Part III

Espalhamento magnético

Vamos fazer uma rápida discussão sobre os métodos experimentais que permitem observar a estrutura do ordenamento magnético. Essencialmente consideraremos dois tipos de espalhamento, espalhamento por neutrons e espalhamento por fótons (no caso, raios X duros). O espalhamento por neutrons é a técnica padrão para observarmos a ordem magnética. Isso se deve a interação entre o dipolo magnético do neutron com o dipolo magnético do íon que forma a rede. No entanto, podemos obter informações sobre a rede magnética também por meio do espalhamento com raios-X, duros ou moles, tanto no espalhamento não-ressonante como no espalhamento ressonante. A Tabela abaixo apresenta uma rápida comparação entre os dois espalhamentos:]

Raios X	Neutrons	
superfície	volume	
sensível ao número Z	sensível ao número isotópico	
dificuldade de observar átomos leves	facilidade em observar átomos leves	
sem contraste entre átomos próximos	bom contraste entre átomos próximos	
alto fluxo de fótons	baixo fluxo de neutrons	
alta resolução	resolução média	

A figura abaixo representa a seção de choque para diversos átomos (e isótopos) tanto para o espalhamento de neutrons como de raios-X.

Figure 1: Comparação entre as seções de choque de espalahmento coerente para neutrons e raios X para algums elementos. Para os raios X temos que multiplicar a área por um fator de 10. No caso dos neutrons, a cor azul e verde distinque os casos em que o espalhamento ocorre com ou sem uma mudança de fase de π . Alguns isótopos também são apresentados no caso dos neutrons. A seção de choque dos neutrons representada em geral está relacionada a presença isotópica natural. (Extraído da ref. 1).

neutron	valor		
massa	$1,67495 \times 10^{-27} kg$		
carga	0		
monopolo magnético	0		
dipolo elétrico	0		
spin	1/2		
momento dipolar magnético	$\mu_n = \gamma \mu_N; \ \gamma = 1.913, \ \mu_N = \frac{e\hbar}{2m_p} = 5,05 \ \times 10^{-27} \ J/T$		
Podemos definir uma temperatura equivalente a energia cinética do neutron:			

Para referência, vamos sintetizar na tabela abaixo as propriedades dos neutrons:

$$E = \frac{1}{2}mv^2 = \frac{\hbar k^2}{2m} = \frac{\hbar^2}{2m\lambda^2} \equiv k_B T_{eq}$$

Ainda,

$$\lambda[nm] = \frac{400}{v[m/s]}$$
$$E[meV] = \frac{0,818}{\lambda^2[nm]}$$

e, portanto, para $T_{eq} \sim 300 \, K$, temos $\lambda \sim 0, 18 \, nm$ e $E \sim 25 \, meV$. Esses são os valores típicos dos neutrons utilizados no espalhamento (os chamados *neutrons térmicos*).

As notas que seguem estão baseadas nas refs. 1 e 2.

5 Espalhamento magnético com neutrons

O espalhamento de neutrons pode ocorrer de duas formas: 1) por meio da interação forte, entre o neutron e o núcleo do átomo e 2) por meio do spin do neutron com o campo magnético gerado por elétrons não-emparelhados. Vamos discutir aqui o segundo caso. Para os demais casos, ver as refs. 3-5.

O formalismo para o cálculo da intensidade de espalhamento segue os mesmos passos feitos para o caso do espalhamento com os raios X. A diferença está na interação entre a onda incidente (neutrons) e a amostra. Agora, temos uma interação dipolo-dipolo entre o spin dos neutrons com o campo magnético gerado pelos elétrons não-emparelhados, quando existentes. Estes tem duas contribuições, uma devido ao spin e outra devido ao momento angular. Vamos derivar agora a seção de choque para o caso dos neutrons térmicos. A situação que estamos considerando está representada na figura abaixo,

Figure 2: Geometria para a interação magnética entre o neutron e o elétron. (Extraído de 1)

