Part II

Elasticidade

Essas notas estão baseadas no capítulo 6 do CL (ref. 1) e demais referências mencionadas no texto.

Sobre que trataremos aqui:

Discutimos até o presente momento como entendermos as diversas fases da matéria condensada. Em particular, nos concentramos no estado de equilíbrio e como podemos obter as novas fases variando as variáveis termodinâmicas ou potencias externos que influenciam o estado do sistema físico considerado. Uma idéia fundamental que exploramos foi a obtenção das novas fases da matéria por meio da quebra de simetria contínua e surgimento de uma ordem no sistema descrita por meio de um parâmetro de ordem. Em um sólido, há uma quebra da simetria translacional. Nos materiais magnéticos, a simetria rotacional é quebrada. E assim por diante. Consideremos o caso da quebra da simetria rotacional. O ângulo θ descreve a direção do parâmetro de ordem. Quando ocorre a quebra de simetria, por exemplo, os spins de um material paramagnético orientamse preferencialmente em uma direção, dando origem a um material ferromagnético. Nesse caso, temos a possibilidade de infinitos (devido a simetria contínua quebrada) estados fundamentais com a mesma origem, equivalentes, definidos pela direção do ângulo θ . A quebra da simetria ocorre pela definição de um determinado ângulo para o sistema físico. Portanto, qualquer variação uniforme de θ não tem custo de energia livre. A situação muda quando consideramos uma variação não uniforme para a variável θ . Nesse caso, há uma variação na energia livre. Em princípio, esperamos que a densidade de energia livre f tenha uma expansão analítica em gradientes de θ . Ou seja, esperamos que f tenha termos proporcionais a $(\nabla \theta)^2$ para θ variando lentamente no espaço. A esse termo de energia vamos chamar de energia elástica, f_{el} . Ela produz uma força restauradora contra a distorção do condensado. A variável θ é denominada variável elástica ou hidrodinâmica. Nessa seção vamos estudar para diversos modelos de condensados, seguindo nossa descrição utilizada até agora, a elasticidade generalizada. Em particular, consideraremos os modelos xy, o modelo do vetor-n e os sólidos cristalinos.

1 Modelo xy

Começamos nossa discussão pelo modelo xy por ser a simetria contínua mais simples para o condensado, simetria U(1) ou O(2) e refere-se a rotação em um plano bidimensional. Esse modelo pode ser aplicado para sismtemas magnéticos no plano ou para o hélio superfluido ou ainda para alguns cristais líquidos. O parâmetro de ordem que quebra a simetria pode ser um vetor bidimensional

$$\langle \vec{s} \rangle = s(\cos\theta, \sin\theta) \tag{1}$$

ou um número complexo,

$$\langle \psi \rangle = |\langle \psi \rangle| \, e^{i\theta} \tag{2}$$

Consideremos o modelo xy em uma rede. Nesse caso, a representação é feita por meio de um spin

$$\vec{s}(\vec{r}) = s(\cos\theta(\vec{r}), \sin\theta(\vec{r})) \tag{3}$$

onde \vec{r} é a posição na rede. A interação entre os spins ocorre por meio de interação de troca entre os primeiros vizinhos. O hamiltoniano pode ser escrito na forma

$$\begin{aligned}
\mathcal{H}_{xy} &= -J \sum_{\langle \vec{l}, \vec{l'} \rangle} \vec{s}_{\vec{l}} \cdot \vec{s}_{\vec{l'}} \\
&= -J \sum_{\langle \vec{l}, \vec{l'} \rangle} \cos[\vartheta_{\vec{l}} - \vartheta_{\vec{l'}}]
\end{aligned} \tag{4}$$

onde $\vartheta_{\vec{l}}$ refere-se ao ângulo local do spin no síti
o $\vec{l.}$

No caso dos cristais líquidos na fase hexática é usual escrevermos

$$\langle \psi_6 \rangle = \left| \langle \psi_6 \rangle \right| e^{6i\theta} \tag{5}$$

para ressaltar a invariância do sistema em relação a rotações de $2\pi/6$.

1.1 Energia livre elástica: escala

Conisderemos a energia livre do modelo xy da fig. . O mínimo da energia livre ocorre no círculo que é a base da figura. A posição no círculo é determinada pelo ângulo θ . Variações espaciais uniformes no ângulo θ não alteram a energia. No entanto, variações não uniformes, tais como representadas na fig. levam a um aumento da energia livre. Podemos escrever

$$F_{el} = F[\theta(\vec{r})] - F[\theta = \text{constante}]$$
(6)

 F_{el} deve ser analítica em $\nabla \theta$. Como a energia livre é um mínimo em relação aos valores do parâmetro de ordem, a contribuição primeira deve ser de segunda ordem em $\nabla \theta$. A forma mais simples possível, portanto, é

$$F_{el} = \frac{1}{2} \int \mathrm{d}^d r \rho_s [\nabla \theta(\vec{r})]^2 \tag{7}$$

Algumas características de F_{el} :

- A energia pode ser arbitrariamente pequena. Os modos dinâmicos associados a energia elástica (discutiremos isso mais tarde) são conhecidos como modos suaves (soft modes).
- O modelo xy possui a simetria contínua mais simples. Em geral temos uma única variável elástica ou grau de liberdade associado com cada deslocamento uniforme espacial. Portanto, nesse caso, devemos ter uma única variável elástica.
- Como estamos considerando rotação de spin, o sistema físico permanece invariante para rotações e translações no espaço.

