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COVER IMAGE 
In many large ensembles, the property of the 
system as a whole cannot be understood by 
studying the individual entities — neurons 
in the brain, for example, or transport 
users in traffic networks. The past decade, 
however, has seen important progress in our 
fundamental understanding of what such 
seemingly disparate ‘complex systems’ have 
in common. Image: © Marvin E. Newman/
Getty Images.

A formal definition of what constitutes 
a complex system is not easy to 
devise; equally difficult is the 

delineation of which fields of study fall 
within the bounds of ‘complexity’. An 
appealing approach — but only one of 
several possibilities — is to play on the 
‘more is different’ theme, declaring that the 
properties of a complex system as a whole 
cannot be understood from the study of 
its individual constituents. There are many 
examples, from neurons in the brain, to 
transport users in traffic networks, to data 
packages in the Internet.

Large datasets — collected, for example, 
in proteomic studies, or captured in 
records of mobile-phone users and Internet 
traffic — now provide an unprecedented 
level of information about these systems. 
Indeed, the availability of these detailed 
datasets has led to an explosion of activity 
in the modelling of complex systems. 
Data-based models can not only provide 
an understanding of the properties and 
behaviours of individual systems, but also, 
beyond that, might lead to the discovery 
of common properties between seemingly 
disparate systems.

Much of the progress made during the 
past decade or so comes under the banner 
of ‘network science’. The representation of 
complex systems as networks, or graphs, 

has proved to be a tremendously useful 
abstraction, and has led to an understanding 
of how many real-world systems are 
structured, what kinds of dynamic 
processes they support and how they 
interact with each other. This Nature Physics 
Insight is therefore admittedly inclined 
towards research in complex networks. 
As Albert-László Barabási argues in his 
Commentary, the past decade has indeed 
witnessed a ‘network takeover’. On the 
other hand, James Crutchfield, in his review 
of the tools for discovering patterns and 
quantifying their structural complexity, 
demonstrates beautifully how fundamental 
theories of information and computation 
have led to a deeper understanding of just 
what ‘complex systems’ are.

For a topic as broad as complexity, it is 
impossible to do justice to all of the recent 
developments. The field has been shaped 
over decades by advances in physics, 
engineering, computer science, biology 
and sociology, and its ramifications are 
equally diverse. But a selection had to be 
made, and we hope that this Insight will 
prove inspiring, and a showcase for the 
pivotal role that physicists are playing — 
and are bound to play — in the inherently 
multidisciplinary endeavour of making 
sense of complexity.

Andreas Trabesinger, Senior Editor
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The network takeover
Albert-László Barabási

Reductionism, as a paradigm, is expired, and complexity, as a field, is tired. Data-based mathematical 
models of complex systems are offering a fresh perspective, rapidly developing into a new discipline: 
network science.

Reports of the death of reductionism are 
greatly exaggerated. It is so ingrained 
in our thinking that if one day some 

magical force should make us all forget it, 
we would promptly have to reinvent it. The 
real worry is not with reductionism, which, 
as a paradigm and tool, is rather useful. 
It is necessary, but no longer sufficient. 
But, weighing up better ideas, it became 
a burden.

“You never want a serious crisis to go 
to waste,” Ralph Emmanuel, at that time 
Obama’s chief of staff, famously proclaimed 
in November 2008, at the height of the 
financial meltdown. Indeed, forced by an 
imminent need to go beyond reductionism, 
a new network-based paradigm is emerging 
that is taking science by storm. It relies 
on datasets that are inherently incomplete 
and noisy. It builds on a set of sharp tools, 
developed during the past decade, that 
seem to be just as useful in search engines 
as in cell biology. It is making a real impact 
from science to industry. Along the way it 

points to a new way to handle a century-old 
problem: complexity.