O momento de dipolo magnético do neutron interage com o campo magnético do elétron via um termo tipo Zeeman,

$$U_m = -\vec{\mu}_n \cdot \vec{B}$$

 $\quad \text{onde} \quad$

$$\vec{\mu}_n = -\gamma_n \mu_N \vec{\sigma}$$

onde $\vec{\sigma}$ é o operador de spin do neutron. O campo magnético gerado pelo elétron tem uma componente devido ao spin e outra devido ao momento orbital:

$$\vec{B} = \vec{B}_s + \vec{B}_L$$

 ${\rm onde}$

$$\vec{B}_s = \vec{\nabla} \times \left(\frac{\vec{\mu_e} \times \vec{R}}{R^3}\right)$$

 com

$$\vec{\mu}_e = -2\vec{\mu}_B \cdot \vec{S}$$

e, para o campo orbital, de acordo com a lei de Biot-Savart

$$\vec{B}_L = \frac{-e}{c} \frac{\vec{v}_e \times \vec{R}}{R^3}$$

A seção de choque pode ser escrita na forma

$$\frac{d^2\sigma}{d\Omega} = \left(\frac{m_n}{2\pi\hbar^2}\right)^2 \left| \left\langle \vec{k}'\sigma'_z | U_m | \vec{k}\sigma_z \right\rangle^2 \right|$$
$$= \left(\gamma_n r_0\right)^2 \left| -\frac{1}{2\mu_B} \left\langle \sigma'_z | \vec{\sigma} \cdot \vec{M}_\perp(\vec{q}) | \sigma_z \right\rangle \right|^2$$

 ${\rm onde}$

$$\gamma \mu_N 2\mu_B \frac{m_n}{2\pi\hbar^2} = \gamma \frac{e\hbar}{2m_p} \frac{e\hbar}{2m_e} \frac{m_n}{\pi\hbar^2} = \gamma r_0 = 0,539 \times 10^{-12} \, cm = 5,39 \, fm$$

 $\vec{M}_{\perp}(\vec{q})$ é a componente de Fourier da magnetização da amostra perpendicular ao vetor \vec{q} (ver figura abaixo),

$$ec{M_{\perp}}(ec{q}) = \hat{q} imes ec{M}(ec{q}) imes \hat{q}$$

 $\quad \text{onde} \quad$

$$\vec{M}(\vec{q}) = \int \vec{M}(\vec{r}) e^{i\vec{q}\cdot\vec{r}} d\vec{r}$$

 \mathbf{e}

$$\vec{M}(\vec{r}) = \vec{M}_s(\vec{r}) + \vec{M}_L(\vec{r})$$

 com

$$\vec{M}_{s}(\vec{r}) = -2\mu_{B}\left\langle \vec{S}(\vec{r}) \right\rangle = -2\mu_{B}\left\langle \sum_{i} \delta(\vec{r} - \vec{r}_{i})\vec{S}_{i} \right\rangle$$

Para uma partícula com spin 1/2 o comprimento magnético é da ordem de 2,696 fm, que é tipicamente o valor do espalhamento nuclear do cobalto. É importante, no entanto, que ao contrário do espalhamento nuclear, no espalhamento magnético temos uma direção preferencial, perpendicular ao vetor de espalhamento (ver fig. abaixo).

Figure 3: Componente relevante do espalhamento magnético de neutrons. (Extraído de 1)

Vamos examinar o fator de forma magnético. Consideremos primeiramente um caso simples, quando o momento magnético orbital é nul (simetria esférica, L = 0). Esse é o caso do Mn^{+2} e do Fe^{+3} . Nesse caso, temos que nos preocupar apenas com o espalhamento do spin dos elétrons. Vamos escrever a posição espacial dos elétrons na forma

$$\vec{r}_{jk} = \vec{R}_j + t_{jk}$$

onde $\vec{R_j}$ é a posição do átomo
e $\vec{t_{jk}}$ a posição do elétron em relação ao átomo
 j. Temos então,

$$\vec{M}(\vec{r}) = -2\mu_B \left\langle \sum_{jk} \delta(\vec{r} - \vec{r}_{jk}) \vec{s}_{jk} \right\rangle$$