- O coeficiente ρ_s é conhecido como rigidez e adquire a nomenclatura de rigidez de onda de spin ou módulo de helicidade nos sistemas magnéticos, densidade superfluida nos sistemas superfluidos.
- Para um sistema de dimensão-
 $d~[\rho_s] = [E]/[L]^{d-2}.$
- A escala de energia é determinada pela temperatura crítica T_c a qual, por sua vez, é da ordem da energia de troca J no modelo de rede.
- A baixas temperaturas, a escala típica de comprimento é o parâmetro de rede a. Logo

$$\rho_s \sim T_c a^{d-2}, \ T \sim 0 \tag{8}$$

• Para o modelo de rede da eq. 4 a T = 0

$$\rho_s = \frac{s^2 J z a^{-d-2}}{4d} \tag{9}$$

onde z é o número de coordenação da rede.

• Para T ~ \sim T_c ,

$$\rho_s \sim T_c \xi^{d-2} \to |T - T_c|^{(d-2)\nu}$$

• Na teoria de campo médio (ver discussão na próxima seção),

$$\rho_s = c \left| \left< \vec{s} \right> \right|^2 \sim \left| T - T_c \right|$$

o que está de acordo com o resultado de escala para a dimensão crítica $d_c = 4$ (lembrando que na teoria de campo médio $\nu = 1/2$.

Figure 1: Estados fundamentais para o modelo xy. Extraído do CL.

Figure 2: Energia livre em função do parâmetro de ordem do modelo xy. Extraído de CL.

Figure 3: Configurações de spin para $\theta(\vec{r})$ não uniforme. (c) Mostra a configuração de spin das condições de contorno discutidas no texto. Extraído de CL.

1.2 Condições de contorno e campos externos

Na ausência de campos externos, temos

$$\frac{\delta F_{el}}{\delta \theta(\vec{r})} = -\rho_s [\nabla \theta(\vec{r})]^2 = 0 \tag{10}$$

Na ausência de qualquer outra condição, a solução garante θ uniforme espacialmente. Na presença de condições de contorno, soluções com θ não uniforme estão presentes. Consideremos o caso com as condições de contorno

$$\theta(z = 0) = 0$$

$$\theta(z = L) = \theta_0$$
(11)

Então,

$$\theta = \theta_0 \frac{z}{L}$$

$$F_{el} = \frac{1}{2} \rho_s L^{d-2} \theta_0^2$$
(12)

Podemos definir ρ_s a partir desse resultado, com ρ_s expresso em termos da diferença entre a energia livre $F[\theta_0]$ para as condições de contorno mencionadas ($\theta = 0$ para z = 0 e $\theta = \theta_0$ para z = L) e a energia livre F[0] com as condições de contorn $\theta = 0$ para z = 0 e z = L:

$$\rho_s = \lim_{L \to \infty} 2L^{2-d} \frac{(F[\theta_0] - F[0])}{\theta_0^2}$$
(13)

Consideremos agora a presença de um campo externo $\vec{h}(\vec{r})$ que quebra a simetria rotacional do hamiltoniano original:

$$F_{ext} = -\int d^d r \vec{h}(\vec{r}) \cdot \langle \vec{s}(\vec{r}) \rangle$$

= $-\int d^d r \left| [\vec{s}(\vec{r})] \right| \left[h_x \cos \theta(\vec{r}) + h_y \sin \theta(\vec{r}) \right]$ (14)

Se \vec{h} for uniforme espacialmente e na direção-x, o estado de energia mínima é aquele com \vec{h} alinhado ao longo de \vec{r} , ou seja,

$$\langle \vec{s} \rangle = s \mathbf{e}_x$$

Se adicionarmos um campo pequeno na direção-y, (δh_y) , então

$$\langle \vec{s} \rangle \to \delta \langle h_y \rangle = s \delta \theta \tag{15}$$

Em primeira ordem o valor absoluto de $\langle \vec{s} \rangle$ não varia e podemos escrever a susceptibilidade para campos aplicados na forma

$$\chi_{\perp}(\vec{r},\vec{r}) = \frac{\delta \langle s_y(\vec{r}) \rangle}{\delta h_y(\vec{r})} = s \frac{\delta \theta(\vec{r})}{\delta h_y(\vec{r})}$$
(16)

Para continuar o cálculo devemos minimizar a energia livre elástica total

$$F_T = F_{el} + F_{ext} \tag{17}$$

expandindo em torno de $\theta=0$ para valores pequenos de $h_y,$ temos

$$F_T = \int \mathrm{d}^d r \left[\frac{1}{2} \rho_s (\nabla \theta)^2 + \frac{1}{2} s h_x \theta^2 - s h_y \theta - s h_x + \dots \right]$$
(18)

de onde temos

$$\frac{\delta F_T}{\delta \theta} = \left[-\rho_s \nabla^2 + sh_x \right] \theta - sh_y = 0 \tag{19}$$

de onde tiramos que

$$\left[-\rho_s \nabla^2 + sh_x\right] \frac{\delta\theta(\vec{r})}{\delta h_y(\vec{r})} = s\delta(\vec{r} - \vec{r})$$
⁽²⁰⁾

A susceptibilidade transversa é

$$\chi_{\perp}(\vec{q}) = T^{-1}G_{\perp}(\vec{q}) = \frac{s^2}{\rho_s q^2 + sh_x}$$
(21)

Esses é o mesmo resultado obtido para a teoria de campo médio se identificarmos $\rho_s = cs^2$. Esses resultados também definem um comprimento de correlação $\xi_h = (\rho_s/h_x)^{-1/2}$.

1.3 Flutuações

Qual a importância das flutuações nesse caso?

