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A Note on the Quantum-Mechanical Perturbation Theory* 

PER-OLDV LOWDIN 

Department of Physics, Duke University, Durham, North Carolinat 
(Received July 23, 1951) 

The solution of the quantum-mechanical eigenvalue problem is discussed for cases when a series of approxi­
mate eigenfunctions is known. If these "unperturbed" states are divided into two classes, a perturbation 
formula is derived giving the influence of one class of states on the other in the final solution: The formula 
contains as special cases: (i) the Schrodinger-Brillouin formula for the eigenvalue of a nondegenerate state, 
(ii) a new simple formula for treating a class of degenerate states, and (iii) the splitting of the secular equa­
tion in cases where the system naturally consists of two independent parts in mutual interaction. 

1. INTRODUCTION 

ONE of the most important tools for treating the 
fundamental quantum-mechanical eigenvalue 

problem 
(1) 

is the perturbation method due to Schrodinger.1 In its 
conventional form, the operator H has the form 
H = Ho+ V, and, for the derivation of the perturbation 
formulas, it is usually assumed2 that V can be expressed 
as a power series in a perturbation parameter A. An­
other type of derivation of these formulas has been 
given by Lennard-Jones3 and by Brillouin,4 who used 
the secular equation and the theory of bordered deter­
minants. Here we will show that a still simpler treat­
ment of the perturbation theory can be given by using 
the system of linear equations" corresponding to the 
secular equation. Dividing the given "unperturbed" 
states into two classes, we will derive a formula which 
explicitly gives the influence of one class of states on 
the other in the final solution of (1). As speciai cases we 
will obtain the Schrodinger-Brillouin formula4 for the 
eigenvalue of a nondegenerate state, a new formula for 
the treatment of a class of degenerate states, and finally 
a formula for the splitting of the secular equation for a 
system which naturally consists of two independent 
parts in mutual interaction. Even if these formulas are 
here derived mainly for the application in the theory 
of molecules, they may be useful in other parts of 
quan tum mechanics. 

* Work supported by the ONR, under Contract N6ori-107, 
Task Order I, with Duke University. 

t Permanent address: Institute of Mechanics and Mathe­
matical Physics, University of Uppsala, Uppsala, Sweden. 

1 E. Schrodinger, Ann. Physik (4) 80, 437 (1926). 
2 See, for instance, Pauling and Wilson, Introduction to Quantum 

Mechanics (McGraw-Hill Book Company, Inc., New York, 1935); 
Kemble, Principles of Quantum Mechanics (McGraw-Hill Book 
Company, Inc., New York, 1937); Mott and Sneddon, Wave 
Mechanics and its Applications (Oxford University Press, Oxford, 
1948). 

3 J. E. Lennard-Jones, Proc. Roy. Soc. (London) 129, 604 
(1930). 

• L. Brillouin, J. Phys. radium (7) 3, 373 (1932). See also E. Wig­
ner, Math. naturw. Anz. ungar. Akad. Wiss. 53, 477 (1935). 

Ii This idea has previously been used for special purposes by 
E. Gora, Z. Physik 120, 121 (1942-43) and by H. Feshbach, 
Phys. Rev. 74, 1548 (L), (1948). 

2. THE VARIATIONAL PRINCIPLE 

Here we will not restrict the Hermitian operator H 
to having any special form, and we will only assume 
that we know a system of orthonormalized functions 
if;n (0) (n= 1, 2, ... N), which are approximate eigen­
functions of H. This system may be finite or infinite, 
but it must not necessarily be complete. 6 We will then 
investigate the best eigenfunctions of H which can be 
formed by linear combinations of the given funct~ons: 

(2) 

For this purpose we introduce the matrix elements of 
the total operator H with respect to the given set: 

(3) 

The coefficients Cn can now be determined by the varia­
tional principle, which says that the integral 

E= !if;*Hif;dr / !if;*if;dr 

gives an approximate value of ~, and that the best 
approximation is obtained when 5E=0. If E=A/B, 
we have 5E=(M-E5B)/B, which, for the coefficients 
en, gives the system of linear equations: 

N 

L (Hmn - E5mn)cn =0, m= 1,2' .. N. (5) 
n=l 

The condition for the existence of a non-trivial solution 
of (5) is Det(Hmn-E5mn)=0, an equation previously 
used by Lennard-Jones3 and by Brillouin.4 Here we will 
instead base our treatment directly on the linear 
system (5). 