e então,

$$\begin{split} \vec{M}(\vec{q}) &= \int \left\langle \vec{M}_s(\vec{r}) \right\rangle e^{i\vec{q}\cdot\vec{r}} d\vec{r} = -2\mu_B \left\langle \sum_{jk} e^{i\vec{q}\cdot\vec{r}_{jk}} \vec{s}_{jk} \right\rangle = -2\mu_B \left\langle \sum_j e^{i\vec{q}\cdot\vec{R}_j} \sum_k e^{i\vec{q}\cdot\vec{t}_{jk}} \vec{s}_{jk} \right\rangle \\ &= -2\mu_B f_m(\vec{q}) \left\langle \sum_j e^{i\vec{q}\cdot\vec{R}_j} \vec{S}_i \right\rangle \end{split}$$

onde

$$f_m(\vec{q}) = \int_{\acute{a}tomo} \rho_s(\vec{r}) e^{i\vec{q}\cdot\vec{r}} d\vec{r}$$

é o fator de forma atômico para a densidade de spin dos átomos. Aqui consideramos que o spin atômico não é afetado pela média sobre o ensemble (razoável). Se desprezarmos a flutuação térmica da posição dos íons (fator de Debye-Waller), podemos escrever

$$\left\langle \sum_{j} e^{i\vec{q}\cdot\vec{R}_{j}} \vec{S}_{j} \right\rangle = \sum_{j} e^{i\vec{q}\cdot\vec{R}_{j}} \left\langle \vec{S}_{j} \right\rangle$$

Finalmente,

$$\frac{d^2\sigma}{d\Omega} = (\gamma r_0)^2 \left| f_m(\vec{q}) \sum_j \left\langle S_{j\perp} \right\rangle e^{i\vec{q}\cdot\vec{R}_j} \right|^2$$

No caso em que temos os momentos angulares de spion e orbital a situação é mais complicada. Apresentaremos apenas os resultados seguindo a ref. 1 no caso em que o valor recíproco do vetor de espalhamento é pequeno em relação ao tamanho da órbita dos elétrons. Nesse caso, podemos utilizar a *aproximação de dipolo*. O resultado é

$$\frac{d^2\sigma}{d\Omega} = (\gamma r_0)^2 \left| \frac{g_J}{2} f_m(q) \sum_j \left\langle J_{j\perp} \right\rangle e^{i\vec{q}\cdot\vec{R}_j} \right|^2$$

onde

$$f_m(q) = \langle j_0(q) \rangle + C_2 \langle j_2(q) \rangle$$

е

$$\langle j_l(q) \rangle = 4\pi \int_0^\infty j_l(qr) R^2(r) r^2 dr$$

R(r) é a função de distribuição de densidade radial (pode ser calculada por cálculos de Hartree-Fock no caso de átomos isolados, por exemplo) e $j_l(qr)$ são as funções esféricas de Bessel. g_J é o fator-g de Landé e $C_2 = 2/g_J - 1$.

Figure 4: $j_l(l = 0, 2, 4)$ para diferentes íons 3d magnéticos (ref. 6).

A figura abaixo mostra a dependência angular dos fatores de forma para o espalhamento nuclear

e o espalhamento magnético de neutrons, separando a contribuição orbital da contribuição de spin e para os raios X (normalizados). É importante salientar que o fator de forma do espalhamento por raios X envolve todos os elétrons enquanto que para os neutrons apenas os elétrons nãoemparelhados. O espalhamento nuclear pode ser considerado como snedo pontual e, portanto, independente da transferência de momento.

Figure 5: Fator de forma do Cr para as diferentes contribuições do espalhamento magnético de neutrons, para os raios X e para o espalhamento nuclear. (Extraído da ref. 1)

Exemplo:

A figura abaixo ilustra o espalhamento magnético de neutrons para a resolução da ordem magnética (antiferromagnética) do MnO (Shull et al, 1951 e Shaked et al. 1988). O MnO é um antiferromagnético clássico, representando a família de monóxidos de metais de transição na primeira linha da tabela periódica. Os dados obtidos por Shull et al em 1949 e 1951 colocam em evidência a fase antiferromagnética. Os dados de Shaked et al. em 1988, com melhor resolução, permitem a observação clara do surgimento dos desdobramentos de picos caracterizando a mudança estrutural de cúbica para romboédrica.

