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ELECTRONIC STATES AT THE SURFACES
OF CRYSTALS

I. THE APPROXIMATION OF NEARLY FREE ELECTRONS

BY E. T. GOODWIN

Received 27 January 1939

INTRODUCTION

1. In the electron theory of metals as first developed the assumption is made
that the "free" electrons of a crystal can be considered as moving in a field that
is constant throughout the interior of the crystal. A better approximation is to
consider this field to be periodic with the periodicity of the lattice. The major
effect of this lattice periodicity is to divide the energy range into bands of allowed
levels, or "Brillouin zones", separated by gaps within which there are no elec-
tronic levels, the "forbidden bands"f-

At first it was found necessary to assume a perfect periodicity with a consequent
disregard of the presence of the surface. Subsequently, however, it has been found
possible to study simultaneously the effect of both the periodic field within the
crystal and the surface bounding it. It is found that from the bands of allowed
levels there separate out "surface states" in which the electrons are bound to the
surface of the crystal and may be pictured as rippling tangentially along it. The
existence of these states was first realized by TammJ, who represented the metal
by a one-dimensional Kronig potential field. Subsequently they were found by
Rijanow§ in a consideration of the eigenfunctions of a thin metal strip. Finally
Maue||, using a Fourier expansion for the lattice field and applying the approxi-
mation of nearly free electrons, was able to indicate the effect of these states on
the electrical conductivity of a metal.

Of this work that of Maue is the most recent and the most general, but even
the results of his paper, particularly in the case of a real three-dimensional crystal,
are not given in a form readily applicable to further work. The important role
of the surface in present-day problems suggested that such a form should be
obtained. By a suitable extension of Maue's method of approach I have been
able to obtain explicit formulae for the wave functions and the corresponding

t See, for example, Mott and Jones, The theory of the properties of metals and alloys
(Oxford, 1936), chap. n. For convenience, future references to this work are written in the
form"M.J."

t Tamm, Phys. Z. Souojet. 1 (1932), 732.
§ Rijanow, Z. Phys. 89 (1934), 806.
|| Maue, Z. Phys. 94 (1935), 717.
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energies of the surface states in terms of the constants of the crystalline field and,
moreover, the method is applicable to any type of crystal lattice. We employ the
approximation of nearly free electrons and consider first a simple cubic crystal,
subsequently extending the results to a general crystal lattice. Though this
method involves a slight expansion and some repetition of the work, on grounds
of clarity it appears preferable to a direct consideration of the more general
problem and a subsequent deduction of the simpler one as a particular case. We
may add that a certain amount of Maue's work is repeated here but that this
appears to be necessary for the sake of completeness.

THE SIMPLE CUBIC CRYSTAL

2. The potential field of a simple cubic crystal, bounded by a surface in the
yz-plane, may be represented by the triple Fourier series

(!)
= 0 (*>0),J

where r = (x, y, z) is the position vector of the electron and c is the lattice constant.
Also we assume that Vn is real and accordingly that Vn = F_n, since F(r) must also
be real.

The wave equation of the electron is then

0, (2)

where /c2 = 8nhn/hz.

Following Bloch, we assume that the wave functions within the crystal have the

tfr = eik-Iu(r), }

where «(r) = 2>n
e2™n-r/c, f (3)

that is, u(r) is a Fourier series similar to that representing the potential function.
It should be noted that the summations extend over all possible values of the
vector n, the components %, n2, n3 taking all positive and negative integral
values.

Substituting (1) and (3) into (2), multiplying by e-2nin-Ile and integrating over
the unit cell, we obtain the following series of relations between the coefficients un

- (k + ^ n j 2 + K*{ W - Fooo)] uD - K*XVB_n.uu. = 0, (4)

which hold for all possible values of n.
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Eliminating the uB, we obtain the determinantal equation

IIA,<»"II=O, (5)

where Dn,n. = - (k + ^ n ' ) ' + /c2( W - Fooo),
(5a)

For given W, k2, k3, (5) may be regarded as an equation for kv

Now it is well known that the energy W, as a function of kv k2, k3, is dis-
continuous across certain planes in k-space, namely, those whose equations are

%&1 + K,2&2 + tt3&3 = -(n\ + nl + r4). (6)
c

The energies are thus divided into "Brillouin zones" by forbidden bands within
which there are no electronic states. The forbidden band corresponding to (6)
consists of the energy range

Wk - | Vninin31 < W - Fooo < Wk + | Vninina ]
1 \ (6a)

W {k\ k\ kl) jwhere Wk

We refer to this as the (nx, n%, n3) forbidden band or, simply, {nx, n2, n3) band.
Mathematically this implies that, given an energy W satisfying the inequality

(6a), it is not possible to find a corresponding wave number k with all its com-
ponents real and such that the equation (5) is satisfied. At least one of the com-
ponents, kx say, must be complex of the form p ± iq. This would yield wave
functions proportional to eTax which could not represent physically possible
states for an infinite crystal, since they would be unbounded either at + oo or
at —oo.