6 This is of special importance in the theory of molecules, where, 
for instance in the MO-LCAO-method, we usually know only a 
few approximate wave functions. 
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3. A PERTURBATION FORMULA FOR THE MUTUAL 
INFLUENCE OF TWO CLASSES OF STATES 

Let us assume that, in some definite way, we have 
divided the series of indices n of Vtn (0) into two classes, 
(A) and (B). Let us for a moment be mainly interested 
in the class (A), and let us try to derive a formula by 
means of which we can treat the influence of the states 
in (B) as a perturbation. The system (5) can be written 

A B 

(E-Hmm)Cm="L Hmn'cn+"L Hmn'cn, (6) 
n n 

if the sign' on a matrix means that we omit all diagonal 
elements, so that Hmn'=Hmn(1-omn). Using the no­
tation 

(7) 

we get then 
A B 

Cm="L hmn'Cn+"L hmn'Cn. (8) 
n n 

We will now eliminate the states in the class (B) by a 
process of iteration, expressing the coefficients C in all 
sums exclusively over B by the formula (8) itself. In 
this way we obtain the formal expansion 

A B B 

Cm = "L (hmn' + "L hma' han' + "L hma' har/ h{Jn' + ... )cn. (9) 
n a afj 

Introducing the new notation 

we get 

(11) 

For the two cases of m in (A) or (B), we have, therefore, 
the two basic formulas 

(12) 

(13) 

The first formula is formally identical to (5), but it is 
limited only to the class (A). This gives the theorem: 

An eigenvalue problem (5) with respect to a system of 
states belonging to two classes, (A) and (B), can be 
reduced only to the class (A), if the matrix elements 
Hmn are replaced by the elements UmnA, where the in­
fluence of the class (B) is taken into account by ex­
pansion (10). 

When the coefficients Cn belonging to (A) have been 
determined, we get the coefficients Cn belonging to (B) 
according to (13). 

We note that series (10) is here only formally de­
rived and that, when the series is interrupted after a 
finite number of terms, there is a remainder containing 
sums exclusively over (B). A necessary condition for 
the validity of (10) is therefore that, for the value of E 
under consideration and for m and n in (B), the matrix 
elements hmn' are small in comparison to the unity: 

(14) 

The problem of the convergency of (10) remains still 
to be investigated. 

Matrix elements of the type (10), where the summa­
tion is carried out only over a restricted number of 
states, have previously been considered by Feenberg7 

in his perturbation formulas without repetitive ele­
ments. It may be noted that even his formulas can 
simply be derived by using (5), as has been shown by 
Feshbach.o Here we will now consider some special 
cases of (10), (12), and (13) in greater detail. 

(i) (A) = Single Nondegenerate State k 

In the case t~e whole class (A) consists of a single 
nondegenerate state, the whole system (5) is reduced 
to a single term, and the secular equation takes the form 

Ukkk_E=O. (15) 

According to (10) this gives for our approximate eigen­
value E=Ek 

This formula was first derived in another way by 
Brillouin,4 and we note that E can be computed by 
iteration. If we introduce the conventional form 
H=Ho+ V, we have 

{
Hmm(O)+ Vmm for m=n 

Hmn= 
V mn for m;;en. 

(17) 

Putting these expressions into (16), using iteration, 
and developing the right-hand member in a power­
series in V mn, we obtain the well-known perturbation 
formulas first given by Schrodinger.1 In this way not 
only the first- and second-order terms but even the third­
and fourth-order terms8 can be easily derived. How­
ever, we note that in general it has been recommended 

7 E. Feenberg, Phys. Rev. 74, 206, 664 (1948). 
8 The explicit form of the third- and fourth-order terms in 

Schrodingers theory may be found, e.g., in K. F. Niessen, Phys. 
Rev. 34, 253 (1929). 
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1398 PER-OLOV LOWDIN 

to use formula (16) instead of the original Schrodinger 
formula, since (16) is simpler and seems to have better 
convergence properties. Equation (13) gives directly 
the best form of the corresponding eigenfunction. 

