FI 105-Test 1-2015

Problem 1: Vortices electrostatic representation

Here we will develop a representation for the vortices singularities in which the φ field plays the role of point charges in a 2D electrostatic analogy. (a) We define the "displacement field" \vec{D} as

$$
\vec{D}=\vec{\nabla} \varphi \times \hat{z}
$$

Show that

$$
\vec{\nabla} \cdot \vec{D}=2 \pi k \delta^{2}(r)
$$

(b) We write the "dielectric constant" as

$$
\epsilon=\frac{1}{2 \pi \rho_{s}}
$$

and we define the electric field as

$$
\vec{D}=\epsilon \vec{E}
$$

Show that for the $x y$ model we have

$$
U=\frac{1}{4 \pi} \int d^{2} r \vec{E} \cdot \vec{D}
$$

(c) Show that the electric potential is

$$
V(r)=-\frac{k}{\epsilon} \ln \left(\frac{r}{a}\right)
$$

We have therefore the statistical mechanics of a collection of interacting vortices equivalent of a 2 D plasma of charges with potential energy

$$
U=-\frac{1}{\epsilon} \sum_{i<j} k_{i} k_{j} \ln \left|\frac{\vec{r}_{i}-\vec{r}_{j}}{a}\right|
$$

(d) Consider now a bound pair of vortices. From general gauge invariance considerations we can show we have a supercurrent given by

$$
\vec{J}_{s}=\frac{2 e}{\hbar} \rho_{s} \vec{\nabla} \varphi
$$

Show that we have a force equal

$$
\vec{F}=k \frac{\hbar}{2 e} \vec{J}_{s} \times \hat{z}
$$

Show that this force is opposite in sign for each member of a bound pair of vortices and the pair polarize. This polarization is exactly like the electric polarization in a medium and contributes to the renormalization of the dielectric constant. This is equivalent do a decrease in the spin stifness. Estimate this effect.

Reference: S.M. Girvin, The Kosterlitz-Thouless Phase Transition, Boulder Series, 2000.

2) Kinks: The Bogomolnyi method for Z_{2} kink

Consider the functional form for the energy of a system as

$$
E=\int d x\left[\frac{1}{2}\left(\frac{\partial \phi}{\partial t}\right)^{2}+\frac{1}{2}\left(\frac{\partial \phi}{\partial x}\right)^{2}+V(\phi)\right]
$$

Writing the energy functional into a "whole square" form, show that for boundary values with fixed values for $\phi(\pm \infty)$, the energy is minimized if

$$
\frac{\partial \phi}{\partial t}=0
$$

and

$$
\frac{\partial \phi}{\partial x}=\mp \sqrt{2 V(\phi)}=0
$$

and that the minimum value of the energy is

$$
E_{\min }= \pm \int_{\phi(-\infty)}^{\phi(+\infty)} d \phi^{\prime} \sqrt{2 V\left(\phi^{\prime}\right)}
$$

(b) Consider now the ϕ^{4} model, with

$$
V(\phi)=\frac{\lambda}{4}\left(\eta^{2}-\phi^{2}\right)^{2}
$$

Show that

$$
\phi(x)=\eta \tanh \left(\sqrt{\frac{\lambda}{2} \eta x}\right)
$$

and calculate the energy of the kink in this case.
(c) Consider now the sine-Gordon model, with a Lagrangian given by

$$
L=\frac{1}{2}\left(\frac{\partial \phi}{\partial t}\right)^{2}+\frac{1}{2}\left(\frac{\partial \phi}{\partial x}\right)^{2}-\frac{\alpha}{\beta^{2}}(1-\cos (\beta \phi))
$$

This is a scalar field theory in a $1+1$ space-time dimension. It is invariant under $\phi \rightarrow \phi+2 \pi n$, where n is any integer. We have therefore a Z symmetry. The vacua are given by $\phi=2 \pi n / \beta$, labeled by the integer n.

Use the Bogomolnyi method and find $\phi(x)$ and the energy E of the kink.
Reference: T. Vachaspati, Kinks and Domain Walls, Cambridge University Press (2006).