For a crystal bounded on the right by the plane x = 0, however, a wave func-
tion proportional to eQX within the crystal (i.e. x < 0) is physically possible. If we
represent such a wave function by ijri and let ijro be the wave function of a state
of the same electronic energy for x > 0 then, provided that we can satisfy the
boundary conditions at x = 0, the wave function

f i i ( ) |

represents a possible electronic state. Moreover, rfr decreases exponentially as
we leave the surface in the direction of either the inward or the outward normal,
that is, the electron is bound to the surface and ft represents a surface state.

The boundary conditions for the smooth fitting of the wave functions are

{fo)x=0 =



208 E. T. GOODWIN

which, since we may multiply either wave function by an arbitrary constant,
reduce to the single condition

dx I dx/x=0

2-1. Restrictions on the available bands. In this section we show that such
surface states exist within the (n±, n2, n3) band only when n2 = n3 = 0, i.e. within
the forbidden bands which correspond to those planes of energy discontinuity
(6) in the k-space that are perpendicular to the ^-axis. The particular form of
this result depends, of course, on our choice of the yz-plane as the crystal boundary.

Since we are considering a crystal of infinite extent in the y, z, directions the
components k2, k3 of the wave number k must both be real. Given such real com-
ponents, denote by k[ the value of kt given in terms of them by the equation (6).
Then we have seen that, for an energy W lying in the range

wk-\vnin2n3\<w<wk+\vnin2na\,-\

where W'k = I (*£" + k\ + k\) + Fooo,j
 (8 )

the corresponding solutions of (5) for fcx are complex of the form p ± iq. Accord-
ingly, employing the approximation of nearly free electrons, we seek to determine
a solution in the formf

Substituting in the wave equation and neglecting all the Fourier coefficients
Vn other than Vooo and VniTl^3, that is, proceeding exactly as in the usual analysis
for the determination of the Brillouin zones, we obtain the two equations

do,

Thus
{*W-F000)- k\-kl-(p-iqf}

(11)
since V_n _n _n —Vnnn.

t See, for example, M.J. pp. 59 et seq.
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This equation may be considered as a quadratic for /c2( W —1^00). We require its
roots to be real and hence it follows that

= -[K*(W-V000)-kt-lc*-P* + q*]/p = 5. (12)
Substituting from (12) into (11), we obtain

in3 = 0.

Thus 0<̂ <2^ and ^ ^ r ^ f ^ , (13)
^ c p(2nn1fc-p)

From (12) and (13) it is then possible to obtain the two roots for K2(W — V0Q0) in
the alternative forms

From the equivalence of these expressions we deduce that

and also that

+

whence

/ 2TT711\2

\P ^ j >
\2

Since k2 and A;3 are unrestricted, this last equation leads immediately to the
conclusion that we must have n2 = n3 = 0 in order that a surface state of the type
given by (9) should exist in the (%, n2, n3) forbidden band.

The proof just completed might at first sight seem to preclude the possibility
of mathematical solutions of the equation (5) within a band for which n2 and n3

are not both zero, though such solutions must clearly exist. To determine them,
however, we must combine the expression (9) with a similar one in which q has
been replaced by — q. Such an expression would then correspond to an energy
lying within the forbidden band as required but would not represent a physically
possible state in view of the exponential increase as a;-* — oo.
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2-2. Surface states in the (I, 0, 0) bands. We proceed to a detailed con-
sideration of the (nl3 0,0) bands. For convenience we now write I in place of nlt

V, for — T îOot a n d Vo for — T̂ ,oo. Vo is then positive since VQ^ is essentially negative
for a real crystal.