A better understanding of the pieces 
cannot solve the difficulties that many 
research fields currently face, from cell 
biology to software design. There is no 
‘cancer gene’. A typical cancer patient 
has mutations in a few dozen of about 
300 genes, an elusive combinatorial 
problem whose complexity is increasingly 
a worry to the medical community. No 
single regulation can legislate away the 
economic malady that is slowly eating 
at our wealth. It is the web of diverging 
financial and political interests that 
makes policy so difficult to implement. 
Consciousness cannot be reduced to a 
single neuron. It is an emergent property 
that engages billions of synapses. In fact, 
the more we know about the workings 
of individual genes, banks or neurons, 
the less we understand the system as a 
whole. Consequently, an increasing number 
of the big questions of contemporary 

science are rooted in the same problem: 
we hit the limits of reductionism. No 
need to mount a defence of it. Instead, we 
need to tackle the real question in front of 
us: complexity.

The complexity argument is by no 
means new. It has re-emerged repeatedly 
during the past decades. The fact that it is 
still fresh underlines the lack of progress 
achieved so far. It also stays with us for 
good reason: complexity research is a 
thorny undertaking. First, its goals are 
easily confusing to the outsider. What 
does it aim to address — the origins of 
social order, biological complexity or 
economic interconnectedness? Second, 
decades of research on complexity were 
driven by big, sweeping theoretical ideas, 
inspired by toy models and differential 
equations that ultimately failed to deliver. 
Think synergetics and its slave modes; 
think chaos theory, ultimately telling 
us more about unpredictability than 
how to predict nonlinear systems; think 
self-organized criticality, a sweeping 
collection of scaling ideas squeezed into 
a sand pile; think fractals, hailed once as 
the source of all answers to the problems 
of pattern formation. We learned a lot, 
but achieved little: our tools failed to 
keep up with the shifting challenges that 
complex systems pose. Third, there is a 
looming methodological question: what 
should a theory of complexity deliver? 
A new Maxwellian formula, condensing 
into a set of elegant equations every 
ill that science faces today? Or a new 
uncertainty principle, encoding what 
we can and what we can’t do in complex 
systems? Finally, who owns the science of 
complexity? Physics? Engineering? Biology, 
mathematics, computer science? All of the 
above? Anyone?

These questions have resisted answers 
for decades. Yet something has changed 
in the past few years. The driving force 
behind this change can be condensed 
into a single word: data. Fuelled by cheap 
sensors and high-throughput technologies, 

Network universe. A visualization of the first large-scale network explicitly mapped out to explore the 
large-scale structure of real networks. The map was generated in 1999 and represents a small portion 
of the World Wide Web11; this map has led to the discovery of scale-free networks. Nodes are web 
documents; links correspond to URLs. Visualization by Mauro Martino, Alec Pawling and Chaoming Song.
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the data explosion that we witness 
today, from social media to cell biology, 
is offering unparalleled opportunities 
to document the inner workings of 
many complex systems. Microarray and 
proteomic tools offer us the simultaneous 
activity of all human genes and proteins; 
mobile-phone records capture the 
communication and mobility patterns 
of whole countries1; import–export and 
stock data condense economic activity into 
easily accessible databases2. As scientists 
sift through these mountains of data, we 
are witnessing an increasing awareness that 
if we are to tackle complexity, the tools to 
do so are being born right now, in front of 
our eyes. The field that benefited most from 
this data windfall is often called network 
theory, and it is fundamentally reshaping 
our approach to complexity.

Born at the twilight of the twentieth 
century, network theory aims to 
understand the origins and characteristics 
of networks that hold together the 
components in various complex systems. 
By simultaneously looking at the World 
Wide Web and genetic networks, Internet 
and social systems, it led to the discovery 
that despite the many differences in the 
nature of the nodes and the interactions 
between them, the networks behind most 
complex systems are governed by a series of 
fundamental laws that determine and limit 
their behaviour.

