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ELECTRONIC STATES AT THE SURFACES
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III. THE APPROXIMATION OF TIGHT BINDING:
FURTHER EXTENSIONS
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INTRODUCTION

1. To complete the discussion of the electronic states at the surfaces of
crystals we consider in this paper two extensions of the previous work. First,
restricting ourselves once again to the interaction of atomic s-states, we determine
the wave functions and energies of both the normal and surface states of a simple
cubic lattice. The analysis involved is a direct extension of that of paper II for a
finite linear chain and can be carried through without difficulty.

The second extension arises from the fact that it is only legitimate to consider
the s- andp-states separately, as was done in II, provided that the width of the
allowed bands is small compared with the separation Et — Eo of the atomic states.
Here we consider the case when this is not so and the s- and p-states are
accordingly degenerate!. We again restrict ourselves to a linear chain of atoms,
but the complexity of the problem is such that we have to take this chain to be
semi-infinite. We find accordingly that we can at best indicate how and when
surface states are likely to arise rather than obtain explicit formulae for their
wave functions and energies.

THE SIMPLE CUBIC CRYSTAL

2. We consider a simple cubic crystal consisting of a block N atomic layers
thick in the a;-direction but extending to infinity in the perpendicular directions;
or more accurately we might say that we neglect the end effects in these directions.
The atoms are thus situated at points whose position vectors are

Tlmn = [-c(l-l),cm,cn], (1)

where m and n are unrestricted integers while I takes the values 1,2,..., N.
We consider only the s-states of the individual atoms. Eirst let us denote by

H, the Hamiltonian for an electron moving in the field of the Ith layer of atoms
only, that is, the infinite layer of atoms whose positions are given by rlmn with

t Cf. M.J. pp. 72 et seq. (see reference in paper I, p. 205).
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unrestricted integral values of m, n. Then, approximating to the metallic potential
field as in II, § 4, equation (23), that is, representing it by the sum of the potential
fields of the individual atoms, we find that this Hamiltonian has the form

The corresponding wave functions of electrons moving in the field of such a two-
dimensional array of atoms are solutions of the wave equation

(Hl-E)rfr = 0. (3)

Such solutions are found, as in the usual case of a three-dimensional crystal, to

be of the typef ^ = tfiS e « + » ^ ( | r - r t o m |), (4a)

with the corresponding energy, independent of I, given by

Ekika = E0 — a — 2y(cos ck2 + cos ck3). (46)

The Hamiltonian for the complete system is

H = -hV*+ £E/(|r-rten|), (5a)
Lrn Imn

and the corresponding wave equation is
(H-E)W=:0. (56)

Now two states of the type (4a) but with different k2, k3 are non-combiningJ.
We accordingly approximate to W by a series of the form

^ J U ^ W (6)
Substituting (6) and (5a) into (56) we obtain a series of relations between the
coefficients a,, of the type

XaLE-E^)- ( S U(\r-rlmn\)-Z £7(|r-r;mn|)rUfc2fcs = 0. (7)

Now if Nt of (4 a) is chosen so that, neglecting the overlap integral S, we have

then we see that the integrals analogous to II, equations (6), that is, with
replaced by \jrlk k , have exactly the same values as the integrals II (6) themselves.
Thus it follows that the new recurrence relations and end conditions only differ
from those of II in the replacement of Eo by E^^. All the succeeding work of
II, § 2, can therefore be taken over directly with no modification other than this
substitution together with that of tfrlk fc> for <f>{pt), and the introduction of £•

mn
t M.J. p. 66. t M.J. pp. 59 and 72.
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In this way we obtain two series of states

S= 0 mn .
\ (8a)

Wekk =r£?,wxi\N-\-8)0e**"**«*>0(|r-

the appropriate energy being in each case
E = Eo —a+ 2y (cos d —cos ck2 —COB ck3), (86)

and the values of 6 being exactly as before. Thus 0 < 6 < n.
The energies (86) for the range 0<6<n clearly give the usual band of energies

forming the first Brillouin zone for a simple cubic crystal. Indeed if 6 is replaced
by n — chx the forms of the expressions are identicalf. This zone now contains
only M(N— 2) possible states%, where M is the number of atoms in a monatomic
layer parallel to the x-axis, i.e. M = £ 1.

mn

The other 2M states are now surface states of the form

(9a)

where either the upper or the lower sign is taken throughout. The energy appro-
priate to these states is

E = Eo — a + 2y(cosh£-cosc&2-coscfc3), (96)
which again lies outside the zone, since cosh £ > 1 > cos 8. The range of k2, k3 is
as usual from — njc to n/c.

