction. As 
would be expected heuristically the relative magnitude of the diffusivities 
affects the detailed spatial structure. In the following section specific con- 
ditions are given for the existence of patchiness. 

In section 2 the mathematical model is described from an ecological 
point of view and the relevance of the necessary conditions for heterogeneous 
solutions to exist is discussed. In section 3 numerical results for a typical 
case which clearly indicates various aspects of stable patchiness are given. 
The necessary conditions for patchiness in a model are derived in Appendix 
A while in Appendix B the mathematical problem is discussed analytically 
with some detailed analysis of the solution and particularly the transition 
layers, that is regions in the domain where the prey density changes rapidly: 
these appear when the ratio of the diffusivities of the prey to predator is 
small: see Figs 5 and 6. 

2. Mathematical Model and Practical Relevance 

The general model system for which we derive necessary conditions for 
patchiness to exist is, in place of (2), 

; = ha$+h(P, Q)Lfi(P)- QIP 
aQ - = ~~$h~> Q>b,<Q>-PIQ 

3 (3) 

at 
for time t > 0 and space dimension x in some finite domain 0 < x < L. 
The functions fO, go, fi and g1 are described below. We are interested in 
non-negative solutions of (3) which satisfy initial conditions and zero flux 
boundary conditions 

ap - = 0 = i! 
ax 

for x = 0, L and t > 0. (4) 

For example, the following model, which belongs to the class (3), was 
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proposed by May (1973) from experiment : 

fo = ebv J-1 = +P)(P+b)> go = ;p 91 =fQ, (5) 

where a, b, c, d, e and f are all positive constants. We call the type of non- 
linearity in fi a hump effect if d > b: that is Q =f(P) exhibits a similar 
behaviour to that shown by v = f(u) in Fig. 1. Later we shall be associating 
v and u with Q and P respectively when considering for algebraic convenience 
a more restrictive class than (3) but which has the essential features for 
exhibiting patchiness. 

We now make certain assumptions about the system (3) which we relate 
to practical plant-herbivore systems. The prey (plant) is denoted by P 
and the predator (herbivore) by Q. 

Assumption 1 

The diffusion coefficients satisfy 0 < dp < d,. This is certainly reasonable 
for many plant-herbivore systems. Certain planktonic populations also 
have this characteristic (Okubo, 1976). 

Assumption 2 

The functions f. > 0, go > 0 for P, Q > 0 and fi and gi satisfy 

{ 

>o;o<p<p* 
g;(Q) > 0 for Q > O;f;(P) = 0, P = P* 

< 0, P > P* 

for some positive value P*, where primes denote differentiation with respect 
to the argument. These conditions reflect the general characteristics of 
May’s (1975) model (5): see also Fig. I where f(u) and g(v) are associated 
with fi and g,. 

Assumption 3 

There exists one positive steady state solution (P,,, Q,) of the system (3). 
If g;(Q) > 0 for large Q assumption 2 implies that the system (3) is globally 
(weakly) stable in the sense that the solution [P(x, t), Q(x, t)] is confined 
in some finite domain in (P, Q) space [see, for example, Conway & Smaller 
(1977)]. 

The property of the solution in the neighbourhood of (P,,, Q,) is obtained 
from the usual analysis of the linearized form of (3), namely, 

2 = d~;~+fdpoi QoY'oW'O)P-41, 

2 = d, '2 +soU'o, Qo)Qob - sXQo>d, 
1 

(6) 
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subject to zero flux conditions, where here (p, q) is the perturbation in 
(P, Q) about the steady state (PO, Q,). 

If the diffusivities dp and de are both large [compared with the maximum 
of P and Q in the solution domain of (P, Q)] then as mentioned in the 
introduction the solution tends, for large time, to the homogeneous solution, 
that is patchiness cannot exist. In view of this we consider the situation in 
which one of dp and d, is not large. We make the further 

Assumption 4 

The system (6) has one positive eigenvalue which depends on the presence 
of the diffusion terms. In other words the steady state (P,,, Q,) is, on a linear 
basis, dtjksionally unstable: if dp 3 0 3 dp the steady state is stable. 

It is shown in Appendix A that Assumption 4 can be given in terms of 
fO, f, , g,, and g1 : specifically there must exist at least one integer n such that, 
with 0 = n2n2/L2, 

Ol- 

4d~~2-Cfo(Po, QoMP,)W~-go@',, Qo>g;(Qo>Qod~l~ 
-If;(P,)g;(Q,>-llf,<p,, Qoh@'o, QoY'oQo < 0, (7) 

fo(Po, QoY;(Po)Po - so(P,, Qo>g;(Qo)Qo - (4 + dab ’ 0. (8) 

The subsidiary conditions for stability when dp = 0 = d, are gOQ,g;(Q,) 
-foPof; > 0 and 1 -f;(PJg;(Q,,) > 0. These conditions are obtained 
(Appendix A) by a conventional Fourier analysis of (6) with zero flux 
boundary conditions at x = 0, L. 