Figure 6: MnO na fase antiferromagnética indicando o aumento da célula unitária magnética em relação a célula unitária cristalina. (Meio) Difração de neutrons do MnO abaixo e acima da temperatura de transição da ordem magnética ($T_c = 118 K$) (C.G. Shull e J.S. Smart, Phys. Rev. **76**, 1256 (1949) e C.G. Shull, W.S. Strauser e E.O. Wollan, Phys. Rev. **83**, 333 (1951)).

Figure 7: Difração magnética do MnO a 122 K (superior) e 8 K (inferior) mostrando o desdobramento e os picos magnéticos. (H. Shaked et al., Phys. Rev. B **38**, 11901 (1988)).

Figure 8: Espalhamento de neutrons do MnO permitem evidenciar os desvios da orientação angular dos spins no plano (111). A figura superior representa a orientação dos spins e o desvio θ e mostra o grau de ajuste em função do ângulo θ . A figura do meio compara o desvio médio medido experimentalmente para o Mn (círculos abertos), o O (círculos sólidos) em relação a posição na célula ortorrômbica. A figura inferior mostra o desvio médio da componente de spin do MnO na célula unitária. O eixo z é paralelo a direção [111] e cobre seix planos (111) de átomos de Mn. (Goodwin et al., Phys. Rev. Lett. **96**, 047209 (2006)).

6 Espalhamento magnético com raios X

O espalhamento magnético por raios X é possível. No entanto, a interação desses com o spin dos átomos é muito inferior (ordens de grandeza) em relação ao espalhamento com a carga elétrica. Como consequência, é necessário que tenhamos fontes de raios X bem intensas, o que é possível com as fontes de luz síncrotron de terceira geração. A implementação do espalhamento ressonante magnético de raios X permite obter resultados mais significativos. As principais razões (vantagens em relação ao espalhamento com neutrons) para desenvolvermos essa técnica (além da disponibilidade ou não de uma fonte de neutrons) são:

- os raios X permitem uma resolução em q com qualidade e precisão muito melhor;
- é possível investigar amostras pequenas de dimensões submilimétrica, o que não é possível com os neutrons devido ao pequeno valor da seção de choque;
- espalhamento elástico ressonante é sensível ao elemento químico e, portanto, permite por em evidência a estrutura local além da estrutura global;
- espalhamento magnético permite o estudo de superfícies e interfaces magnéticas;
- separação entre o efeito de spin e o efeito de origem orbital (espalhamento não-ressonante)

Para entendermos o espalhamento magnético com raios X, vamos revisar a interação entre os fótons e os elétrons. Consideremos um sistema de elétrons na presença de um potencial efetivo gerado pelo núcleo e os demais elétrons (aproximação de um-elétron):

$$H = \sum_{i} \frac{p_i^2}{2m} + V(\vec{r}_i) + \frac{e\hbar}{2m^2c^2}\vec{s}_i \cdot [\vec{E}(\vec{r}_i) \times \vec{p}_i]$$

onde $\vec{E}(\vec{r_i})$ é o campo elétrico gerado pelos elétrons (interação spin-órbita). Consideremos agora um campo eletromagnético com o calibre no qual o potencial escalar é nulo e o vetor potencial é expresso por

$$\vec{A}(\vec{r},t) = \sum_{k\lambda} \left(\frac{he^2}{\Omega\omega_k}\right)^{1/2} \left[\hat{e}_{\lambda}a(\vec{k},\lambda)e^{i(\vec{k}\cdot\vec{r}-\omega_kt)} + cc\right]$$

onde normalizamos em uma caixa e $\lambda (= 1, 2)$ indica a polarização e $\omega_k = ck$. O hamiltoniano se escreve agora na forma

$$H = \sum_{i=1,N} \left[\frac{(\vec{p_i} - (e/c)\vec{A}(\vec{r_i}))^2}{2m} + V(\vec{r_i}) - \frac{e\hbar}{mc}\vec{s_i} \cdot \vec{B} - \frac{e\hbar}{2m^2c^2}\vec{s_i} \cdot [\vec{E} \times (\vec{p_i} - (e/c)\vec{A}(\vec{r_i})] \right]$$