(ii) (A) = Class of Degenerate States 

Let us now consider the case that the eigenvalue 
problem (1) shows a degeneracy. This means here that 
a class of diagonal elements H kk are exactly or almost 
the same, i.e., 

(18) 

but for quantities of the first or higher orders. In the 
conventional theory it is recommended to treat the de­
generacy by performing linear transformations of the 
approximate wave functions 1/;,,(0) in such a way that 
the matrix H becomes diagonal with respect to the 
class of degenerate states, whereafter the ordinary 
perturbation formulas can be applied. This means that 

FIG. 1. Form of the-matrix. 

one first removes the degeneracy and then treats the 
perturbation problem. This theoretically simple pro­
cedure can often be rather complicated in the applica­
tions,9 and considerable simplifications have therefore 
been worked out by Van Vleck.l° 

The general process described in this paper gives 
another method of treating the degeneracy in a very 
simple and natural way. It takes things in the reverse 
order: first the perturbation problem, i.e., the influence 
of the states not belonging to the degenerate class under 
consideration, is treated according to formula (10), and 
then the degeneracy is removed by solving the secular 
equation corresponding to the system (12). For the 
latter step only algebraic methods are, in general, 
available. The coefficients e,. for the states in (A) are 

9 For a detailed description see, for instance, Kemble, Principles 
of Quantum Mechanics (McGraw-Hill Book Company, Inc., New 
York, 1937). 

10 J. H. Van Vleck, Phys. Rev. 33, 467 (1929) j O. M. Jordahl, 
Phys. Rev. 45,_87~(1934). 

determined from the linear system (12), and, finally, 
the remaining coefficients are found by using (13). 

The second-order approximation takes a particularly 
simple form in the method given here. According to 
(18) we have E~EA, but for quantities of the first 
and higher orders, and in the second-order approxima­
tion, (10) gives therefore 

B Hrna'Han' 
UmnA=Hmn+:E ---­

" EA-H"" 
(19) 

Since all these matrix elements are numerically given, 
the secular equation corresponding to (12) can be 
directly solved without any iterations. We have applied 
this method to the treatment of the one-electron wave 
functions in the MO-LCAO-theory of conjugated or­
ganic compounds; the results will be published else­
where. 

(iii) (A) = Class of Arbitrary States 

Let us for a moment assume that the system has 
naturally or arbitrarily been divided into two classes, 
(A) and (B), and that k is a nondegenerate state in 
(A). According to (10) we can first eliminate the sys­
tem (B), and using (16) we can then solve the per­
turbation problem (12). For the approximate eigen­
value E=Ek we get in this way 

Since the result must be the same as in (16), formula 
(20) gives one of the possible ways of regrouping the 
terms in (16); compare reference 7. 

Finally we will treat the case that our system natu­
rally consists of two independent parts (A) and (B) in 
mutual interaction. We will assume that the wave 
functions 1/;,. (0) have been chosen in such a way that 
the matrix H is diagonal with respect to (A) and (B), 
respectively (see Fig. 1). Since the elements H "p', for 
a and {3 both in (B), are then vanishing, the expansion 
(10) reduces exactly to its first two terms: 

B Hm"'H,,n' 
UmnA = Hmn+:E ---­

" E-H"", 
(21) 

It is also easily checked that the remainder in (9) 
vanishes. 

As an application we will consider a problem in the 
MO-LCAO-theory of conjugated compounds, let us say 
a mono-substituted benzene. Let H be the one-electron 
Hamiltonian for the 1I'-electrons and let I/; be the MO 
formed by LCAO from the six benzene 1I'-orbita.!s 
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1/11(0), 1/12(0), .. '1/I6(°l, and the 7r-orbital 1/17(0) of the 
substituent. The matrix H has then the form: 

Hll 0 IH17 

0 H22 IH27 

H33 IH37 

H= 1 

H66 IH67 
----- ----
H71 H72 H 73 •• ·H76 IHn 

The secular equation has been treated in the first 
approximation in the wave functions by Sklarll and by 
Herzfeld,12 and recently Matsen,13 using conventional 
perturbation theory, has shown that, for instance, E7 
is given by: 

6 IH7.12 
E7=H77+L--­

i=1 H77- Hii 
(22) 

This perturbation theory breaks down when H77 is 
close in value to any of the Hii.l4 

However, if we here apply formula (10) to a class 
(A) consisting of the only state 7, we get directly with-

out any approximation: 

(23) 

a formula which holds even when (22) breaks down. 
The energy E can be found by iteration, and we note 
that even the derivatives of E, which are of importance, 
e.g., in calculating the charge distribution, can be found 
by implicit derivation. This example shows that the 
methods developed here may be useful in the theory of 
molecules. 