Sabemos que a variável elástica pode ser arbitrariamente pequena. Vamos examinar o que acontece com o valor médio do parâmetro de ordem. $\langle \vec{s} \rangle$ é o valor médio do parâmetro de ordem \vec{s} em relação a uma função peso termodinâmica. Vamos considerar o caso em que $\theta = 0$, ou seja, $\langle \vec{s} \rangle = s \mathbf{e}_x$. Vamos parametrizar $\vec{s}(\vec{r})$ pelo seu valor absoluto e um ângulo $\vartheta(\vec{r})$:

$$\vec{s}(\vec{r}) = s(\vec{r})[\cos\vartheta(\vec{r}), \sin\vartheta(\vec{r})]$$
(22)

O modelo xy que discutimos refere-se ao caso em que $s(\vec{r}) = \text{constante}$. A diferença entre ϑ e θ é que o primeiro refere-se a direção do spin em \vec{r} enquanto que o segundo refere-se ao seu valor médio em \vec{r} . No caso em que $\langle \vec{s} \rangle$ não é nulo, ϑ não é distribuído uniformemente entre 0 e 2π .

Para $\theta=0$ temos

$$\langle s_x \rangle = \langle s(\vec{r}) \cos \vartheta(\vec{r}) \rangle = s \langle s_y \rangle = \langle s(\vec{r}) \sin \vartheta(\vec{r}) \rangle = 0$$
 (23)

2 Elasticidade em sólidos: energia elástica e deformação

2.1 Tensor de deformação

Um sólido cristalino pode ser descrito por um arranjo periódico perfeito de átomos our pela coleção de planos de fase constante ortogonal aos vetores \vec{G} . A rede periódica é caracterizada por vetores de rede

$$\vec{R}_{\vec{l}} = l_1 \vec{a}_1 + l_2 \vec{a}_2 + l_3 \vec{a}_3 \tag{24}$$

onde os l_i 's são inteiros e os \vec{a}_i 's são os vetores de translação primitivos. A densidade $\langle n(\vec{r}) \rangle$ é periódica nas três direções,

$$\langle n(\vec{r}) \rangle = \sum_{\vec{l}} \delta(\vec{r} - \vec{R}_{\vec{l}}) = \sum_{\vec{G}} \langle n_{\vec{G}} \rangle e^{i\vec{G}\cdot\vec{r}}$$
(25)

onde

$$\vec{G} = m_1 \vec{b}_1 + m_2 \vec{b}_2 + m_3 \vec{b}_3 \tag{26}$$

sendo os m_i 's inteiros e os \vec{b}_i 's são os vetores da rede recíproca. A transformada de Fourier é

$$\langle n_{\vec{G}} \rangle = \frac{1}{v_0} \int \mathrm{d}^d r \, \langle n(\vec{r}) \rangle \, e^{-i\vec{G}\cdot\vec{r}} \tag{27}$$

As amplitudes da densidade de massa tem um módulo e uma fase,

$$\langle n_{\vec{G}} \rangle = |\langle n_{\vec{G}} \rangle| \, e^{i\phi_{\vec{G}}} \tag{28}$$

Um deslocamento uniforme de \vec{u} corresponde a uma translação uniforme do sistema de coordenadas de $-\vec{u}$. Ou, podemos escrever a translação uniforme na forma

$$\vec{r}_{\alpha} \to \vec{r}_{\alpha} + \vec{u}$$
 (29)

onde α refere-se a todos os átomos da rede. Temos então,

$$\langle n_{\vec{G}} \rangle = \frac{1}{v_0} \int d^d r e^{-i\vec{G}\cdot\vec{r}} \left\langle \sum_{\alpha} \delta(\vec{r} - \vec{r}_{\alpha}) \right\rangle$$

$$= \frac{1}{v_0} \sum_{\alpha} \left\langle e^{-i\vec{G}\cdot\vec{r}_{\alpha}} \right\rangle \rightarrow \frac{1}{v_0} \sum_{\alpha} \left\langle e^{-i\vec{G}\cdot(\vec{r}_{\alpha} + \vec{u})} \right\rangle$$

$$= \frac{1}{v_0} \sum_{\alpha} \left\langle e^{-i\vec{G}\cdot\vec{r}_{\alpha}} \right\rangle e^{-i\vec{G}\cdot\vec{u}} = \left\langle n_{\vec{G}} \right\rangle e^{-i\vec{G}\cdot\vec{u}}$$

$$(30)$$

Portanto, translações uniformes correspondem a variações uniformes na fase das amplitudes de densidade,

$$\phi_{\vec{G}} = \phi^0_{\vec{G}} - \vec{G} \cdot \vec{u} \tag{31}$$

A energia é invariante para translações uniformes. Logo, devemos esperar que o primeiro termo da energia elástica seja proporcional a $(\nabla_i u_j)^2$. Não podemos ter qualquer translação para o sólido. Esse deve ser invariante para rotações rígidas do sistema. Logo, consideremos uma rotação infinitesimal em um ângulo $\delta \vec{\Omega}$. Os vetores da rede recíproca se transformam na forma

$$\vec{G} \to \vec{G}' = \vec{G} + \delta \vec{\Omega} \times \vec{G} \tag{32}$$

Temos então,

$$\langle n(\vec{r}) \rangle = \sum_{\vec{G}} \langle n_{\vec{G}} \rangle e^{i\vec{G}\cdot\vec{r}} = \sum_{\vec{G}} \langle n_{\vec{G}} \rangle e^{i(\vec{G}+\delta\vec{\Omega}\times\vec{G})\cdot\vec{r}}$$

$$= \sum_{\vec{G}} \langle n_{\vec{G}} \rangle e^{i\vec{G}\cdot\vec{r}} e^{-i\vec{G}\cdot\vec{u}}$$

$$(33)$$

ou seja,

$$\vec{G} \cdot \vec{u} = (\vec{G} - \vec{G}') \cdot \vec{r} = -(\delta \vec{\Omega} \times \vec{G}) \cdot \vec{r}$$
(34)