On the surface, network theory is 
prone to the failings of its predecessors. 
It has its own big ideas, from scale-
free networks to the theory of network 
evolution3, from community formation4,5 
to dynamics on networks6. But there is 
a defining difference. These ideas have 
not been gleaned from toy models or 
mathematical anomalies. They are based 
on data and meticulous observations. 
The theory of evolving networks was 
motivated by extensive empirical evidence 
documenting the scale-free nature of the 
degree distribution, from the cell to the 
World Wide Web; the formalism behind 
degree correlations was preceded by data 
documenting correlations on the Internet 
and on cellular maps7,8; the extensive 
theoretical work on spreading processes 

was preceded by decades of meticulous 
data collection on the spread of viruses 
and fads, gaining a proper theoretical 
footing in the network context6. This data-
inspired methodology is an important shift 
compared with earlier takes on complex 
systems. Indeed, in a survey of the ten 
most influential papers in complexity, it 
will be difficult to find one that builds 
directly on experimental data. In contrast, 
among the ten most cited papers in 
network theory, you will be hard pressed 
to find one that does not directly rely on 
empirical evidence.

With its deep empirical basis and its 
host of analytical and algorithmic tools, 
today network theory is indispensible in 
the study of complex systems. We will 
never understand the workings of a cell if 
we ignore the intricate networks through 
which its proteins and metabolites interact 
with each other. We will never foresee 
economic meltdowns unless we map out 
the web of indebtedness that characterizes 
the financial system. These profound 
changes in complexity research echo major 
economic and social shifts. The economic 
giants of our era are no longer carmakers 
and oil producers, but the companies 
that build, manage or fuel our networks: 
Cisco, Google, Facebook, Apple or Twitter. 
Consequently, during the past decade, 
question by question and system by system, 
network science has hijacked complexity 
research. Reductionism deconstructed 
complex systems, bringing us a theory 
of individual nodes and links. Network 
theory is painstakingly reassembling them, 
helping us to see the whole again. One 
thing is increasingly clear: no theory of 
the cell, of social media or of the Internet 
can ignore the profound network effects 
that their interconnectedness cause. 
Therefore, if we are ever to have a theory 
of complexity, it will sit on the shoulders of 
network theory.

The daunting reality of complexity 
research is that the problems it tackles 
are so diverse that no single theory can 
satisfy all needs. The expectations of social 
scientists for a theory of social complexity 
are quite different from the questions posed 
by biologists as they seek to uncover the 
phenotypic heterogeneity of cardiovascular 
disease. We may, however, follow in the 
footsteps of Steve Jobs, who once insisted 
that it is not the consumer’s job to know 
what they want. It is our job, those of us 
working on the mathematical theory of 
complex systems, to define the science 
of the complex. Although no theory can 
satisfy all needs, what we can strive for is a 
broad framework within which most needs 
can be addressed.

The twentieth century has witnessed 
the birth of such a sweeping, enabling 
framework: quantum mechanics. Many 
advances of the century, from electronics 
to astrophysics, from nuclear energy 
to quantum computation, were built 
on the theoretical foundations that it 
offered. In the twenty-first century, 
network theory is emerging as its worthy 
successor: it is building a theoretical 
and algorithmic framework that is 
energizing many research fields, and it is 
closely followed by many industries. As 
network theory develops its mathematical 
and intellectual core, it is becoming 
an indispensible platform for science, 
business and security, helping to discover 
new drug targets, delivering Facebook’s 
latest algorithms and aiding the efforts to 
halt terrorism.

As physicists, we cannot avoid the 
elephant in the room: what is the role of 
physics in this journey? We physicists do not 
have an excellent track record in investing 
in our future. For decades, we forced 
astronomers into separate departments, 
under the slogan: it is not physics. Now 
we bestow on them our highest awards, 
such as last year’s Nobel Prize. For decades 
we resisted biological physics, exiling our 
brightest colleagues to medical schools. 
Along the way we missed out on the bio-
revolution, bypassing the financial windfall 
that the National Institutes of Health 
bestowed on biological complexity, proudly 
shrinking our physics departments instead. 
We let materials science be taken over by 
engineering schools just when the science 
had matured enough to be truly lucrative. 
Old reflexes never die, making many 
now wonder whether network science is 
truly physics. The answer is obvious: it is 
much bigger than physics. Yet physics is 
deeply entangled with it: the Institute for 
Scientific Information (ISI) highlighted 
two network papers3,9 among the ten most 
cited physics papers of the past decade, 
and in about a year Chandrashekhar’s 1945 
tome, which has been the most cited paper 
in Review of Modern Physics for decades, 
will be dethroned by a decade-old paper 
on network theory10. Physics has as much 
to offer to this journey as it has to benefit 
from it.