Since Eq. (23) must be exactly contained in the 
secular equation Det(Hmn- EOmn) = 0, there must exist 
a more elementary way of finding this relation from 
the determinant itself. This problem will be treated in 
the next section. 

4. THE CONNECTION WITH THE THEORY OF 
BORDERED DETERMINANTS 

In the previous section we have treated problems 
which are closely connected with the theory of bordered 
determinants. Recently Dewar16 has given some useful 
transformations of determinants Det(H - E·1) when H 
has the same form as in Fig. 1. However, the general 
formula for the expansion of a bordered determinant 
was given already 1896 by Arnaldi.16 According to this 
formula,17 we obtain directly 

Hll-E IHl, n+!'" 

IH2, n+l'" 

HI, n+P 

H2, n+p 

I· ..... 
A+B 

H n, n+p = II (Hii-E) 
i 

H n+!, 1 Hn+1, 2'" 

. . . . .. ·····1 
H n+p , 1 Hn+p , 2'" Hn+p , n 1 

II 
HT181HTlS2112 

A B IHT812 A B HT2S1HT2S2 
1-LL +L L + ... 

r 8 (E-Hrr) (E-'-H88) n r 2 8182 (E-Hrlrl)(E-Hr2r2)(E-HsI81)(E-Hs282) 

11 A. L. Sklar, J. Chern. Phys. 7,984 (1939). 
12 K. F. Herzfeld, Chern. Rev. 41, 233 (1947). 
13 F. A. Matsen, J. Am. Chern. Soc. 72, 5243 (1950). 
,. See reference 13, footnote 9. 
15 M. J. S. Dewar, Proc. Cambridge Phil. Soc. 45, 638 (1949). 
16 M. Arnaldi, Giornale di Mat. Battaglini 34, 209 (1896). 
17 See, for instance, G. Kowalewski, Detcrminantentheorie (Leipzig, 1909), pp. 89-99, or T. Muir, Theory 0/ Determinants (Lon­

don, 1923), IV, p. 432. 
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\ 
FIG. 2. Schematic diagram of singly or tightly linked 

molecule parts. 

with r1<r2<··· <rp and Sl<S2<··· <sp. Formula 
(24) is given for p'5,.n, and the sign II II means that we 
take the absolute value of a determinant. This relation 
can also be easily derived by using Laplace's expansion 
theorem with respect to the first n rows of the given 
determinant. We note that our formula (23) is con­
tained as a special case for p= 1; compare also Dewar.15 

Putting the second factor in (24) equal to zero and 
multiplying the relation with the factor (E-Hkk), we 
get again a formula analogous to (16) and (20) but this 
time containing only a finite number of terms. 

If our system is a molecule, the linkage between its 
two parts is of special interest. Let us as an example 
consider the one-electron wave functions. The MO if; is, 
according to Dewar's terminology, formed by LCMO 
(= linear combination of molecular orbitals) from the 
given MO if;m (0), which again are formed by LCAO from 

Hr1S1 Hr182· •. H rlSk 

Hr281 Hr2s2· •• Hr2sk 

Hrk81 HrkS2·· • Hrksk 

aqiJolt aqPo2t· .. aqPok t 
L'lJ. L58 

L L ar2JJlt ar2JJ2t· •. ar2JJkt 
I'lJJ2'" Ilk VlJ'2'" Jlk 

arkl'lt arkPo2t· .. arkPok t 

the given atomic orbitals CPPo: 

if;m (0) = LPoCPPoaPom. (25) 

Introducing the matrix elements of H with respect to 
this AO, 

SjPov= fcpPo*HCP.dr (26) 

we get directly 
Hmn= LPovamPotSjl'vam (27) 

or 
H=atSja. (28) 

The last relation gives the MO-matrix H expressed in 
the AO-matrix Sj. 

With respect to the atoms, the molecule may now con­
sist of two natural parts (2l) and (58), which may be 
separated or which may have atoms in common (see 
Fig. 2). From the AO in (2l) we will build up the MO 
in class (A) in such a way that the operator H will be 
diagonalized; from the AO in (58) we will then form the 
MO in class (B) in the same way.t We will further in­
troduce linkage classes L'lJ. and Va by the definition 
that an AO CPJJ in (2l) belongs to L'lJ. if, for at least one 
AO cpv in (58), the matrix element SjJJv in (26) is essen­
tially different from zero; the class Da is defined 
analogously. 