Como esse resultado não deve depender de $\vec{G},$ temos para rotações rígidas

$$u_i = (\delta \vec{\Omega} \times \vec{r})_i = \epsilon_{ijk} \delta \Omega_j x_k \tag{35}$$

onde ϵ_{ijk} é o tensor de Levi-Civita. O ângulo de rotação é proporcional a parte anti-simétrica de $\nabla_i u_j$:

$$\delta\Omega_k = \frac{1}{2} \epsilon_{ijk} (\nabla_i u_j - \nabla_j u_i) \tag{36}$$

A energia livre deve ser independente de $\delta \vec{\Omega}$. Logo, ela deve ser independente da parta antisimétrica de

$$\varepsilon_{ij}^A = \frac{1}{2} (\nabla_i u_j - \nabla_j u_i) \tag{37}$$

do tensor $\nabla_i u_j$. Ou, colocado de outra forma, a energia elástica F_{el} só pode depender da parte simétrica do tensor. Ou seja,

$$F_{el} \to F_{el}[\varepsilon_{ij}]$$
 (38)

onde

$$\varepsilon_{ij} = \frac{1}{2} (\nabla_i u_j + \nabla_j u_i) \tag{39}$$

e ε_{ij} é o tensor de deformação linearizado. Termos não lineares serão discutidos posteriormente. Vamos analisar algumas deformações que podem ser descritas pelo tensor de deformação.

• Consideremos uma dilatação ou compressão uniforme δV . Por convenção, δV positivo corresponde a dilatação e negativo a compressão. Vamos ignorar a formação de vacâncias e defeitos intersticiais, ou seja, consideramos que o número de átomos por célula primitiva permanece o mesmo. Consideremos $\Omega_0 = \vec{a}_1 \cdot (\vec{a}_2 \times \vec{a}_3)$ o volume da célula unitária inicial. A variação relativa do volume na célula primitiva é a mesma da variação de volume da amostra, ou seja

$$\frac{\delta\Omega_0}{\Omega_0} = \frac{\delta V}{V} \tag{40}$$

Considerando uma distorção isotrópica, cada vetor da rede primitiva deve variar pelo mesmo valor,

$$\epsilon = \frac{\delta V}{3V} \tag{41}$$

Os vetores da rede recíproca são definidos por

$$\vec{a}_i \cdot \vec{b}_j = 2\pi \delta_{ij} \tag{42}$$

Para uma deformação pequena, a deformação nos vetores da rede recíproca é $\sim -\epsilon.$ Ou seja,

$$\vec{G} \to \vec{G}' = (1 - \epsilon)\vec{G} \tag{43}$$

Seguindo os mesmos passos de antes, verifica-se que

$$\varepsilon_{ij} = 3\epsilon = \frac{\delta\Omega_0}{\Omega_0} = \frac{\delta V}{V} \tag{44}$$

• Análise similar pode mostrar que para uma distorção de δL_x no comprimento L_x ao longo da direão x é igual a

$$\varepsilon_{xx} = \frac{\delta L_x}{L_x} \tag{45}$$

• Para uma distorção de cisalhamento (shear distortion) produzida por um deslocamento \vec{u} que obedece

$$\nabla \cdot \vec{u} = 0$$

$$\nabla \times \vec{u} = 0 \tag{46}$$

Por exemplo, a distorção

$$u_x = \epsilon y$$

$$u_y = \epsilon x$$

$$u_{xy} = u_{yx} = \epsilon$$
(47)

representada na fig. corresponde a um cisalhamento. A mesma distorção pode ser descrita como uma dilatação ao longo do eixo (1,1) e uma compressão ao longo do eixo (1,-1).

Figure 4: Distorção de cisalhamento descrita no texto. Extraída de CL.

2.2 Elergia livre elástica

A energia livre elástica é quadrática no tensor simetrizado,

$$F_{el} = \frac{1}{2} \int \mathrm{d}^d r K_{ijkl} \varepsilon_{ij} \varepsilon_{kl} = \int \mathrm{d}^d r f_{el}(\varepsilon_{ij}) \tag{48}$$

onde $f_{el}(\varepsilon_{ij})$ é a densidade de energia livre elástica. K_{ijkl} é um tensor de quarta orde e possui 81 componentes. Em geral, esse número pode ser significativamente reduzido pelas relações de simetria do cristal. Em primeiro lugar, a energia livre não pode depender das variáveis mudas, isto é, da troca entre $ij \in kl$. ε_{ij} é simétrico. Com essas duas condições, temos

$$K_{ijkl} = K_{klij} = K_{jikl} = K_{ijlk} = K_{jilk}$$

$$\tag{49}$$

Outras condições de simetria são determinadas pelas simetrias do grupo pontual do cristal. Essas simetrias reduzem consideravelmente o número de constantes independentes. Como é de se esperar, quanto mais simétrico for o cristal, menor é o número de constantes independentes. A maior simetria possível é a simetria cúbica a qual possui apenas três constantes elásticas independentes. A Tabela 1 lista o número de constantes elásticas independentes para cada simetria em um sólido cristalino tridimensional.

CRYSTAL SYSTEM	POINT GROUPS	ELASTIC CONSTANTS		
Triclinic	all	21		
Monoclinic	all	13		
Orthorhombic	all	15		
Tetragonal	C4, C44, S4	7		
Rhombohedral	C40, D4, D4h, D2d	6		
	C_{3}, S_{6}	7		
	C_{3v}, D_3, D_{3d}	6		
Hexagonal	all	ŝ		
Cubic	all	3		

Table 1: Número de constantes elásticas independentes em função da simetria do cristal. Extraído da ref. 2.