With the ecology of plant-herbivore systems in mind we make the further 

Assumption 5 

The diffusion coefficient of the predator Q (herbivore) is large compared 
with that of the prey (plant), that is 0 G dp < d,. In this case condition (7) 
is satisfied if the following holds: 

Assumption 6 

That is the steady state lies to the left of the maximum in the Q = fi(P) 
curve: compare with Fig. 1 for u = f(u). 

We now apply Assumptions 2-6 to the system (3). These assumed con- 
ditions do not change if f. and go are replaced by positive constants and so, 
for algebraic convenience, we consider the simpler form of (3) with (u, U) 
for (P, Q), namely. 

(9 
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where j?($ 1) and a are positive constants. The constant /I is in effect the 
ratio of the diffusion coefficients d,/d,. The problem thus reduces to the 
study of (9) with zero flux boundary conditions. Conditions (7) and (8) 
as applied to (9) become 

w - ~b3)%l- W’(%>B%l~- Cfl(~o>S’(~o) - ll%% < 0, \ 
f’(u,)u,- ag’(u,)u, -(l +/?)a > 0; B = n%2/I?. I 

v-0 

3. Numerical Results and Examples of Patchiness 

For simplicity only we considered a one-dimensional domain with spatial 
coordinate 0 < x < L and as a simple illustrative and typical example of 
(9) we chose a f(u) and g(u) which satisfied all of the required practical 
assumptions discussed in section 2. Typical functionsf(u) and g(u) are like 
those in the phase Fig. 1. Solutions of (9) were found numerically using a 
finite difference procedure for the initial and boundary value problem. 
We first investigated the dependency of the parameter a in (9) on the solution 
when fl is fixed. The linear stability diagram of the relation between the 
number of the Fourier modes n and a is given by (10) for the case in Fig. 1 
and is shown in Fig. 2. Note that there are two critical points, denoted by 
a, and uI: the former is in fact determined by the non-diffusion system 
and the latter by the diffusion system. For illustration we computed for 
the functions in Fig. 1 the case a = 1, that is a0 < a < a,, with j? = O-0125 
and Fig. 3 gives the initial and final large time spatial distributions of u 
and u. 

FIG. 1. Typical functions f(u) and g(u): those illustrated are f(u) = (35-k 16u--ua)/9, 
g(u) = 1+2u/5. Note that the solution of u = f(u) and u = g(u), the positive steady state, 
lies to the left of the maximum of u = f(u). 
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Unstable------- 

FIG. 2. Linear stability diagram: mode R as a function of a with a fixed /I = 0.0125. 
The shaded region gives the linearly unstable modes for a given a. 

FIG. 3. Initial (- - -) and final spatial distributions for the equation system (9) with 
a = 1, j? = 0.0125 and f(u), g(u) as in Fig. 1: zero flux boundary conditions obtain at 
x = 0, L(= 2.5). 

We next considered the dependency of the steady state on the parameter 
fl when a = 1 and the linear stability diagram for the functions in Fig. 1 
is illustrated in Fig. 4 where again we used (10): here there is one critical p. 
Figures 5 and 6 show the final spatial heterogeneity for a = O+Ol with j? = 
0.0125 and /I = 0 as a special case. 

One interesting aspect from an ecological point of view is that there 
are two very different regions for the prey density in the limiting situation 
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a=1 

FIG. 4. Linear stability diagram : mode n as a function of /? with fixed a = 1. The shaded 
region gives the linearly unstable modes for a given 8. 

i0 

FIG. 5. Initial (- - -) and final spatial distributions for solutions of the equation system 
(9) with a = ONU, B = 0.0125 and f(u) and g(v) as in Fig. 1: zero flux boundary con- 
ditions obtain at x = 0, L(= 23). 

as its diffusion coefficient [/? in (9)] tends to zero. The fact that these regions 
are of$nite width is a consequence of the fact that the curve of U= f(u) (see 
Fig. 1) has a definite positive maximum, that is it exhibits the hump effect. 
The model of Segel & Jackson (1972) in the situation of small /I gives markedly 
different results as mentioned above. As /I --f 0, that is the typical case illus- 
trated in Figs 5 and 6, there are progressively narrower regions in the spatial 
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FIG. 6. Initial (- - -) and final spatial distributions for solutions of (9) with a = OGOl, 
/l = 0 andf(u) and g(u) as in Fig. I: zero flux boundary conditions obtain at x = 0, L(= 2.5). 

domain where there are rapid changes in the prey density which gives sharp 
spike-like behaviour. Practically p # 0 although for plant-herbivore systems 
it is small. In this case the detailed structure of these interior transition layers 
can be treated using singular perturbation theory. On the basis that steady 
state patchiness exists for such systems (9) withy(u) and g(u) satisfying the 
appropriate conditions in section 2 we show mathematically in Appendix B 
that the spatial heterogeneity is due to the nonlinearity of the hump effect 
inf(u). We believe that a hump effect is one of the important mechanisms 
which produces patchiness with a rather interesting heterogeneity when 
fl Q 1, that is small diffusivity of the prey as compared with that of the 
predators. The existence of patchiness is dependent on the interaction 
between the predator and prey and on their relative diffusivities. 