Using a well-known theorem, we can now expand the 
determinants in (24) in sums of products of deter­
minants of the three factors in (27): 

SjJJ1V1 SjPo1v2· .• SjiJolvk aV1S1 aV1S2· .• aV1Sk 

SjJJ2V1 Sj1'2v2· •. Sjl'2vk aV281 aV2S2· .• aV2Sk (29) 

SjPokV1 Sjl'kv2· •. Sjl'kVk aVk81 aVkS2· •• aVk8k 

where J.l.1 < J.l.2 < ... <J.l.k and VI < V2<· .. Vk. The terms in (24) can now be factorized, and, introducing the notations 

A 

Q:lJL2"·'J.l.k'= L 
PIP.2" 'p../t; Tlr2" ·rk 

B 

Q~V2"'Jlk = L: 
1II'"l"'p/c' 81 82"'Bk 

l

aPo1'rl .a:-'1:r2:·:. ~1'~'r~ll~r1:1!. ~r~Po2!·"· • • ~r1~k!1 
aJJk'rl aPok'r2··· al'k'rk arkiJolt arkI'2t··· arkPokt 

I 
~vl.81. aV182··· aVISk II as1v1't as1v2't·· • aS1vk't I 
aVk81 aVk82··· aVk8k a8kv1't aSkv2't··· aSkvk't 

we can write the determinant D in the left-hand side of (24) in the form 

t We note that the MO in the total system (A+B) must be chosen in such a way that they are linearly independent. 

(30) 
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+( -l)p 
p,lJ.l.2·· "P.p 
J.l.l'P.2'··oJlP' 

.~1'~"2:·: . ?~l"~IQ~"' ... ".I?".l'~l'. ~~1':2:·~·. 
~PPP2··· S)JJpJ'p "1'J12"""'/ S)Jlplpl' S)vp IJJ2'··· 

(31) 

If the linkage between (21) and (m) is of a simple type, 
this expansion will reduce to a few terms. Formula (31) 
may be considered as a generalization of the formulas 
given by Dewar.16 We note that if the coefficients en for 
the class (A) have been determined, we get directly the 
coefficients for the class (B) according to (13) and (21): 

to give a sufficient condition for its convergency.18 The form of 
the series also indicates that there might exist another simple 
derivation, and here we will therefore try to give a more direct 
derivation of (9) by using operator calculus and symbolic ex­
pansions.19 

In order to separate the secular equation Hc=Ec into two parts, 
we write the quadratic matrix H and the column matrix c in the 
form 

(32) H= [:* (33) 

The example treated here is concerned with the one­
electron wave functions, but we wish to emphasize 
that the general perturbation theory, contained in the 
formulas (10), (12), and (13), even can be applied to 
the molecular wave functions. 

In conclusion, we wish to remark that, even if the 
methods described here were partly known previously 
in connection with special problems, for instance in 
the radiation theory given by Gora,6 a general treat­
ment has not yet been published. We have given not 
only a simple derivation of the conventional perturba­
tion theory, but also a new treatment of the problem 
of degeneracy and of the general problem of splitting 
the secular equation. 
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APPENDIX. SYMBOLIC DERIVATION OF THE 
BASIC FORMULAS 

The right-hand member of (9) is simply a geometrical series 
in the matrix h' belonging to the class (B), and it is therefore easy 

and then we obtain 

{ 
Aa+(3b=Ea, 

(3*a+Bb=Eb. 

Solving b from the latter equation, we get 

1 
b=--R*a E-B" , 

and 

(34) 

(35) 

(36) 

If we confine the indices of UA to the class (A), we have therefore 

UAa=Ea, 

1 
UA=A+(3E_B(3*· 

(37) 

(38) 

It is now immediately seen how the geometrical series in (9) 
arises. Dividing B in its diagonal and nondiagonal parts, Bd and 
B', and expanding (E-Bd-B')-I in a power series in B', we 
obtain 

UA=A+(3_1_(3*+(3_1_B,_1_(3*+"" (39) 
E-Bd E-Bd E-Bd 

which is nothing but (9). Equation (37) gives then (12), and Eq. 
(35) gives (13). In this way all our basic formulas are derived. 

18 See, for instance, Courant-Hilbert, Methoden der Mathe­
matischen Physik, I (Verlag. Julius Springer, Berlin, 1931), p. 16, 
footnote 1. 

19 Compare Gora, reference 5. For the symbolic treatment given 
here, the author is indebted to a discussion with Dr. G. Goertzei, 
Columbia University. 
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