We observe that, if we neglect the electron spin, the number of surface states
corresponding to any given surface is equal to the number of atoms in that
surface. This result is also true for the case of nearly free electrons discussed in I,
as is easily seen if we consider the density of states in phase space§. If we con-
sider a finite cube of metal we obtain "surface states" corresponding to all six
surfaces,'' line states'' corresponding to all twelve edges and finally'' point states''
corresponding to the eight corners.

DEGENERACY OF THE ATOMIC 5- AND JJ-STATES

3. When the s- and ^-states are to be taken as degenerate we consider the
case of a semi-infinite linear chain and, as in II, concentrate on the relations
between the coefficients of the wave function. We solve these as a set of recurrence
relations and hence we are able to predict the existence of a surface state lying

t Cf. M.J. p. 68, equation (58-1).
j Here, as in I and II, we neglect the electron spin which has the effect of doubling the

number of possible electronic states.
§ Cf. M.J. pp. 56 and 69.
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above the higher allowed band with another lying between the two bands but
with no such state below the lower band. It is, however, impossible to find the
energy of either of these states.

3-1. The allowed bands. We take the atoms to be situated at the points
r ,= (-rf,0,0) (1 = 0,1, ...,oo).

For such a chain only the ^-states combine with the s-states. Denoting the
^-states by ^(p/), we therefore write for the zero-order wave function

Si0ofo) Wi(P*)
Z=0 1=0

Applying the perturbation theory and neglecting the interactions of all but
nearest neighbours, we obtain an infinite number of relations between the
coefficients ax and b{. These we write in the form of the recurrence relations

bM = 0, j

together with the end conditions
{E-Eo-eQ)a0-ya1 + <xolbo+pbx = 0,

r, . (U)
-Ex-ej60 + yxbx + a01a0-(Sax = 0. J

In these equations for simplicity of writing we have replaced E — Eo — oc,
E — Ex — a.x by E — Eo, E — E1 respectively. The new quantities a01, /? are given
by the formulae

J< «) [V- U(p,)] UPi)dr = 0 ifm

= — aQ1 if TO = I = 0,

= +/? ifm = Z±l,

= 0 otherwise,
all other quantities being defined as in II, equations (6), for s-states and the
corresponding integrals for ̂ -states.

To solve the equations (10) we put
a, = Aeiie, b, = Btf*. (12)

Then each pair of relations (10) reduces to the form
A{E-E0-2yco%d) + B2ipsmd = 0,

- A 2ifisirxd + B(E -E1 + 2y1 cos d) = 0, (13)
whence, eliminating A and B, we obtain

f[y1(E-E0)-y(E-E1)] "I
- _ L ± JilriiE ~ Eo) - 7{E - EJ? + Hyy, - fi») [(E - Eo) (E - Et) - 40*]}J

cosd WK^W) •
(14)
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The roots of equation (14) for 6 are of the form ±dx, ±02. Moreover, a detailed
consideration shows that if E is greater than Ex + 2y1} less than Eo — 2y, or lies
between Ex — 2y1 and 2?0+2y, then both 6X, 62 are complex of the form i/i or
71 + i/i. If, however, E lies within either of the bands

Ex + 2yx>E> max (Ex - 2yx, Eo +2y),

min(Ex-2yx,E0 + 2y)>E>E0-'.

then one of the roots 6X is real and the other is complex of the form i/i orn + i/i.
The general solution of the equations (10) is

a — A ~p aUvt _1_ A ~* p—%W\ .1, A TflWC'j I A "~ $

6, = S + e ^ + Bxe-<*i + B+e^ + B^e

Now let us consider first the case when E lies within either of the bands (15).
Then the term e~"** increases exponentially with I and so for a physically possible
state we must have A%~ — B^ = 0. The expressions (16) thus contain effectively two
arbitrary constants, namely the ratios Af :AX :A£, since 6X, 62 and the ratios
A : B are determined by (13). The end conditions (11) then afford the necessary
two equations to determine these ratios. Actual substitution shows that the
equations have a unique solution for any value of E which lies within one of the
bands (15). These bands are, therefore, completely occupied by electronic states
and are seen to correspond exactly to the allowed bands obtained for the infinite
metal in the case when the s- and^-states are degenerate, being, in fact, their one-
dimensional counterpart.