onde o terceiro termo deve-se a interação spin-órbita. O hamiltoniano de interação é

$$H_{int} = \sum_{i=1}^{N} \left[\frac{e^2}{2mc^2} \vec{A}^2(\vec{r}_i) - \frac{e}{mc} \vec{A}(\vec{r}_i) \cdot \vec{p}_i - \frac{e\hbar}{mc} \vec{s}_i \cdot (\vec{\nabla} \times \vec{A}(\vec{r}_i)) + \frac{e\hbar}{2m^2c^3} \vec{s}_i \cdot \left[\frac{\partial \vec{A}(\vec{r}_i)}{\partial t} \times (\vec{p}_i - \frac{e}{c} \vec{A}(\vec{r}_i)) \right] \right]$$

$$= H_1 + H_2 + H_3 + H_4$$

O espalhamento envolve um fóton inicial caracterizado por $(\hat{e}_{\lambda}, \vec{k})$ e um fóton final $(\hat{e}_{\lambda'}, \vec{k'})$, lembrando que estamos considerando espalhamento elástico. O primeiro termo, H_1 , é responsável pelo espalhamento Thomson. Para analisar os demais termos, temos que distinguir a situação ressonante da não-ressonante. A figura abaixo ilustra as energias típicas no sistema físico. A situação não ressonante caracteriza-se pela condição $\omega \gg \omega_1, \omega_2$. Nesse caso, todos os quatro termos contribuem. Na situação ressonante temos $\omega \sim \omega_1$ ou $\omega \sim \omega_2$ e apenas o termo H_2 contribui.

Figure 9: Esquema de níveis de energia do sistema físico evidenciando a transição ressonante.

A seção de choque para o caso não-ressonante pode ser calculada diretamente e o resultado é

$$\frac{d^2\sigma}{d\Omega} = \left(\frac{e^2}{mc^2}\right)^2 \cdot \left|\sum_{j} \left\langle 0|e^{i\vec{q}\cdot\vec{r}_j}|0\right\rangle (\hat{e}^*_{\lambda'}\cdot\hat{e}_{\lambda}) - i\frac{\hbar\omega_k}{mc^2} \left[\frac{mc}{e\hbar} \left\langle 0|\hat{q}\times(\vec{M}_L(\vec{q})\times\hat{q})|0\right\rangle \cdot \vec{P}_L + \frac{mc}{e\hbar} \left\langle 0|\vec{M}_s(\vec{q})|0\right\rangle \cdot \vec{P}_S\right]\right|^2$$

O primeiro termo é o espalhamento Thomson. O segundo termo apresenta uma defasagem de $\pi/2$ e possui uma componente orbital e uma componente de spin. Na expressão acima escrevemos $\hat{q} = \vec{q}/q$ e $\vec{M}_i(\vec{q})$ é a transformada de Fourier do momento magnético *i*. Os demais termos se escrevem na forma

$$\vec{P}_L = (\hat{e}^*_{\lambda'} \times \hat{e}_\lambda) 4 \sin^2 \theta$$

е

$$\vec{P}_S = [(\vec{k}' \times \hat{e}^*_{\lambda'})(\vec{k}' \cdot \hat{e}_{\lambda}) - (\vec{k} \times \hat{e}_{\lambda})(\vec{k} \cdot \hat{e}^*_{\lambda'}) - (\vec{k}' \times \hat{e}^*_{\lambda'}) \times (\vec{k} \times \hat{e}_{\lambda})]$$

Algumas observações:

- Os termos adicionais são muito pequenos, da ordem de ħω/mc²)² ≈ (10 keV/511 keV)² ≈ 1/2500 e, a menos de regras de simetria que proibam a contribuição do espalhamento Thomson, podem ser desprezados.
- Os fatores de polarização para a contribuição de spin e orbital são muito diferentes. Selecionando a polarização do fóton incidente podemos separar as duas contribuições.

Vamos analisar alguns resultados. A figura abaixo mostra o aparecimento de um pico magnético quando a temperatura do *NiO* está abaixo da temperatura de Néel (evidenciando a fase antiferromagnética). O experimento foi realizado utilizando fonte convencional de raios X e a contagem é realizada ao longo de 225 minutos. A figura seguinte mostra um resultado mais recente (1998), obtido em linha de luz sincrotrônica (ESRF) onde observamos também a separação enter o espalhamento devido aos spins e a contribuição orbital. Observe a contagem por segundos.

