FI -194 - Teoria de Campos I Primeiro semestre de 2017 Lista de Exercícios 5

Data da entrega: 05/06/2017

Tópicos: QED escalar

1. QED escalar

A lagrangiana da QED escalar é dada por

$$\mathcal{L}_{SQED}(x) = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + (D_{\mu}\phi)^* D_{\mu}\phi - m^2 \phi^* \phi ,$$

onde $D_{\mu} = \partial_{\mu} - ieA_{\mu}$ é a derivada covariante.

a) Mostre que a lagrangiana é invariante sobre a transformação de gauge

$$\phi(x) \rightarrow e^{ie\alpha(x)}\phi(x)$$

 $A_{\mu}(x) \rightarrow A_{\mu}(x) + \partial_{\mu}\alpha(x)$.

- b) Escreva o termo de fixação de gauge e mostre que ele não é invariante sobre a transformações de gauge acima dadas.
- c) Desenhe os diagramas que geram as correções para o propagador do fóton em ordem $O(e^2)$ para a QED escalar. Estes diagramas são denominados polarização do vácuo e sua soma é usualmente denotada por $\Pi_{\mu\nu}(p)$.
- d) Aplique as regras de Feynman para os diagramas encontrados no item c) e mostre que $\Pi_{\mu\nu}(p) = P_{\mu\nu}(p)\Pi(p)$, onde

$$P_{\mu\nu}(p) = g_{\mu\nu} - \frac{p_{\mu}p_{\nu}}{p^2},$$

é o projetor transverso, p o momento do fóton e $\Pi(p)$ é uma função escalar. Atenção: Não é necessário calcular a integral, deixe o seu resultado em função da integral do momento do loop.

e) Seja Γ^{μ} e $\Gamma^{\mu\nu}$ os vértices de três e quatro pontos da QED escalar. Utilize as regras de Feynman (em nível de árvore) e verifique que as seguintes identidades são satisfeitas

$$q^{\mu}\Gamma_{\mu}(p_1, p_2) = e[D_F^{-1}(p_1) - D_F^{-1}(p_2)], \qquad (1)$$

$$q^{\mu}\Gamma_{\mu\nu}(q, k, p_1, p_2) = e[\Gamma_{\nu}(p_1 + q, p_2) - \Gamma_{\nu}(p_1, p_2 - k)]$$

onde $D_F^{-1}(p_1)$ é o inverso do propagador do campo escalar e q o momento do fóton. As relações acima são chamadas de *identidade de Ward-Takahashi* e são válidas em todas

1

em todas ordens (perturbativa e não-perturbativamente). Note que elas relacionam funções de Green de n+1-pontos com a de n pontos.

- f) Sem utilizar a forma explícita dos vértices em nível de árvore (Dica: use as identidades de Ward-Takahashi), prove que $p_{\mu}\Pi^{\mu\nu}(p) = 0$.
- 2. Soma sobre as polarizações do fóton. Mostre que a soma sobre todas as polarizações do fóton podem ser feira através da prescrição:

$$\sum_{\text{polarizações}} \epsilon^* \epsilon \to -g_{\mu\nu} \,,$$

Dica: Veja dedução no Peskin página: 159-160.

3. Espalhamento Compton na QED escalar

- a) Calcule os elementos de matriz em nível de árvore para $\gamma\phi \to \gamma\phi$. Mostre que a identidade de Ward é satisfeita.
- b) Calcule a seção de choque $\frac{d\sigma}{d\cos\theta}$ para este processo em função das polarizações dos estados iniciais e finais ϵ_{μ}^{in} e ϵ_{μ}^{out} , no referencial do centro de massa.
- c) Calcule $\frac{d\sigma}{d\cos\theta}$ para ϵ_{μ}^{in} polarizado no plano do espalhamento, para cada ϵ_{μ}^{out} .
- d) Calcule $\frac{d\sigma}{d\cos\theta}$ para ϵ_{μ}^{in} polarizado transversalmente ao plano do espalhamento, para cada ϵ_{μ}^{out} .
- e) Mostre que quando você soma (c) e (d) você obtem o mesmo resultado se v
c tivesse substituído $(\epsilon_{\mu}^{in})^* \epsilon_{\nu}^{in} \to -g_{\mu\nu}$ e $(\epsilon_{\mu}^{out})^* \epsilon_{\nu}^{out} \to -g_{\mu\nu}$.
- f) Esta substituição deveria funcionar para qualquer cálculo de espalhamento?

4. Aniquilação de pares na QED escalar

Considere o processo da QED escalar: elétron-escalar e pósitron-escalar se aniquilando em dois fótons, $\phi^+\phi^- \to \gamma\gamma$. Considere que os escalares possuem uma massa m.

- a) Calcule o elemento de matriz em nível de árvore para $\phi^+\phi^- \to \gamma\gamma$.
- b) Calcule a seção de choque somando sobre todas as polarizações externas do fóton saindo, no referencial do centro de massa.
- c) Tente adivinhar como a seção de choque que você acabou de calcular mudaria se o fóton tivesse uma massa m_{γ} .
- d) Suponha que a matéria escura no universo fosse feita de um númeri igual de elétrons e pósitrons escalares de massa m, trocando um fóton massivo com massa m_{γ} e constante de estrutura fina α_{Dark} . Você pode ajudar os criadores de modelo de matéria

escura e achar qual é a combinação apropriada de valores para m_{γ} e α_{Dark} , para produzir: (i) uma seção de choque de $10^{-36}\,\mathrm{cm^2}$ para $m=10\,\mathrm{GeV}$; (ii) e uma seção de choque de $10^{-42}\,\mathrm{cm^2}$ para $m=3.5\,\mathrm{KeV}$?

Dicas: 1) Defina em suas contas que $\alpha_{Dark}=e^2/4\pi$ e depois trate como uma constante livre. 2) Lembre-se que ao aplicar as regras de Feynman, você obtem a seção de choque em unidades naturais.