Although physics has owned complexity 
research for many decades, it is not 
without competition any longer. Computer 
science, fuelled by its poster progenies, 

An increasing number of the 
big questions of contemporary 
science are rooted in the same 
problem: we hit the limits 
of reductionism.

Who owns the science 
of complexity?
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such as Google or Facebook, is mounting 
a successful attack on complexity, fuelled 
by the conviction that a sufficiently fast 
algorithm can tackle any problem, no 
matter how complex. This confidence 
has prompted the US Directorate for 
Computer and Information Science and 
Engineering to establish the first network-
science programme within the US National 
Science Foundation. Bioinformatics, with 
its rich resources backed by the National 
Institutes of Health, is pushing from a 
different direction, aiming to quantify 
biological complexity. Complexity and 
network science need both the intellectual 
and financial resources that different 
communities can muster. But as the field 
enters the spotlight, physics must assert its 
engagement if it wants to continue to be 
present at the table.

As I follow the debate surrounding the 
faster-than-light neutrinos, I wish deep 

down for it to be true. Physics needs the 
shot in the arm that such a development 
could deliver. Our children no longer want 
to become physicists and astronauts. They 
want to invent the next Facebook instead. 
Short of that, they are happy to land a job 
at Google. They don’t talk quanta — they 
dream bits. They don’t see entanglement 
but recognize with ease nodes and links. As 
complexity takes a driving seat in science, 
engineering and business, we physicists 
cannot afford to sit on the sidelines. 
We helped to create it. We owned it for 
decades. We must learn to take pride in 
it. And this means, as our forerunners did 
a century ago with quantum mechanics, 
that we must invest in it and take it to 
its conclusion. ❐

Albert-László Barabási is at the Center for Complex 
Network Research and Departments of Physics, 
Computer Science and Biology, Northeastern 

University, Boston, Massachusetts 02115, USA; the 
Center for Cancer Systems Biology, Dana-Farber 
Cancer Institute, Boston, Massachusetts 02115, 
USA; and the Department of Medicine, Brigham 
and Women’s Hospital, Harvard Medical School, 
Boston, Massachusetts 02115, USA.  
e-mail: alb@neu.edu
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Between order and chaos
James P. Crutchfield

What is a pattern? How dowe come to recognize patterns never seen before? Quantifying the notion of pattern and formalizing
the process of pattern discovery go right to the heart of physical science. Over the past few decades physics’ view of nature’s
lack of structure—its unpredictability—underwent a major renovation with the discovery of deterministic chaos, overthrowing
two centuries of Laplace’s strict determinism in classical physics. Behind the veil of apparent randomness, though, many
processes are highly ordered, following simple rules. Tools adapted from the theories of information and computation have
brought physical science to the brink of automatically discovering hidden patterns and quantifying their structural complexity.

One designs clocks to be as regular as physically possible. So
much so that they are the very instruments of determinism.
The coin flip plays a similar role; it expresses our ideal of

the utterly unpredictable. Randomness is as necessary to physics
as determinism—think of the essential role that ‘molecular chaos’
plays in establishing the existence of thermodynamic states. The
clock and the coin flip, as such, are mathematical ideals to which
reality is often unkind. The extreme difficulties of engineering the
perfect clock1 and implementing a source of randomness as pure as
the fair coin testify to the fact that determinism and randomness are
two inherent aspects of all physical processes.

In 1927, van der Pol, a Dutch engineer, listened to the tones
produced by a neon glow lamp coupled to an oscillating electrical
circuit. Lacking modern electronic test equipment, he monitored
the circuit’s behaviour by listening through a telephone ear piece.
In what is probably one of the earlier experiments on electronic
music, he discovered that, by tuning the circuit as if it were a
musical instrument, fractions or subharmonics of a fundamental
tone could be produced. This is markedly unlike common musical
instruments—such as the flute, which is known for its purity of
harmonics, or multiples of a fundamental tone. As van der Pol
and a colleague reported in Nature that year2, ‘the turning of the
condenser in the region of the third to the sixth subharmonic
strongly reminds one of the tunes of a bag pipe’.