A ordem de grandeza dos valores das constantes elásticas pode ser estimada por meio de uma análise dimensional. O tensor de deformação não possui unidades. Logo, as constantes devem ter unidades do tipo $[K] = EL^{-d}$. A energia típica é a da ligação química ou seja alguns eV por átomo ou ligação. A escala de comprimento típico é o parâmetro de rede, da ordem de alguns angstroms. Temos então,

$$K \sim \frac{1, 6 \times 10^{-12}}{8 \times 10^{-24}} \sim 0, 2 \times 10^{12} \frac{dynes}{cm^2}$$
(50)

A Tabela ilustra o valor das constantes para alguns materiais cúbicos.

. .

SUBSTANCE	C11	C ₁₂	C44	
Li (78 K)	0.148	0.125	0.108	
Na	0.070	0.061	0.045	
Cu	1.68	1.21	0.75	
Ag	1.24	0.93	0.46	
Au	1.86	1.57	0.42	
AI	1.07	0.61	0.28	
Pb	0.46	0.39	0.144	
Ge	1.29	0.48	0.67	
Si	1.66	0.64	0.80	
v	2.29	1.19	0.43	
Та	2.67	1.61	0.82	
Nb	2.47	1.35	0.287	
Fe	2.34	1.36	1.18	
Ni	2.45	1.40	1.25	
LiCl	0.494	0.228	0.246	
NaCl	0.487	0.124	0.126	
KF	0.656	0.146	0.125	
RbC1	0.361	0.062	0.047	

ELASTIC CONSTANTS FOR SOME CUBIC CRYSTALS"

^a Elastic constants in 10¹² dynes-cm⁻² at 300 K.

Table 2: Constantes elásticas de alguns sólidos cúbicos. Extraído da ref. onde podem ser encontradas as referências originais. Na nossa nomenclatura, $C_{11} = K_{xxxx}$, $C_{12} = K_{xxyy}$ e $C_{44} = K_{yzyz}$. Essas são as únicas constantes elásticas independentes para a simetria cúbica.

2.3 Sólidos isotrópicos

Muitos dos materiais são compostors por microcristais orientados aleatoriamente. Isso é particularmente verdade no caso de metais, onde a ligação química maleável dificulta a formação de monocristais. Monocristais são mais comuns em cristais covalentes. Consideremos um sólido formado por microcristais dispostos aleatoriamente. Para escalas muito maior que o tamanho típico dos monocristais, o material é isotrópico para rotações. Vidros, por outro lado, são invariantes por rotação mesmo na escala microscópica. Nesses sistemas, temos apenas duas constantes elásticas independentes. (*Obs.: o mesmo vale para sólidos bidimensionais com simetria hexagonal*). Fisicamente, as duas deformações que podem ser feitas são a *compressão* e o *cisalhamento*. As respostas do sistema devem ser independentes da direção (isotropicidade). Para construirmos as constantes elásticas nesse caso temos que utilizar o delta de Kronecker (imposição matemática). Os únicos tensores de quarta ordem que podem ser construídos satisfazendo a condição de simetria da eq. 49 são $\delta_{ij}\delta_{kl} \in \delta_{ij}\delta_{jl} + \delta_{il}\delta_{jk}$. Temos então

$$K_{ijkl} = \lambda \delta_{ij} \delta_{kl} + \mu (\delta_{ik} \delta_{jl} + \delta_{il} \delta_{jk}) \tag{51}$$

Os coeficientes $\lambda \in \mu$ são conhecidos por *coeficientes de Lamé*. Da equação 48 temos

$$F_{el} = \frac{1}{2} \int \mathrm{d}^d r [\lambda \varepsilon_{ii}^2 + 2\mu \varepsilon_{ij} \varepsilon_{ij}]$$
(52)

A convenção de soma de Einstein é subentendida nessa integral.

Podemos reescrever a energia livre expressando o tensor de deformação em um escalar e um tensor simétrico de traço nulo:

$$\varepsilon_{ij} = \frac{1}{d} \delta_{ij} \varepsilon_{kk} + \left(\varepsilon_{ij} - \frac{1}{d} \delta_{ij} \varepsilon_{kk} \right)$$
(53)

O primeito termo mede a variação do volume e o segundo termo mede distorções nas quais o volume não muda ou seja deformações de cisalhamento. A energia livre se escreve agora na forma

$$F_{el} = \frac{1}{2} \int \mathrm{d}^d r \left[B \varepsilon_{kk}^2 + 2\mu \left(\varepsilon_{ij} - \frac{1}{d} \delta_{ij} \varepsilon_{kk} \right)^2 \right]$$
(54)

onde

$$B = \lambda + \frac{2\mu}{d} \equiv \text{módulo de bulk}$$
$$\mu = \text{módulo de cisalhamento}$$

A estabilidade termodinâmica exige que ambos, $B \in \mu$, sejam positivos. A Tabela mostra alguns valores dos módulos de bulk e de cisalhamento para alguns materiais isotrópicos.

Material	Shear modulus	Bulk modulus
Tungsten carbide	2.2×10^{12}	3.2×10^{12}
Steel	0.83×10^{12}	1.5×10^{12}
Gold	$0.28 imes 10^{12}$	1.7×10^{12}
Pyrex	$0.25 imes 10^{12}$	$0.4 imes 10^{12}$
Nylon	$0.12 imes 10^{12}$	0.59×10^{12}
Rubber	$\sim 10^7$	0.03×10^{12}
Jello	$\sim 10^4$	0.02×10^{12}
Polystyrene foam	1.3×10^{8}	2×10^{8}
Shaving foam	$\sim 10^3$	$\sim 10^{6}$
Ice	$0.025 imes 10^{12}$	0.073×10^{12}
Water	0	0.02×10^{12}
Air	0	10 ⁶ (1 atm)

Table 3: Constantes elásticas para alguns materiais isotrópicos em dy/cm^2 . Extraído de CL; dados originais extraídos de AIP Handbook. Os valores para sólidos que normalmente são cristalinos foram obtidos em amostras policristalinas com grãos pequenos.