3-2. The forbidden bands. We proceed now to the case when E does not lie
in either of the bands (15). Then both e~uei and e~i/9a increase exponentially
with I, and thus for the solution to be physically significant we must have

Ax = Ai = xsj = B2 = 0 .

a,, bt accordingly take the simpler forms

Though 6t and 62 are both complex we prefer to leave them in this form, since we
thereby avoid discussing whether they are of the form ijioTn + i/i, which would
involve a consideration of the signs and relative magnitudes of the quantities
involved in the expression (14) for cos 6. The recurrence relations then reduce to

Ax(E-E0-2y cos dx) + Bx 2ifi sin dx = 0,

-Ax2ifi sin 6X + BX{E -Ex + 2yx cos 6

-2y cos 02) + B2 2ip sin
+ Bz( E - Ex + 2yt cos 0

9, = 0, \

\) = 0, J

A2(E-E0-2ycosd2) + B22iftsin.d2 = 0,\
= 0, J



Electronic states at the surfaces of crystals

while the end conditions become
1 - Eo - e0 - yei6*) + B1(a01+fiei6^)

+ A2(E-E0-e0- yeif)*) + B2(a01

237

1=0,

0 = o.
From these equations we can eliminate Av A2, Bx, B2 and obtain the deter
minantal equation
E-E0-e0-ye^ oc0i+feiBl E-EQ-e0-ye^

aoi-fie
i0i E-E1-e1+y1e

i8i aol-fie
ie* E

eo-ye-i6>

If we write
ei01 + eiB2 _ /§f) ei8iei9i — [yyx — /p) II,

the equation (17) can be reduced to the simpler form

E-E1-ex + [(77i + P) *i ~ ^7i0c0i\H+y1 S
If this equation (18) has a root lying outside the energy bands (15), that root
corresponds to a state in which, in view of the complex form of 61 and d2, the coeffi-
cients ah bt decrease exponentially with increasing I. Such a state is a surface state.

The expressions 77, S are exceedingly complex and in their complete form
would render further analysis intractable. However, the three quantities y, ylt ft
are all of the same order of magnitude while, in view of the greater overlap of
the jp-states, yx > ft > y. Thus from a consideration of the integrals defining these
quantities it seems reasonable to suppose that /?2 and yyx are approximately
equal and that accordingly yy^—fP may be taken as small. With this approxi-
mation, equation (18) becomes

E-E0-e0 + 277{77ieo - 7«oi V(77i)} - \

that is,

) - 77iaoi} + V(r7i)S

{ 0 V(77i) ~ 77i«oi} - V'(77i) 8
S-E1-e1 + 2/7(77! *i - 7i<*oi V(77i)} + 7i 8

{E_Eo_eo){E_Ei_ei)_a2oi

= 0,

^] = 0,
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which on slight rearrangement becomes

+ \ea-a.M /-£-

3-3. Approximations to 8 and II. Before we can proceed any further we must
consider the approximate forms taken by S and II when yyx—fi2 is small. From
(14) we obtain immediately the approximate roots

_7l(E-E0)-y(E-E1)

{E-E0){E-E1)-4,yyx

2[7l(E-EQ)-y(E-E1)y

whence, since | eie* \ < 1, | eie' | < 1, we obtain

y1(E-E0)-y(E-E1)'

« (E-E0){E-Ex)-±yyx l{[ (E - Eo) (E - Ex) - 4yyxl*
2[y1(E-E0)-y(E-E1)]-*J\l2[y1(E-E0)-y(E-E1)]Ji

r-[(E-E;)(E-E1)-4:y7l]
_ L ± J{(E - Eo - 2y) {E - E1 + 27l) (E-E0 + 2y)(E-E1- 2

2[y1(E-E0)-y(E-E1)]

Here the upper sign is to be taken if cos 62 < 0 and the lower if cos 62 > 0- Thus

S = eiei + ei6* = eie*

J[{E -Ea-2y){E-Ex + 27l)] + J[(E -Eo+ 27) (E-Ex- 27l)]
V[(^ -E0-2y)(E-E1 + 27l)] ± J[(E -Eo + 27) (E-Ex- 27l)] '

and n = ei(Vfy(yyi-/?2)
= -4/{y(E-E 0 -2 7 ) (E-E 1 + 27l)] ±J[{E-E0 + 27) (E-E±-27l)]p.

In these expressions the upper signs are to be taken if E> Ex + 27l or <E0— 27,
the lower if E lies between Ex — 2 7 l and Eo + 27. These ranges are not quite the
same as cos 82 < 0 and cos 02 > 0, since cos 62 > 0 if E < Eo — 2 7 and

yx(E-Ea)-y{E-Ex)<0.

This case is, however, taken care of by the fact that the denominator of the
square root term in the expression for eie* is then | [7x(E — Eo) — y(E — Ex)\ |,
which gives rise to a further compensating change of sign.
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3-4. The existence of surface states. A consideration of the expressions just
obtained for 8 and 77 shows that, within the ranges of E to be considered, the
variation in the first term of (19) outweighs in importance that of the succeeding
terms. The expression is thus effectively monotonic within these ranges and the
existence of roots of the equation (19) should be indicated by the sign at the
extremities of the ranges. We now consider the three ranges separately.