One aspect of the interaction between the hump effect and diffusion which 
gives patchiness can be described as diffusive instability. That is there must 
exist at least one positive integer n which satisfies (7) and (8) or, for our 
system, (10). We conjecture that the number of finite amplitude structures 
is the same as the minimum n satisfying the linearized conditions (7) and 
(8) or (lo).? In conclusion we suggest that if (i) f and g are typically as in 
Fig. 1, (ii) the positive steady state is only unstable as a consequence of 
diffusion, (iii) the solutions of the system (9) are globally stable, then patchi- 
ness will exist in a finite domain with zero flux conditions and will be 
independent of initial conditions. 

t In this one-dimensional situation the minimum n gives the maximum linearized growth 
so such a conjecture is not surprising. 
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APPENDIX A 

Conditions for Diffusive Instability 

Here we derive the conditions necessary for the steady state of the prey- 
predator system (3), in which the interaction terms have certain properties, 
to be diffusionally unstable: these conditions are (7) and (8) used in Section 2 
above. 

The linearized form of the system (3) about the steady state (P,, Q,) is 
given by (5) namely 

(Al) 

where p, q are the perturbations in P and Q about (P,, Q,). Since P, Q and 
hence p, q satisfy zero flux conditions solutions of (Al) satisfy 

ap -=O=z on x=O,L, 
ax 642) 

which suggests that we look for general solutions of (Al) in the Fourier 
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spectrum form 

p(x, t) = i a,e~cos~, q(x, t) = f b,e”‘cosy, (A3) 
I#=1 n=l 

which automatically satisfy (A2). We are interested in conditions which 
make the eigen values 3, have a positive real part due to the diffusive terms in 
(Al): these are then the necessary conditions for diffusive instability. 

Substituting of (A3) into (Al) gives the following equation for the eigen 
values L : 

fo~of;(Pok-4~-~ -fop0 
goQo -goQod(Qo)-+p-1 = 

0, 

where u = n2n2/L2, and so 

A2 +XsoQosXQo> -foPof; + 44 + @I 

+ C(daa+soQos;(Qo))(dpa-foPof;( +fosoPoQol = 0. (A4) 
If we consider the spatially homogeneous case then the eigen values satisfy 

(A4) with dp = 0 = d, and in this situation (PO, PO) is to be linearly stable, 
that is, the real part of A < 0. When dp # 0, dp # 0 we require at least one 
solution 1 of (A4) to have a positive real part I in which case (PO, Q,) is 
then diffusionally unstable. If we write (A4) as A2 + Al + B = 0, with A and B 
defined accordingly, the condition for R112 > 0 is that A < 0, which is 
condition (8) above, or B < 0 which is condition (7) above. We further 
require Rl 1 < 0 when dp = 0 = do which by a similar analysis on the 
equivalent A and B require A > 0 and B > 0, that is 

gOQosXQo> -fopof~ (PO) > 0 and 1 -fXpoMQo) > 0. 

APPENDIX B 

Analysis of Steady Heterogeneous Structores 

Here we consider the heterogeneous steady state solution of (9), the 
existence of which is indicated by the numerical results in section 3. The 
method we use is in part based on the papers by Fife (1976,ab). The steady 
state solution [U(x), V(x)] satisfies (9) with a/at = 0, that is the (elliptic) 
system 

/g+cf(U)-vlu = 0 
d2V 

I 

) O<x<L, (A% 
hx” -4w>-- vlv = 0 
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with zero flux boundary conditions 
dU 
-=O=g,x=O,L. 
dx (-46) 

In this section we analyse the solutions of (A5), with (A6), asymptotically 
for /I small: these correspond to solutions such as illustrated in Figs 5 and 6. 
In the following the position of the steady state solution as shown in Fig. 1 
should be kept in mind; it is to the left of the maximum in ZI -f(u). 