Presciently, the experimenters noted that when tuning the circuit
‘often an irregular noise is heard in the telephone receivers before
the frequency jumps to the next lower value’.We nowknow that van
der Pol had listened to deterministic chaos: the noise was produced
in an entirely lawful, ordered way by the circuit itself. The Nature
report stands as one of its first experimental discoveries. Van der Pol
and his colleague van der Mark apparently were unaware that the
deterministic mechanisms underlying the noises they had heard
had been rather keenly analysed three decades earlier by the French
mathematician Poincaré in his efforts to establish the orderliness of
planetary motion3–5. Poincaré failed at this, but went on to establish
that determinism and randomness are essential and unavoidable
twins6. Indeed, this duality is succinctly expressed in the two
familiar phrases ‘statisticalmechanics’ and ‘deterministic chaos’.

Complicated yes, but is it complex?
As for van der Pol and van der Mark, much of our appreciation
of nature depends on whether our minds—or, more typically these
days, our computers—are prepared to discern its intricacies. When
confronted by a phenomenon for which we are ill-prepared, we
often simply fail to see it, although we may be looking directly at it.

Complexity Sciences Center and Physics Department, University of California at Davis, One Shields Avenue, Davis, California 95616, USA.
*e-mail: chaos@ucdavis.edu.

Perception is made all the more problematic when the phenomena
of interest arise in systems that spontaneously organize.

Spontaneous organization, as a common phenomenon, reminds
us of a more basic, nagging puzzle. If, as Poincaré found, chaos is
endemic to dynamics, why is the world not a mass of randomness?
The world is, in fact, quite structured, and we now know several
of the mechanisms that shape microscopic fluctuations as they
are amplified to macroscopic patterns. Critical phenomena in
statistical mechanics7 and pattern formation in dynamics8,9 are
two arenas that explain in predictive detail how spontaneous
organization works. Moreover, everyday experience shows us that
nature inherently organizes; it generates pattern. Pattern is as much
the fabric of life as life’s unpredictability.

In contrast to patterns, the outcome of an observation of
a random system is unexpected. We are surprised at the next
measurement. That surprise gives us information about the system.
We must keep observing the system to see how it is evolving. This
insight about the connection between randomness and surprise
was made operational, and formed the basis of the modern theory
of communication, by Shannon in the 1940s (ref. 10). Given a
source of random events and their probabilities, Shannon defined a
particular event’s degree of surprise as the negative logarithm of its
probability: the event’s self-information is Ii=−log2pi. (The units
when using the base-2 logarithm are bits.) In this way, an event,
say i, that is certain (pi = 1) is not surprising: Ii = 0 bits. Repeated
measurements are not informative. Conversely, a flip of a fair coin
(pHeads= 1/2) is maximally informative: for example, IHeads= 1 bit.
With each observation we learn in which of two orientations the
coin is, as it lays on the table.

The theory describes an information source: a random variable
X consisting of a set {i = 0, 1, ... , k} of events and their
probabilities {pi}. Shannon showed that the averaged uncertainty
H [X ] =

∑
i piIi—the source entropy rate—is a fundamental

property that determines how compressible an information
source’s outcomes are.

With information defined, Shannon laid out the basic principles
of communication11. He defined a communication channel that
accepts messages from an information source X and transmits
them, perhaps corrupting them, to a receiver who observes the
channel output Y . To monitor the accuracy of the transmission,
he introduced the mutual information I [X ;Y ] =H [X ]−H [X |Y ]
between the input and output variables. The first term is the
information available at the channel’s input. The second term,
subtracted, is the uncertainty in the incoming message, if the
receiver knows the output. If the channel completely corrupts, so
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that none of the source messages accurately appears at the channel’s
output, then knowing the output Y tells you nothing about the
input and H [X |Y ] = H [X ]. In other words, the variables are
statistically independent and so the mutual information vanishes.
If the channel has perfect fidelity, then the input and output
variables are identical; what goes in, comes out. The mutual
information is the largest possible: I [X ;Y ] = H [X ], because
H [X |Y ] = 0. The maximum input–output mutual information,
over all possible input sources, characterizes the channel itself and
is called the channel capacity:

C =max
{P(X)}

I [X ;Y ]

Shannon’s most famous and enduring discovery though—one
that launched much of the information revolution—is that as
long as a (potentially noisy) channel’s capacity C is larger than
the information source’s entropy rate H [X ], there is way to
encode the incoming messages such that they can be transmitted
error free11. Thus, information and how it is communicated were
given firm foundation.