(i) E>El+2y1.
S and 77 both tend steadily to zero as E^-oo, and so, for large E, (19) is

positive. Moreover, if

S = -l, II=~ lj{yxd), where d = E1 + 2y1-E0-2y,
and the left-hand side of (19) is thus equal to

((Z + 3y-eo)(7 l-e1)-ao
2

1

- a01 J£j + 2y1(e0 - a01 J ^
Since e1>y1 and d is fairly large, this expression is negative. Thus the sign of
(19) changes as E increases from Ex + 2y1 to oo and there is accordingly one root,
that is, one surface state, with energy lying above the upper band.

(ii) E^E0-2y.
Again S and 77 tend to zero as 2?-> —oo. (Observe, however, that there is a

region where yx(E — Eo) — y(E — Ex) is approximately zero and where accordingly
the approximations employed in the determination of S and 77 are invalid.
| E | is then so large, however, that only the first term of (19) is relevant.) Thus,
for E large and negative, (19) is positive. Also if E = E0 — 2y then S = — 1,
77= -l/{yd'), where d' = E1-2y1-E0+2y. The left-hand side of (19) is then
equal to

5 1 [27 (e! - aOi y ^ ) + (d' + 27l) (e0 -"aOl
l_ \ -V 7/ \

which is positive.
There is, therefore, no change of sign and hence no surface state with an

energy lying below the lower band.
(iii) E lying between Ex — 2yt and Eo + 2y.
IfE = E1-2y1, then 8 = 1, 77= l/Cftd'). where again d' = E1~2y1~E0 + 2y.

The left-hand side of (19) is then
-(d ' -3y-eo)(e1 + r i )-ao

2
1
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If E - E0 + 2y, then 8 = 1, 77= \j{yd), where again d = E1 + 2yl-E0-2y,
and the left-hand side of (19) becomes

The signs of these expressions cannot in general be determined without a
detailed knowledge of the magnitudes of the quantities involved therein. How-
ever, when d, d' are fairly large the expressions are negative and positive respec-
tively and we have one root and therefore one surface state with energy lying
between the upper and lower bands. If, on the other hand, d and d' are fairly
small, then the energy gap between the bands is fairly small. This implies that the
electrons are nearly free, so that our present method of approach is inapplicable,
and we must return to the treatment of paper I.

To summarize, therefore, we have established the existence of surface states
for the extreme cases of nearly free and tightly bound electrons. It is accordingly
reasonable to suppose that they will still be present in the actual intermediate
case afforded by real crystals.

CONCLUSION

4. If the results of the three papers of this series are summarized we find that
there is some difficulty in coordinating those obtained by the different approxima-
tions employed therein. In I, § 2-4, it is shown that, according to the free electron
picture, the surface states arise from a falling out of an equal number of states
from the lower and upper allowed bands respectively. It is not possible to see
whence they come on the approximation of tight binding discussed here, but, in
the extreme case when the 5-states can be considered independently, the work of
paper II shows that the same number of states arises entirely from the lower band.
In the actual case afforded by a real metal it is accordingly not possible to decide
whence the states arise, whether all from the lower band or in equal numbers
from the bands on either side.

This situation is unfortunate since an attempt to consider the effect of these
states on any phenomenon would naturally require a knowledge of whether at
the absolute zero of temperature the states are to be regarded as full, partly full,
or empty. In such a case it would be necessary to consider both possibilities of
derivation of the states to see which, if either, leads to results compatible with
experiment. However, this position is perhaps no less satisfying than it is in pro-
blems in which the possible overlapping or non-overlapping of the zones has to
be considered. Here again the distribution of the electronic states is deduced
from an attempted correlation with experiment; the experimental results are
not predicted from a known electron distribution.
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The number of electronic surface states, if we neglect the spin, is equal to the
number of atoms in the surface, just as the number of normal states is equal to
the total number of atoms in the lattice (here considering, of course, just one band
of levels). They are thus greatly outnumbered by the normal electronic states
and their effect can only be expected to be appreciable in what are essentially
surface phenomena or in crystals in which the number of electrons available for
an interaction has for some reason been drastically cut down.

SUMMARY

The method of the previous paper is extended to determine the surface states
of a simple cubic crystal on the approximation of tight binding. It is also applied
to the case of a semi-infinite linear chain when the atomic s- and ̂ 3-states are to
be regarded as degenerate, the existence of surface states being again predicted.
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