Then, given k2, k3 (real) and W lying in the range

where W'i =

the solutions of (5) are of the form p ± iq.
We attempt to determine a wave function of the form

fa
Then, as before,

{ i r k l k l ^W V^ ^ 0,1

The reality condition is now p = nljc,

while the expressions (14) are replaced by

K\W + V0)-k\-k\ = (wllc)*-q*±<l{K*Vi-4q\nllc)*l, (18)
both of which solutions for the energy W lie within the band (15). We have
accordingly only to satisfy the boundary condition (7) in order to obtain a
surface state.

Corresponding to the roots (18) we have, from (17),

a = eiS, 0 = e-iS, where 8 = i sin-* = ^ p , (19)

and thus fa oc e^
x+ik^^lk^1 cos (tffo/c + 5). (20)

Also, from (19), (18) and (17),

{2nilq/c ± ^[x^Vf — 4q2(nl/c)2]} eu + KW^-™ = 0,

whence, equating the real part to zero, we have

(2nlqjc) tan 8 = KiVl±»J[KiV% — 4q2(nl/c)2], (21)
upper and lower signs of (21) corresponding to upper and lower signs of (18).

Now for the wave function outside the crystal we have

since the state is one of energy W.
The boundary condition (7) of smooth fitting for fa, fa then gives

- J{k\ + k\ - KW) = q - (nl/c) tan 8. (23)

N.B. Thus F, here replaces — V, in Maue's work.
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We see immediately that if TJ< 0 then, from (21), tan#<0, the right-hand
side of (23) is positive, and so the equation cannot be satisfied and there is no
surface state. If Vt>0, however, it may be possible to satisfy the equation (23).
Accordingly, from now on, only the case of Vt positive will be considered.

Squaring (23) and substituting from (18), we have

KW0 - (nl/c)* + q2 + VlW? - 4q2(nl/c)z] = q2- 2q(nl/c) tan 8+(nl/c)2 tan2 8,

whence, by (21), (nl/c)2aecz8 = *:2(^+T0. (24a)

Also, from (19), sin d cos 8 = J sin 28 = g ^ l ^ . (246)
K V

The equations (24) combine to give

and so, since q is positive,

{*ll*n (25)
vi

The energies given by (18) are thus solutions of one of the equations

Direct substitution shows that only (26 a) satisfies (23), both sides of that
equation then reducing to — Voq/Vi. Equation (266) actually arises through
squaring, and it corresponds to the negative root for q in (25). The quantities
8, q and the energy W corresponding to the surface state are thus determined by
the relations (24a), (25) and (26 a) respectively.

2-3. The normalization factor and summary of the results. The results of the
preceding paragraph may be summarized as follows. Corresponding to any
given k2, k3 and any positive integer I such that Vt is also positive, there exists
a surface state of energy W given by

ffi^J ^ (27)
The corresponding wave function may be written in the form

i/rk k =tlr- = Neqx+ihiV+ik^cos(rrlxlc + 8) (x<0) )

= \jr0 = N cos 8e-v°<lxtvi+iktv+iki? (x>0),)
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where q = JL J[K*(V0 + TJ) - M/O

° ^ f (29)

and 2V is the normalizing coefficient.
For the determination of N there is the usual condition

r r r
J — CO J — CO J — 0

where ^ V V ' f̂czfea both correspond to the same value of I, and #(&' — A;) denotes
the Dirac ^-function. Strictly ^-'s corresponding to different values of I should
be orthogonal, and (30) should include the factor Su. on the right-hand side.
Since the wave functions are obtained here by an approximate method, however,
they are not quite orthogonal, which is of little importance, since any actual
calculation will almost certainly be concerned with wave functions corresponding
to the same value of I.

Equation (30) reduces immediately to

4n21 N |21 I e*x COS2(TTZX/C + S) dx + cos2 S f °° er^^^i dx\ = 1.

Carrying out the integrations and substituting for q and S, we obtain

which completes the evaluation of the surface states in the case of a semi-infinite
simple cubic crystal bounded by the i/z-plane.

We note finally that the a;-factors of the wave functions do not contain the
numbers k2, k3 at all. This fact should simplify greatly calculations involving
these wave functions, since such calculations almost always involve integration
over ranges of these wave numbers.

2-4. The distribution of the electronic states. In most applications of the
electron theory of metals it is necessary to know which states are occupied at
the absolute zero of temperature and which are excited electronic states. The
appearance of surface states within a forbidden band must coincide with the
disappearance of an equal number of levels from the allowed bands on either side,
and it is accordingly desirable to know from which of these bands the levels
disappear.