Figure 10: Espalhamento magnético não-ressonante de raios X no NiO. (Bergevin e Brunel, Phys. Lett. **A39**, 141 (1972)).

Figure 11: Espalhamento magnético com raios X no *NiO* evidenciando também a contribuição de spin e orbital. (V. Fernandez et al., Phys. Rev. **B57**, 7870 (1998))

A figura abaixo mostra as diferenças fases do Holmium medidas com radiação síncrotron. Este foi um dos

Fig. 6 Sketch of a basal-plane spiral antiferromagnet, and the scattering geometry

Figure 12: Espalhamento magnético com raios X usando radiação síncrotron. (Gibbs et al., Phys. Rev. Lett. **55**, (1985)).

Consideremos agora o caso ressonante. Basicamente, assumimos que temos a condição $E(\psi_n) - E_0 \approx \hbar \omega_k$, onde em geral temos vários estados ψ_n satisfazendo essa condição (esses estados estão vazios inicialmente). Na aproximação dipolar $(e^{i\vec{k}\cdot\vec{r}} \approx 1 + i\vec{k}\cdot\vec{r} - (\vec{k}\cdot\vec{r})^2/2 + ...,$ onde guardamos apenas o primeiro termo da expansão), pode-se mostrar que o termo H_2 domina e é o único que precisa ser levado em conta (ver ref. 2). O resultado final é uma seção de choque que se escreve

na forma

$$\frac{d^2\sigma}{d\Omega} = \frac{2\pi}{\hbar} \left| \left(\frac{\hbar^2 c^2 e^2}{\Omega \omega_k m^2 c^2} \right) \sum_n \frac{<0|\sum_{j=1}^N \hat{e}^*_{\lambda'} \cdot \vec{p_j} e^{-i\vec{k'}\cdot\vec{r_j}}|n> < n|\sum_{j'=1}^N \hat{e}_{\lambda} \cdot \vec{p_{j'}} e^{i\vec{k}\cdot\vec{r_{j'}}}|0>|^2}{E_0 - E(\psi_n) + \hbar\omega_k + i\Gamma_n/2} \right|^2$$

Apenas para precisão, essa expressão contém contribuições não-ressonantes. Para excluí-las, temos que fazer a substituição

$$\frac{1}{E_0 - E(\psi_n) + \hbar\omega_k + i\Gamma_n/2} \to \frac{E(\psi_n) - E_0 - i\Gamma_n/2}{\hbar\omega_k} \frac{1}{E_0 - E(\psi_n) + \hbar\omega_k + i\Gamma_n/2}$$

Vamos considerar agora alguns exemplos.

Exemplo 1: D. Gibbs et al., Phys. Rev. Lett. 61, 1241 (1988) (teoria J.P. Hannon et al., Phys. Rev. Lett. 61, 1245 (1988))

Utilizando polarização linear eles separaram a contribuição de spin e orbital no espalhamento magnético não-ressonante do Ho. As transições envolvem contribuições quadrupolares (2p - 4f) e dipolares (2p - 5d). Observaram também o espalhamento ressonante no limiar de absorção L_{III} . Experimentos realizados no National Synchrotron Light Source (NSLS, linha X16B) e no Cornell High Energy Synchrotron Source (CHESS, estação de wiggler A-2).

Figure 13: Esquema das transições no Ho, envolvendo contribuições multipolares.

Figure 14: Geometria do espalhamento. (a) Espalhamento não-ressonante polarizado linearmente. (b) Razão entre os fatores de forma do espalhamento orbital e de spin. As linhas são resultados do cálculo teórico.

Figure 15: (Esquerda) Superior - Coeficiente de absorção medido em função da energia do raio x no limiar L_{III} do Ho. Demais curvas representam as intensidades integradas em função da energia para as componentes paralela (círculos abertos) e perpendicular (círculos cheios) para o espalhamento linear para nos planos de difração τ , 2τ , 3τ . (Direita) Intensidades relativas de espalhamento (teoria) para o limiar L_{III} do Ho. As linhas sólidas referem-se ao espalhamento $\sigma \leftrightarrow \sigma$ e as linhas tracejadas a $\sigma \leftrightarrow \pi$.