How does information theory apply to physical systems? Let
us set the stage. The system to which we refer is simply the
entity we seek to understand by way of making observations.
The collection of the system’s temporal behaviours is the process
it generates. We denote a particular realization by a time series
of measurements: ...x−2x−1x0x1 ... . The values xt taken at each
time can be continuous or discrete. The associated bi-infinite
chain of random variables is similarly denoted, except using
uppercase: ...X−2X−1X0X1 .... At each time t the chain has a past
Xt : = ...Xt−2Xt−1 and a future X:=XtXt+1 ....We will also refer to
blocksXt ′:=XtXt+1 ...Xt ′−1,t< t ′. The upper index is exclusive.

To apply information theory to general stationary processes, one
uses Kolmogorov’s extension of the source entropy rate12,13. This
is the growth rate hµ:

hµ= lim
`→∞

H (`)
`

where H (`)=−
∑
{x:`}Pr(x:`)log2Pr(x:`) is the block entropy—the

Shannon entropy of the length-` word distribution Pr(x:`). hµ
gives the source’s intrinsic randomness, discounting correlations
that occur over any length scale. Its units are bits per symbol,
and it partly elucidates one aspect of complexity—the randomness
generated by physical systems.

We now think of randomness as surprise and measure its degree
using Shannon’s entropy rate. By the same token, can we say
what ‘pattern’ is? This is more challenging, although we know
organization when we see it.

Perhaps one of the more compelling cases of organization is
the hierarchy of distinctly structured matter that separates the
sciences—quarks, nucleons, atoms, molecules, materials and so on.
This puzzle interested Philip Anderson, who in his early essay ‘More
is different’14, notes that new levels of organization are built out of
the elements at a lower level and that the new ‘emergent’ properties
are distinct. They are not directly determined by the physics of the
lower level. They have their own ‘physics’.

This suggestion too raises questions, what is a ‘level’ and
how different do two levels need to be? Anderson suggested that
organization at a given level is related to the history or the amount
of effort required to produce it from the lower level. As we will see,
this can be made operational.

Complexities
To arrive at that destination we make two main assumptions. First,
we borrowheavily fromShannon: every process is a communication
channel. In particular, we posit that any system is a channel that

communicates its past to its future through its present. Second, we
take into account the context of interpretation. We view building
models as akin to decrypting nature’s secrets. How do we come
to understand a system’s randomness and organization, given only
the available, indirect measurements that an instrument provides?
To answer this, we borrow again from Shannon, viewing model
building also in terms of a channel: one experimentalist attempts
to explain her results to another.

The following first reviews an approach to complexity that
models system behaviours using exact deterministic representa-
tions. This leads to the deterministic complexity and we will
see how it allows us to measure degrees of randomness. After
describing its features and pointing out several limitations, these
ideas are extended to measuring the complexity of ensembles of
behaviours—to what we now call statistical complexity. As we
will see, it measures degrees of structural organization. Despite
their different goals, the deterministic and statistical complexities
are related and we will see how they are essentially complemen-
tary in physical systems.

Solving Hilbert’s famous Entscheidungsproblem challenge to
automate testing the truth of mathematical statements, Turing
introduced a mechanistic approach to an effective procedure
that could decide their validity15. The model of computation
he introduced, now called the Turing machine, consists of an
infinite tape that stores symbols and a finite-state controller that
sequentially reads symbols from the tape and writes symbols to it.
Turing’s machine is deterministic in the particular sense that the
tape contents exactly determine the machine’s behaviour. Given
the present state of the controller and the next symbol read off the
tape, the controller goes to a unique next state, writing at most
one symbol to the tape. The input determines the next step of the
machine and, in fact, the tape input determines the entire sequence
of steps the Turing machine goes through.