With this end in view, Maue considered the simple case of a finite chain of 2N
atoms, equally spaced along the X-axis and terminated at the points x = ± Nc.
There is no lack of generality in considering such a case and we here reproduce
his work in order to render our discussion complete.
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Our previous results show that, provided that the corresponding Vt is positive,
there are two "surface states" with energies lying in the ith forbidden band,
one for each "surface" or end of the chain. Maue found that corresponding to
these states two normal electronic states disappear from the allowed bands; one
from each side, namely the highest state of the lower (Ith) allowed band and the
lowest state of the upper (1+ l)th band. The method of procedure is as follows.

Assuming a wave function of the form
ft1 = e^cc+fie-2"^) (32)

and substituting into the wave equation we obtain

together with the corresponding ratios of the coefficients

(34)
0 2(nl/c) (q - nl/c) + VI*4 F2 + 4(TTZ/C)2 (q - nl/c)2]'

Here we have, as usual, neglected the effect of all but the Ith Fourier coefficient Vt.
The complex conjugate wave function ftz = ft* gives rise to the same energies

(33). The most general real wave function that can be formed by combination of
ftx and ft2 is

W
= a cos (qx + S)+/S cos [(2nl/c -q)x-S]. (35)

That the wave function within the crystal should be real is required by the
boundary conditions. These may be written as

ft'/ft = -J(-K2W), for x = Nc, (36a)

and either (i) ft' = 0 or (ii) ft = 0, for x = 0. (366)

(36 a) is the condition for smooth fitting at one end of the chain, and (366) corre-
sponds either to symmetry or to antisymmetry about its midpoint. Thus

(i) ft = a cos qx+fi cos (2nl/c — q) x,\
(37)(ii) ft = i fi(2l/ )

whence (36a) becomes

-U-^rof]^qNc=-^(-K2Wl
1 a+P J | (38)

(ii) [ M ^ J
In these expressions ̂ /( — K2 W) varies very little with q while ft is small except

in the neighbourhood of q = nl/c. Accordingly in general there is one root of each
PSP XXXV, 2 14
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equation within each range of q of length n/Nc. When q ~ nl/c, however, some of
these roots disappear. Thus if q = irljc — e the equations (38) reduce to

J

(ii)

The first of these has a solution within the range 0 ^ e ̂  n/Nc, but there is no
corresponding solution of the second, since ecoteNc-t-l/Nc as e->0. Similarly
if q = nl/c + e we obtain

and here there is one solution of (ii) but no solution of (i) in the range 0 < e < njNc.
Thus we deduce that the surface states within any forbidden band arise

one each from the allowed bands on either side, a result which may very readily
be extended to the three-dimensional case. Finally we observe that the dis-
appearing states are the symmetric lowest level from the upper band and the
antisymmetric highest level from the lower band.

THE GENERAL CRYSTAL LATTICE

3. The previous theory, derived in the case of the simple cubic crystal struc-
ture, may now be extended to apply to a general lattice. This extension is im-
mediate and the work runs parallel to that of § 2, differing from it only in analytical
details.

Let alt a2, a3 be the vectors forming the unit cell and b1( b2, b3 those forming
the reciprocal lattice. Thus , _ *

Then the potential at any point r = a;1a1 + a;2a2 + a;3a3 may be expanded as a
Fourier seriesf „ . .

where n = TO^ + n2b2 + n3b3,

and thus (n. r) = nxxx

f In conformity with this expression we could have •written (1) without the lattice con-
stant c appearing in the denominator of the exponent. The methods here adopted, however,
are so chosen to be as closely as possible in agreement with the notation of M. J.
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We consider a semi-infinite crystal bounded by the face xx — 0. This restriction
of assuming the surface to be one of the principal lattice planes is removed in § 4.
The potential field is then

\ (39)

and the wave equation, just as before, is

VY + K\ W - F(r)] f = 0, |

but where now vsbjj—|-b2-^—+b3-^—. 1

Assuming a solution of the form

f = ell[-r«(r), |
where u{r) = ^ -• -*»*»-* ' ' '

n

we again obtain 11 Dn.n.. 11 = 0, (42)

where now Dn,n, = (42a)
/

The planes of energy discontinuity are given by

n . k = 7m2, (43)

the corresponding forbidden band being

1 \ (43 a)
where ^ ^ | k | 2 j

The condition for smooth fitting of the wave functions is

^ }

and we find again that surface states can exist only when »2 = n3 = 0. We proceed
now to the proof of this.