Exemplo 2: E. Granado et al., Phys. Rev. B**69**, 144411 (2004) e E. Granado et al., Phys. Rev. B**74**, 214428 (2006).

Esses trabalhos representam a primeira medida de espalhamento magnético realizado no LNLS. O objetivo foi compreender a fase antiferromagnética do $GdRhIn_5$ (e também de sistemas similares $Gd_2IrIn_8 \in GdIn_3$). Esses materiais são similares aos férmions pesados supercondutores da famíla do Ce. O estado fundamental apresenta uma estrutura de spin antiferromagnética comensurada com o spin paralelo propagando-se na direção \vec{a} e a antiferromagnética nas direções \vec{b} e \vec{c} . A fase magnética é determinada pela competição entre as interações antiferromagnéticas entre os primeiros vizinhos, J_1 , e segundos vizinhos, J_2 . Os cálculos teóricos, utilizando grupo de renormalização, indicam a fase antiferromagnética C - AFM (ver abaixo) para o $GdRhIn_5$.

FIG. 1. Magnetic structure of Gd₂IrIn₈.

Figure 16: Intensidade integrada em função da energia para o espalhamento de Bragg (1/2, 0, 4)nos limiares (a) L_{III} e (b) L_{II} do Gd. As linhas sólidas são o coeficiente de absorção obtido pela fluorescência.

Figure 17: (a) e (b) Intensidade da magnetização em função da temperatura para a reflexão de Bragg (1/2, 0, 4). (c) Espalhamento logo abaixo ou logo acima da temperatura de Néel. Medidas realizadas em condição ressonante com o limiar $L_{II}(E=7,924 \text{ keV})$ do Gd.

Figure 18: (Esquerda) Estrutura eletrônica e magnética do $GdRhIn_5$. (Esquerda) Representação das fases antiferromagnéticas C - AFM e G - AFM.

Figure 19: (a) e (b) Intensidade integrada da magnetização em função da temperatura para o $GdRhIn_5$ e o Gd_2IrIn_8 . (c) Largura do espalhamento na direção $\theta - 2\theta$ na reflexão de Bragg (0, 1/2, 11/2) do $GdRhIn_5$. O inset mostra o comprimento de correlação L após a deconvolução com a largura do instrumento.

Exemplo 3: S.B. Wilkins et al., Phys. Rev. Lett. **90**, 187201 (2003).

Utilização de raios X moles para evidenciar a fase antiferromagnética do $La_{2-2x}Sr_{1+2x}Mn_2O_7$ (x = 0,475). Eles observaram o splitting do pico ressonante devido ao efeito Jahn-Teller. O espalhamento é realizado no pico de reflexão de Bragg (002) e as transições são 2p - 3d. Eles observam também o ordenamento de cargas e o colapso desse ordenamento (a 120 K) sendo que o máximo do ordenamento coincide com o limiar da fase antiferromagnética. Isso indica que provavelmente que a ordem ferromagnética no plano a - b induz o colapso da ordem de carga. As medidas de raios X moles foram realizadas na linha de luz 5U1 do Synchrotron Radiation Source (SRS) no Daresbury Laboratory e as de raios x duros na linha BW5 do HASYLAB (Alemanha).

Figure 20: (Superior) Estrutura da magnetita bicamada $La_{2-2x}Sr_{1+2x}Mn_2O_7$. (Inferior) Esquerda: intensidade integrada em função da energia nos limiares L_{III} e L_{II} do Mn a 300 K no pico de reflexão de Bragg (002). Direita: intensidade integrada em função da energia na relexão de ordem ferromagnética (001) a 83 K.

Figure 21: Intensidade integrada do pico antiferromagnético (001) medido na ressonância do limiar L_{III} do Mn com raios x moles e reflexões da superrede (1/2, 3/2, 0) de ordenamento de carga medido fora de ressonância com difração de raios x de alta energia (94,8 keV).