2.4 Sólidos cristalinos cúbicos

Para um sólido cristalino cúbico o tensor K_{ijkl} deve ser invariante para trocas entre i, j, k, l. Nesse caso, temos apenas seis combinações independentes de $ij \in kl$. É usual escrevermos o tensor ε_{ij} em termos do "vetor" de dimensão seis, e_{α} , $\alpha = 1, ..., 6$. A transposição de uma nomenclatura para outra é

$$xx \to 1, \, yy \to 2, \, zz \to 3, \, yz \to 4, \, zx \to 5, \, xy \to 6 \tag{55}$$

e o tensor de deformação é reescrito na forma

$$e_{\alpha} = \varepsilon_{ii}, \ \alpha = 1, 2, 3$$
$$e_{\beta} = 2\varepsilon_{ij}, \ \beta = 4, 5, 6 \ e \ i \neq j$$
(56)

As constantes elásticas são denomindas na forma

$$C_{11} = K_{xxxx} = K_{yyyy} = K_{zzzz}$$

$$C_{12} = K_{xxyy} = K_{yyzz} = K_{zzxx}$$

$$C_{44} = K_{xyxy} = K_{yzyz} = K_{zxzx}$$
(57)

Essas são as únicas constantes elásticas independentes. Todos os termos onde aparece um número ímpar de x, y, z são nulos por simetria. A energia elástica pode ser escrita agora na forma

$$F_{c\acute{u}bico} = \frac{1}{2} \int d^{d}r [K_{11}(\varepsilon_{xx}^{2} + \varepsilon_{yy}^{2} + \varepsilon_{zz}^{2}) + K_{12}(\varepsilon_{xx}\varepsilon_{yy} + \varepsilon_{xx}\varepsilon_{zz} + \varepsilon_{yy}\varepsilon_{zz}) + 2K_{44}(\varepsilon_{xy}^{2} + \varepsilon_{xz}^{2} + \varepsilon_{yz}^{2})] = \frac{1}{2} \sum_{\alpha,\beta} \int d^{d}r e_{\alpha}C_{\alpha\beta}e_{beta}$$
(58)

Aproveitando a simetria cúbica, escrevemos a energia livre em termos de um tensor de segunda ordem e um vetor em um espaço de dimensão-6. As constantes $C_{\alpha\beta}$ são conhecidas como constantes de rigidez elástica ou módulos elásticos (elastic stiffness constants ou elastic moduli). A matriz S, inversa de C, é conhecida como constantes elásticas (elastic compliance constants ou elastic constants simplesmente).

A energia livre de um sólido cúbico tem a frma de um sólido isotrópico se tivermos a condição $C_{12} = C_{44}$. Podemos definir uma medida da isotropicidade de um sólido cúbico pela razão

$$\frac{C_{12} - C_{44}}{C_{12}}$$

Tipicamente, essa razão tem valores entre 0,05 e 0,4 para os materiais que cúbicos da tabela que apresentamos.

2.5 Flutuações

Vamos relacionar agora a elasticidade macroscópica as flutuações locais do vetor de fase \vec{u} . Vamos escrever

$$\varepsilon_{ij}(\vec{q}) = \frac{1}{2}(iq_iu_j + iq_ju_i) \tag{59}$$

е

$$C_{ik}(\vec{q}) = K_{ijkl}q_jq_l \tag{60}$$

O hamiltoniano para a energia elástica é

$$\mathcal{H}_{el} = \frac{1}{2} \int \frac{\mathrm{d}^d q}{(2\pi)^d} C_{ik}(\vec{q}) u_i(\vec{q}) u_k(\vec{q}) \tag{61}$$

Consideremos agora o sólido isotrópico (ou um sólido hexagonal bidimensional). Temos nesse caso

$$\mathcal{H}_{el} = \frac{1}{2} \int \frac{\mathrm{d}^d q}{(2\pi)^d} [(\lambda + 2\mu)q^2 u_l^2 + \mu q^2 \vec{u}_T \cdot \vec{u}_T]$$
(62)

onde $u_l \in \vec{u}_T$ sáo as partes longitudinal e transversa de \vec{u} , definidas por:

$$u_l(\vec{q}) = \hat{q} \cdot \vec{u}(\vec{q})$$

$$\vec{u}_T(\vec{q}) = \vec{u} - \hat{q}u_l(\vec{q})$$
 (63)

onde $\hat{q} = \vec{q} / |\vec{q}|$.

A estabilidade termodinâmica em relação a distorções não homogêneas exige que os dois coeficientes, $\lambda + 2\mu \in \mu$, sejam positivos. Observemos que $\lambda + 2\mu = B + 2(d-1)\mu/d \ge B$, com a desigualdade sendo verdadeira em qualquer circunstância para d > 1. Ou seja, se o sistema é estável em relação a modificações espaciais uniformes do volúme com $\varepsilon_{ij} = (\delta V/ dV) \delta_{ij}$, então ele será estável também em relação a distorções longitudinais de grande comprimento de onda.