3-1. Restrictions on the available bands. Given &2, kz (real) we denote by k^
the corresponding value of kt given by equation (43) and also write

Then, if we are also given an energy in the range

W'k-\Vn\<W<W'k+\Vu\, (45)

the corresponding solutions of (42) for kx are complex of the form p ± iq.
14-2
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Attempting to determine a wave function of the form

(xx < 0),

we are led to an equation analogous to (11)

x [*2( W - Fooo) - {(p - iq - 2nni) bx + (k2 - 2nn2) b2 + (k3 - 2nn3) b3}
2]

= K*VI (46)

In order that K2( W — Fooo) should be real we must have

FQQQ) -{(p- 2nni) b t + (k2 - 2nn^ b2 + (k3 - 2nn3) b3}2

b x . [(p — 2nn1) bx + (fc2 - 27m2) b2 + (k3 — 2nn3) b3]

^ ( T f - F 0 0 0 ) - ( y ^ + ̂ ^ + ̂ ^ ^ + g^l
b i - ^ i + i ^ + ̂ ba) • V ;

Substituting (47) into (46) we obtain

(48)

Substitution of (48) into (47) then yields alternative forms for K2(W — ^ O O ) ,
analogous to (14a) and (146). The equivalence of these expressions requires that

and (p\ + k2b2 + k3b3)
2 = {(277% -p) bx + (2TT«,2 - k2) b2 + {2nn3 - k3) b3}

2.

These two conditions in turn give rise to the equations

= 0,/

which cannot both be satisfied for arbitrarily chosen k2 and &3 unless n2 = n3 = 0.
p is then given by

b i • {2>bi + ̂ b 2 + fc3b
3} = 7r%b!> (49)

which we may note is the form taken by (43) with n2 = n3 = 0. There are thus the
same restrictions as before on the bands available for real electronic surface states.

3-2. Surface states in the (1,0,0) bands. Considering now the (nv 0,0) bands
in some detail, we again write I, Vt and Vo for nv — Vm and — V000 respectively.

Given k2, k3 (real), p in terms of them by (49), and W lying in the range

wz-\v,\<w<wz+\v,\, ]
1 f (50)

where W ^ ' = - ( # b + A;b + / f c b ) * F j
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then the solutions of (42) for kx are of the form p ± iq. We accordingly seek to
determine a wave function of the form

As in § 2-2 we find that

K\ W + Vo) - (pbt + k2b2 + k3b3)* = -qb\± V(^Ff - WqWb\), (52)

while a = eiS and /? = e^«, where 8 = J s i n - 1 1 ^ ^ ) , (53)
\ K "i I

and thus fa oc e
{^-nI>^xi+ik^+ilc^ cos {jrlxx + d). (54)

We also find that 2 ^ 6 ? tan $ = KW{ ± J^Vf - 4n2qH2l>i), (55)

upper and lower signs of (55) corresponding to upper and lower signs of (52).
In the above equations we have written 6X for | bx (, etc., and thus b | = b\.

For the wave function outside the crystal we take

fr0 oc e
{i&-r'l)~w)xi+ikixz+ik*x3,

the corresponding energy being given by

it2 W = {(p - nl + iw) \ + &2b2 + £3b3}
2

by the relation (49). Thus

ijr0 oc e{^-"Q-vl®bi+ktb*+k3b^-"il2bi'-K2™bl)xi+ik&*+ik!>X:>. (56)

The condition (44) for smooth fitting is then

^ x + k2b2 + i3b3)2 - TT2/262 - /c2 W] = q - nl tan S. (57)

I t follows as before tha t a surface state cannot exist in the (1,0,0) band unless
Vt> 0. If we assume this to be the case, (55) and (57) combine to give

772Z262 sec2 S = K2(V0 + V,), (58)

and hence, from (53), qbx = = ^ V ^ 2 ( F o + V,)~"Wf]- (59)

Again, of the two energies given by (52) only one satisfies (57), and for this

(60)

To this energy corresponds, for any given k2, k3 and positive integer I such that
Vt> 0, a surface state whose wave function may be written

Vi + 8) (*i<0),l
(61)

= xlra = N c o s S e M P - ^ - r "^x~ "u~ IJ1-~ ' - " '
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where N is the normalizing function,

a n d '

The normalizing condition (30) now takes the form

where the element of volume dv = (^a^a^) dx1dx2dxa, (a1a2a3) denoting the
value of the triple product (ax. [a2A a3]), and the range of integration of each
variable being from — oo to +00. The evaluation of this integral leads to

1 ' n*(&1 a2 a,) nH\ 1 + 2VJVO)'

thus completing the determination of the surface states for a semi-infinite crystal,
of arbitrary lattice structure, the surface of which lies in one of the principal
planes.