As a first approximation to the solution [U(x), V(x)] as fi + 0 we expect 
the limiting solution [U*(x), V*(x)] to satisfy 

[f(u*)-v*]u* = 0, I 
d2 V* 
--a[g(v*)-u*]v* = 0, 

O<x<L 

dx2 
(A7) 

and, from (A5). 
dU* --=o=g, x=(),L. 
dx w9 

The perturbation in /I [that is in the first of (A5)] is unlikely to give rise to 
singular (rapidly changing) boundary regions since the zero flux boundary 
conditions are still satisfied by the reduced problem (A7) and (A8). From 
the first of (A7) 

U* = 0 or f(U*) = V*. W’) 
Note that the inverse function U* = f -‘(V*) is not a single-valued function 
of V* for f(O) < V* < f(U,Y&J = f, say, because we assume f to behave 
schematically as in Fig. 1, that is it exhibits a hump effect. Denoting the 
three possible solutions of (A9) by 

u* = h,(V*) G 0, u* = h,(V*), u* = h3(V*) (AlO) 
with, to be specific, h2 < h3, then (A7) becomes the single equation for V* 

d2V: 
--a[g(V:)-h,(V:)]V: = 0 
dx2 (All) 

for the three cases i = 1, 2, 3 of (AIO). For convenience we denote the x- 
region in which (Al 1) is satisfied by Q,. We can now make certain statements 
about the solutions. 

For i = 1 and 3 the solution of (All) and (A8) is Vf s 0, that is in the 
regions a1 and 0, in 0 < x < L no heterogeneous solutions exist for the 
prey. We see this by referring to Fig. 1 where it can be seen that in these 
cases g(V*)-h,(V*) > 0 and g(V*)-h,(V*) < 0 and so the coefficient of 
V* in (All) is always of one sign and so the only solution satisfying (A8) 
is V* = 0. 
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Consider now the region Sz,, that is i = 2 in (All). Here solutions can 
exist since the coefficient of V* changes sign in the domain. 

From these results we infer that the whole domain 0 < x < L is divided 
in two of three subdomains. In other words the limiting solutions [U*(x), 
V*(x)] may be constructed from [U:(x), V:(x)] with i = 1, 2, 3. The prey 
density at the boundaries between any two domains Ri and nj (i, j = 1,2,3) 
is discontinuous. When 0 < /? < 1 these discontinuities become rapid 
transition layers: see Figs 5 and 6 for example. This property clearly differ- 
entiates between the Segel & Jackson (1972) model and that proposed here: 
their model has only two solutions, rather than the crucial three for (A9), 
since their equivalent form for f(U*) is linear. The hump effect is thus 
seen as being crucial. 

The spatial structure of the solution [V*(x), V*(x)] can now be made clear 
using a singular perturbation analysis. Suppose that x* is the point of 
separation between Sz, and Qj, in one of which, of course, U* E 0, then in 
the usual boundary layer manner for considering internal singular layers 
[see, for example, Murray (1968) or the pedagogical discussion in Murray 
(1977)] we introduce a transformation which stretches out the domain in the 
vicinity of x*. If we write y = (x-x*)/J/I then since p 4 1 the vicinity of 
x = x* becomes large in the y-plane and we can then analyse the transition 
structure. With this transformation the first of (A5) becomes 

uyy -I- [f(U) - v(x*)] u == 0. (A121 

The boundary conditions in the stretched variable y for (A12) are 

lim U(y) = UF(x*), lim V(y) = Ur(x*). (A131 y--CC Y-m 

The reasoning for conditions (A13) is that when x is slightly greater than 
x*, y = (x-x*)/J/I 9 1 because p is very small. In the limit of /? -+ 0, 
y + co for x = x* + and similarly y --f - co for x = x* - . With this sin- 
gular perturbation procedure the thin transition domain [it is 0(,//I)] can 
be examined and the nature of the join between U* = 0 and U* finite can 
be seen. In this transition region U* is continuous although rapidly changing 
while I’* is essentially constant over the transition domain: see for example, 
Fig. 5. This is why V(x*) is used in (A12). 

The value of V at x = x* is determined by using (All) and (A12) and 
integrating across the transition layer. This requires V(x*) to satisfy 

uJ’(x’) 

LIdixl) u(s)- V(x*)]s ds = 0 3 I/ = Vy, say W4) 

which also gives the value of V* at all of the separation points as fi --+ 0. 
Consequently our problem for Y*(x) throughout the complete domain 
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0 < x < L reduces to 
d2V* 
- -G(V*) = 0,O < x < L, 
dx2 (Al3 

with dV*/dx = 0 at x = 0, L and 

G(V*) = 
a[g(V*)-h,(V*)]V* for 0 < V* < V,* 

1 a[g(V*)-h,(V*)]V* for V: < V* <f ’ 6416) 

where f =f(u,,,), that is the value for fat the top of the hump. By solving 
(A15) with (A16) we can get the heterogeneity in V*(x) and hence the crucial 
heterogeneity in U*(x) which is in good agreement with the numerical 
results given in section 3 (Fig. 5). 