As flutuações de $u_i(\vec{q})$ podem ser obtidas pelo inverso do tensor elástico:

$$G_{u_i u_j}(\vec{q}) = \langle u_i(\vec{q}) u_j(-\vec{q}) \rangle = k_B T C_{ij}^{-1}(\vec{q}) \sim \frac{k_B T}{Kq^2}$$

$$\tag{64}$$

Para sólidos isotrópicos, temos simplesmente

$$G_{u_i u_j}(\vec{q}) = \frac{k_B T}{(\lambda + 2\mu)q^2} \hat{q}_i \hat{q}_j + \frac{k_B T}{\mu q^2} (\delta_{ij} - \hat{q}_i \hat{q}_j)$$
(65)

O resultado é o mesmo que encontramos para os sistema xy: as flutuações em \vec{u} reduzem a intensidade dos picos de Braggno vetor da rede recíproca \vec{G} segundo a equação

$$I(\vec{G}) \sim \langle n_{\vec{G}} \rangle \left\langle n_{-\vec{G}} \right\rangle \sim |\langle n_{\vec{G}} \rangle|^2 e^{-2W}$$
(66)

onde

$$W = \frac{1}{2} \left\langle G_i(u_i(\vec{r})u_j(\vec{G})) \right\rangle G_j \sim \frac{1}{2} G^2 \int \frac{\mathrm{d}^d q}{(2\pi)^d} \frac{k_B T}{Kq^2}$$
(67)

Como no caso do modelo xy, o fator de Debye-Waller, e^{-2W} , é não-nulo para todos d > 2. Para d = 2, W fica infinito, tendo como consequência que ordem cristalina periódica de longo alcance não pode existir em dimensões menor ou igual a 2. Há, também aqui, uma quase ordem de longo alcance periódica em "cristais" bidimensionais e apenas ordem de curto alcance a temperaturas finitas em um cristal unidimensional. A menor dimensão crítica para um cristal é 2.

A figura mostra a dependência calculada da intensidade do pico de Bragg para o Al em função da temperatura, colocando em evidência o efeito do fator de Debye-Waller. A tabela mostra alguns valores dos parâmetros de Debye-Waller.

Figure 5: Intensidade dos picos de Bragg (4,0,0) (linha sólida) e (8,0,0) (linha tracejada) calculados para o Al. A temperatura de fusão do Al é 933 K. Extraído da ref.

	Α	Θ	B _{4.2}	B ₇₇	B ₂₉₃
		(K)		(Å ²)	
Diamond	12	2230	0.11	0.11	0.12
Al	27	428	0.25	0.30	0.72
Si	28.1	645	0.17	0.18	0.33
Cu	63.5	343	0.13	0.17	0.47
Ge	72.6	374	0.11	0.13	0.35
Mo	96	450	0.06	0.08	0.18

Table 4: Temperatura de Debye (Θ) e fator de Debye-Waller B_T para temperaturas 4,2 K, 77 K e 293 K para alguns elementos cúbicos. $M_j = B_T^j (\sin \theta / \lambda)^2$, $B_T = [1149T(K)/A\Theta^2(K^2)]\phi(\Theta/T) + 2873/(A\Theta(T))$. Extraído da ref. .

3 Elasticidade Lagrangiana

Vamos apresentar aqui uma discussão que nos permite distinguir entre a teoria de elasticidade clássica, desenvolvida no século XIX, e aquela apresentada aqui até o momento. Na teoria clássica, o sólido é um contínuo formado por pontos de massa que podem ser deformados respondendo a uma tensão externa. Essa tensão é considerada elástica, ou seja, ele retorna a sua posição de origem uma vez a tensão externa removida. Cada ponto de massa é identificado por sua posição \vec{R} em relaçãoa um campo de coordenadas do espaço como mostrado na fig., com $d\vec{R}$ simbolizando uma diferena de posição entre dois pontos de massa. Sob tensão o corpo deforma-se e cada ponto de massa inicialmente em \vec{R} assume uma nova posição em relação ao sistema de coordenadas fixo:

$$\vec{r}(\vec{R}) = \vec{R} + \vec{u}(\vec{R}) \tag{68}$$

 \vec{R} representa aqui tanto a posição inicial do ponto de massa como o índice para o ponto de massa. Aqui está o aspecto fundamental da descrição: o ponto não perde sua identidade, ou seja, poderíamos ter introduzido um parâmetro contínuo como o tempo t e especifica a posição por $\vec{r}(\vec{R},t)$ do ponto de massa \vec{R} em função de t com a condição inicial que $\vec{r}(\vec{R},0) = \vec{R}$.

Figure 6: Rede não distorcida (esquerda) e distorcida (direita) de um meio elástico mostrando os pontos iniciais $\vec{R} \in \vec{R} + d\vec{R}$ e suas imagens $\vec{r}(\vec{R}) \in \vec{r}(\vec{R} + d\vec{R})$ depois da distorção. Extraído de CL.

Na teoria clássica de elasticidade, considera-se a energia elástica a partir da separação entre os pontos na posição de repouso da rede

$$\mathrm{d}R = (\mathrm{d}\vec{R} \cdot \mathrm{d}\vec{R})^2$$

No estado distorcido, a separação entre os pontos é

$$dr = (d\vec{r} \cdot d\vec{r})^2$$
$$d\vec{r} = \vec{r}(\vec{R} + d\vec{R}) - \vec{r}(\vec{R})$$

A diferença entre os dois valores leva a uma energia elástica similar a lei de Hooke. A energia elástica deve ser proporcional a $(dr)^2 - (dR)^2$.