CRYSTAL SURFACE IN AN ARBITRARY CRYSTAL PLANE

4. In the previous sections we considered the case of crystals with a surface
parallel to the x2x3 plane of the unit cell. We obtained surface states with energies
lying in certain of the (1,0,0) forbidden bands, namely those for which Vt> 0, that
is, for which the corresponding Fourier coefficient Vm is negative. We may remark
here that, if the corresponding structure factorf is zero, then Vt = 0 and there can
be no surface state, as is otherwise physically obvious since there is no (1,0,0)
forbidden band.

We now consider the more general case and show that if the crystal surface
consists of a section in the crystal plane

p1x1+p2x2+p3x3 = 0, (64)

Pv Pi> Pa b e m g integers with no common factor, then we obtain surface states
with energies lying in the {lpx, lp2, lp3) forbidden bands, I being a positive integer,
provided that Vlp >lp lp is negative.

The property just asserted is most readily proved by a simple transformation
of axes, which corresponds physically to making an appropriate different choice

t Cf. M.J. p. 154.
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of the unit cell. We define the coordinates £l5 £2, £3 in terms of the original xvx2, x3

by the relations

(65)

where the p's are denned in (64) and the q'a and r's are integers chosen so that

Pi 9i r

Ps

= 1. (66)

This choice is clearly possible, and in several ways. We may take, for example,
qv q2 to be integers so that p1q2—p2q1 = m3, as in the usual process of determining
the H.C.F. w3 oipx, p2, and similarly for m^ w2. We then require that

This can easily be satisfied since no two of the TZJ'S have a common factor which
would, if it existed, be a factor common to all the p'a.

Expressing the potential function in terms of these coordinates, we have
V(f\ V V o2wt(n1x1+»2a;2+»i3X3) (({7}

where

(68)

(69)

We can solve the equations for the v's, obtaining by (66),

v, = n2

Pi ni

Pz n2 "3 =

Pi

P*

nx

n2

n3 <?3 r3 P3 n3 T3 P3 ?3 n3

It is clear that the numbers v are integers in 1-1 correspondence with the
integers n. It follows that the summation of (68) is over exactly the same range
as that of (67). Moreover in the new coordinate system the plane of the surface
(64) has the equation E,x = 0, which corresponds to xx = 0 in the work of § 3. This
work may now be taken over completely and we see that we now have surface
states corresponding to the Fourier coefficients T̂ ~/jO,o whose energies lie in the new
(I, 0, 0) forbidden bands. From (69) we see that v s f t 0, 0) corresponds to
n = ij/p-i, lp2, lp3)

 a n ( i so> reverting to the original nomenclature, we have surface
states corresponding to the coefficient Vlpiilpttlpt whose energies lie in the
(lpv lp2, lp3) forbidden bands. The condition for their existence is Vlpu[PtjPa < 0.
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The wave function in the Ij-space is of exactly the same form as the previous
wave function in the x-space. Indeed all the previous results may be taken over
directly in this form. If it is so desired they may then be written in terms of the
original coordinates by means of the equations (65).

This completes the determination, on the nearly free electron approxima-
tion, of the formulae for the surface states in the most general case of a semi-
infinite crystal bounded by one plane face.

SUMMARY

It is shown that in a crystal there exist states in which the electron is bound
to a surface of the crystal and has an energy lying within a forbidden band. The
wave functions and energies of these states are calculated, on the nearly free
electron approximation, in terms of the constants of the crystalline potential
field, which is represented by a triple Fourier series having the periodicity of the
lattice. The method is shown to be applicable to a general crystal having a surface
parallel to any one of the crystal planes.

In conclusion I wish to thank Prof. J. E. Lennard-Jones for his helpful
interest in both this work and that of the subsequent papers of the series.
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