7 XFEL

Para completar essa discussão é recomendável considerarmos o surgimento dos primeiros lasers de raios X de elétrons livres. Eles são construídos baseados na técnica SASE ("Self-Amplification of Spotaneous Emission"). O primeiro laser de elétrons livres na região dos raios X duros (XFEL) foi o LINAC Coherent Light Source (LCLS) construído no antigo acelerador linear de Stanford e inaugurado em abril de 2009. Em junho de 2011 o SACLA em Hyogo no Japão começou a funcionar. Atualmente estão em construção ou em planejamento o PAL em Pohang na Coréia do Sul, o European XFEL em Hamburgo, Alemanha e o SwissFEL em Villigen-Würenlingen, Suiça. Na região dos raios X moles estão em operação o FLASH em Hamburgo, o FERMI em Trieste, Itália. A característica dos XFEL é um pulso intenso (da ordem de 10 ordens de grandeza a mais de brilho quando comparado com as fontes síncrotrons de terceira geração), com pulsos de 10 fs (comparados com 25 ps nos síncrotrons).

	3 rd Gen.	SASE-FREE-	Short pulse SASE-
		ELECTRON	FREE-ELECTRON
		LASER	LASER
Wavelength range, nm	1-0.1		
Emittance, nm rad	2	0.03	0.03
Pulse length, ps	15-30	0.06	0.01
Average brightness	10^{20}	10^{22}	10^{21}
Peak brightness	10^{23}	10^{33}	10^{33}
Peak power, W	10^{3}	10^{10}	10 ¹⁰

Table 1 Some typical characteristics of the undulator radiation from 3rd generation ring based light sources, and FREE-ELECTRON LASER light sources. The emittance is in nm rad; the pulse length in ps; the average and peak brigthness are in photons/sec/mm²/mrad²/0.1%bandwidth; the peak power in W.

Figure 22: Ref. 8

Figure 23: O XFEL ocupa o último 1/3 do LINAC Stanford Accelerator (duas milhas de comprimento).

Figure 24: Ref. 7

Figure 25: Ref. 7

Incoherent and Coherent X-Ray Scattering

Fig. 10 Comparison of conventional small angle scattering and coherent small angle scattering or speckle. The sample consists of magnetic worm domains of approximately 300nm size, reflected by a peak around $q = 20 \ \mu m^{-1}$. When the sample is illuminated coherently the speckle pattern contains complete information of the magnetic nanostructure, in this case the magnetic domain structure, of the sample.

Figure 26: Ref. 8

Infelizmente não teremos tempo de detalhar a pesquisa e as oportunidades que surgem com essa nova instrumentação. Há inúmeros artigos de revisão sobre o assunto. Recomendamos por exemplo o da ref. 7.

References

- [1] Thomas Brückel, "A neutron primer: Elastic scattering and the properties of the neutron", IFF, Forschungszentrum Jülich, Alemanha).
- M. Altarelli, Ressonant X-ray Scattering: A Theoretical Introduction, em Magnetism: A Synchrotron Radiation Approach, Lectures Notes in Physics 697, E. Beaurepaire, H. Bulou, F. Scheurer, J.-P Kappler (eds.), Springer, 2006.
- [3] G. L. Squires, **Thermal neutron scattering**, Cambridge University Press, 1978.
- [4] S. W. Lovesey, Theory of neutron scattering from Condensed Matter, vols. I e II, Oxford University Press, 1986.
- [5] L. Dobrzynski e K. Blinowski, Neutrons and Solid State Physics, Ellis Horwood, 1994.
- [6] P.J. Brown, Magnetic scattering of neutrons, em International Tables for Crystallography, vol. C: Mathematical, Physical and Chemical Tables, A.J.C. Wilson, ed. Doordrecht, Kluwer Academic Publ., 1995.
- B.D. Patterson, Crystallography using an X-ray free-electron laser, Crystallography Reviews 20, 242 (2014).
- [8] C. Pellegrini, X-Ray Free Electron Lasers: Principles, Properties and Applications. Notes, 2013.
- [9] P.M. Chaikin and T.C. Lubensky, Principles of Condensed Matter Physics, Cambridge University Press, 2000.