Temos duas escolhas em relação às coordenadas: (1) podemos escrever em termos do índice dos ponots de massa \vec{R} ou (2) podemos escrever em termos da posição \vec{r} do sistema de coordenadas

fixo. As duas escolhas são equivalentes uma vez que a relação entre elas, eq. 68, é única e pode ser invertida e os pontos de massa não perdem sua identidade. O primeiro caso representa as *coordenadas Lagrangianas* enquanto que o segundo caso representa as *coordenadas Eulerianas*, que foram as coordenadas utilizadas até agora. Vamos examinar agora o caso das coordenadas Lagrangianas. Temos nesse caso,

$$\mathrm{d}x_i = \mathrm{d}R_i + \frac{\partial u_i}{\partial R_j} \mathrm{d}R_j \tag{69}$$

Temos então,

$$(\mathrm{d}r)^2 - (\mathrm{d}R)^2 = 2u_{ij}^L \mathrm{d}R_i \mathrm{d}R_j \tag{70}$$

onde

$$\varepsilon_{ij}^{L} = \frac{1}{2} \left(\frac{\partial u_i}{\partial R_j} + \frac{\partial u_j}{\partial R_i} + \frac{\partial u_k}{\partial R_i} \frac{\partial u_k}{\partial R_j} \right)$$
(71)

que é o tensor de deformação Lagrangiano. No caso das coordenadaas Eulerianas, temos

$$\vec{R} = \vec{r} - \vec{u}[\vec{R}(\vec{r})] \tag{72}$$

е

$$\mathrm{d}R_i = \mathrm{d}x_i - \frac{\partial u_i}{\partial x_j}\mathrm{d}x_j$$

de onde temos

$$(\mathrm{d}r)^2 - (\mathrm{d}R)^2 = 2u_{ij}^E \mathrm{d}x_i \mathrm{d}x_j$$

е

$$\varepsilon_{ij}^E = \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} - \frac{\partial u_k}{\partial x_i} \frac{\partial u_k}{\partial x_j} \right)$$

e ε_{ij}^E é o tensor de deformação Euleriano.

A energia elástica harmônica expressa na equação 48 tem a mesma forma quando expressa em termos da deformação de Lagrange ou de Euler. A integral, no primeiro caso, é sobre o índice dos pontos de massa \vec{R} ou equivalentemente sobre o volume do corpo não distorcido nas coordenadas de Lagrange. Nas coordenadas de Euler a integral é sobre o espaço ocupado pelo corpo distorcido nas coordenadas de Euler. Temos que ter em mente que a relação entre os elementos de volume $d^d r$ e $d^d R$ envolve a deformação por meio do Jacobiano das transformações das coordenadas.

Vamos considerar agora a relação entre as deformações. As posições \vec{R} dos sítios do corpo não deformado forma uma rede periódica ideal que satisfaz

$$\vec{G}\cdot\vec{r}=\vec{G}\cdot\vec{R}=2\pi m$$

onde m é um inteiro. Na rede deformada, \vec{u} é diferente de zero e as posições \vec{r} dos sítios da rede satisfazem

$$\vec{G} \cdot (\vec{r} - \vec{u}(\vec{r})) = 2\pi m \tag{73}$$

Essa equação define os planos de fase constante na rede distorcida. Logo,

$$\vec{R} = \vec{r} - \vec{u}(\vec{r}) \tag{74}$$

determina a posições dos átomos que estavam em \vec{R} antes da deformação. Equações 72 e 74 são idências. Aqui, a diferença é que as variáveis naturais são as posições \vec{r} e não os índices \vec{R} . Portanto, como já comentamos, as coordenadas utilizadas anteriormente eram as coordenadas de Euler. As duas teorias de elasticidade são formalmente idênticas. A diferença está nos conceitos de suas derivações:

(1) No caso das coordenadas de Euler, assumimos a existência de ondas de densidade de massa que quebra a simetria de translação do espaço. Ela se aplica sempre que exista em equilíbrio uma onda de densidade periódica, mesmo que haja um rearranjo significativo de massas sob deformação. O deslocamento \vec{u} e o tensor de deformação ε_{ij} são as generalizações da variável θ e de seu gradiente $\nabla \theta$ no modelo xy.

(2) A teoria clássica, nas coordenadas de Lagrange, aplica-se a um meio que possui um mapeamento único e inversível entre os pontos de massa nas configurações deformadas e não-deformadas.

3.1 Tensor de tensão

Vamos seguir a discussão do CL e apresentar o tensor de tensão dentro da descrição Lagrangiana. Depois faremos a discussão do caso Euleriano. A seguir, discutiremos alguns exemplos em sólidos cristalinos, em particular, em semicondutores.

Tensor de tensão Lagrangiano

Nesse caso a variável \vec{u} representa deslocamentos de pontos de massa. O campo termodinamicamente conjugado a \vec{u} deve ser uma força. Na descrição Lagrangiana, os pontos de massa estão indexados pelas suas posições \vec{R} no sistema não-deformado. Os pontos de massa estão em um elemento de volume Ω , definido pela superfície $\partial\Omega$. Após a deformação, eles são mapeados em uma nova posição $\vec{r}(\vec{R})$, no interior de um volume distorcido Ω' definido pela superfície $\partial\Omega'$. A conectividade local entre os elementos de volume não é alterada na distorção. Temos que descrever agora as forças interiores nesse sistema. Qualquer força \vec{F} exercida nos pontos de massa no elemento de volume Ω pode serespressa como uma integral sobre Ω da densidade de força \vec{f} ,

$$\vec{F} = \int_{\Omega} \mathrm{d}^3 R \vec{f} \tag{75}$$

onde \vec{f} é a força por unidade de volume no sólido não-deformado. Devemos lembrar que ela

difere da força por unidade de volume no espaço pelo fator $(1 + \varepsilon_{ij})$ que é a razão

References

- [1] Chaikin e Lubenski, Condensed Matter Physics, Oxford, 1995.
- [2] N.W. Ashcroft e N.D. mermin, Solid State Physics, Holt, rinehart e Winston, 1976.
- [3] J. Als-Nielsen e Des McMorrow, Elements of Modern X-Ray Physics, Wiley, 2001.