Turing’s surprising result was that there existed a Turing
machine that could compute any input–output function—it was
universal. The deterministic universal Turing machine (UTM) thus
became a benchmark for computational processes.

Perhaps not surprisingly, this raised a new puzzle for the origins
of randomness. Operating from a fixed input, could a UTM
generate randomness, orwould its deterministic nature always show
through, leading to outputs that were probabilistically deficient?
More ambitiously, could probability theory itself be framed in terms
of this new constructive theory of computation? In the early 1960s
these and related questions led a number of mathematicians—
Solomonoff16,17 (an early presentation of his ideas appears in
ref. 18), Chaitin19, Kolmogorov20 andMartin-Löf21—todevelop the
algorithmic foundations of randomness.

The central question was how to define the probability of a single
object. More formally, could a UTM generate a string of symbols
that satisfied the statistical properties of randomness? The approach
declares that models M should be expressed in the language of
UTM programs. This led to the Kolmogorov–Chaitin complexity
KC(x) of a string x. The Kolmogorov–Chaitin complexity is the
size of the minimal program P that generates x running on
a UTM (refs 19,20):

KC(x)= argmin{|P| :UTM ◦P = x}

One consequence of this should sound quite familiar by now.
It means that a string is random when it cannot be compressed: a
random string is its own minimal program. The Turing machine
simply prints it out. A string that repeats a fixed block of letters,
in contrast, has small Kolmogorov–Chaitin complexity. The Turing
machine program consists of the block and the number of times it
is to be printed. Its Kolmogorov–Chaitin complexity is logarithmic
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in the desired string length, because there is only one variable part
of P and it stores log ` digits of the repetition count `.

Unfortunately, there are a number of deep problems with
deploying this theory in a way that is useful to describing the
complexity of physical systems.

First, Kolmogorov–Chaitin complexity is not a measure of
structure. It requires exact replication of the target string. Therefore,
KC(x) inherits the property of being dominated by the randomness
in x. Specifically, many of the UTM instructions that get executed
in generating x are devoted to producing the ‘random’ bits of x. The
conclusion is that Kolmogorov–Chaitin complexity is a measure of
randomness, not a measure of structure. One solution, familiar in
the physical sciences, is to discount for randomness by describing
the complexity in ensembles of behaviours.

Furthermore, focusing on single objects was a feature, not a
bug, of Kolmogorov–Chaitin complexity. In the physical sciences,
however, this is a prescription for confusion. We often have
access only to a system’s typical properties, and even if we had
access to microscopic, detailed observations, listing the positions
and momenta of molecules is simply too huge, and so useless, a
description of a box of gas. In most cases, it is better to know the
temperature, pressure and volume.

The issue is more fundamental than sheer system size, arising
evenwith a few degrees of freedom. Concretely, the unpredictability
of deterministic chaos forces the ensemble approach on us.

The solution to the Kolmogorov–Chaitin complexity’s focus on
single objects is to define the complexity of a system’s process—the
ensemble of its behaviours22. Consider an information source
that produces collections of strings of arbitrary length. Given
a realization x:` of length `, we have its Kolmogorov–Chaitin
complexity KC(x:`), of course, but what can we say about the
Kolmogorov–Chaitin complexity of the ensemble {x:`}? First, define
its average in terms of samples {x i

:` : i=1,...,M }:

KC(`)=〈KC(x:`)〉= lim
M→∞

1
M

M∑
i=1

KC(x i
:`)

How does the Kolmogorov–Chaitin complexity grow as a function
of increasing string length? For almost all infinite sequences pro-
duced by a stationary process the growth rate of the Kolmogorov–
Chaitin complexity is the Shannon entropy rate23:

hµ= lim
`→∞

KC(`)
`

As a measure—that is, a number used to quantify a system
property—Kolmogorov–Chaitin complexity is uncomputable24,25.
There is no algorithm that, taking in the string, computes its
Kolmogorov–Chaitin complexity. Fortunately, this problem is
easily diagnosed. The essential uncomputability of Kolmogorov–
Chaitin complexity derives directly from the theory’s clever choice
of a UTM as themodel class, which is so powerful that it can express
undecidable statements.

One approach to making a complexity measure constructive
is to select a less capable (specifically, non-universal) class of
computationalmodels.We can declare the representations to be, for
example, the class of stochastic finite-state automata26,27. The result
is a measure of randomness that is calibrated relative to this choice.
Thus, what one gains in constructiveness, one looses in generality.

Beyond uncomputability, there is the more vexing issue of
how well that choice matches a physical system of interest. Even
if, as just described, one removes uncomputability by choosing
a less capable representational class, one still must validate that
these, now rather specific, choices are appropriate to the physical
system one is analysing.

At themost basic level, the Turingmachine uses discrete symbols
and advances in discrete time steps. Are these representational
choices appropriate to the complexity of physical systems? What
about systems that are inherently noisy, those whose variables
are continuous or are quantum mechanical? Appropriate theories
of computation have been developed for each of these cases28,29,
although the original model goes back to Shannon30. More to
the point, though, do the elementary components of the chosen
representational scheme match those out of which the system
itself is built? If not, then the resulting measure of complexity
will be misleading.

Is there a way to extract the appropriate representation from the
system’s behaviour, rather than having to impose it? The answer
comes, not from computation and information theories, as above,
but from dynamical systems theory.

Dynamical systems theory—Poincaré’s qualitative dynamics—
emerged from the patent uselessness of offering up an explicit list
of an ensemble of trajectories, as a description of a chaotic system.
It led to the invention of methods to extract the system’s ‘geometry
from a time series’. One goal was to test the strange-attractor
hypothesis put forward byRuelle andTakens to explain the complex
motions of turbulent fluids31.

How does one find the chaotic attractor given a measurement
time series from only a single observable? Packard and others
proposed developing the reconstructed state space from successive
time derivatives of the signal32. Given a scalar time series
x(t ), the reconstructed state space uses coordinates y1(t )= x(t ),
y2(t ) = dx(t )/dt , ... , ym(t ) = dmx(t )/dtm. Here, m + 1 is the
embedding dimension, chosen large enough that the dynamic in
the reconstructed state space is deterministic. An alternative is to
take successive time delays in x(t ) (ref. 33). Using these methods
the strange attractor hypothesis was eventually verified34.

It is a short step, once one has reconstructed the state space
underlying a chaotic signal, to determine whether you can also
extract the equations of motion themselves. That is, does the signal
tell you which differential equations it obeys? The answer is yes35.
This sound works quite well if, and this will be familiar, one
has made the right choice of representation for the ‘right-hand
side’ of the differential equations. Should one use polynomial,
Fourier or wavelet basis functions; or an artificial neural net?
Guess the right representation and estimating the equations of
motion reduces to statistical quadrature: parameter estimation
and a search to find the lowest embedding dimension. Guess
wrong, though, and there is little or no clue about how to
update your choice.

The answer to this conundrum became the starting point for an
alternative approach to complexity—onemore suitable for physical
systems. The answer is articulated in computational mechanics36,
an extension of statistical mechanics that describes not only a
system’s statistical properties but also how it stores and processes
information—how it computes.

The theory begins simply by focusing on predicting a time series
...X−2X−1X0X1 ... . In the most general setting, a prediction is a
distribution Pr(Xt :|x:t ) of futures Xt : = XtXt+1Xt+2 ... conditioned
on a particular past x:t = ...xt−3xt−2xt−1. Given these conditional
distributions one can predict everything that is predictable
about the system.

At root, extracting a process’s representation is a very straight-
forward notion: do not distinguish histories that make the same
predictions. Once we group histories in this way, the groups them-
selves capture the relevant information for predicting the future.
This leads directly to the central definition of a process’s effective
states. They are determined by the equivalence relation:

x:t ∼ x:t ′⇔Pr(Xt :|x:t )=Pr(Xt :|x:t ′)
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The equivalence classes of the relation ∼ are the process’s
causal states S—literally, its reconstructed state space, and the
induced state-to-state transitions are the process’s dynamic T —its
equations of motion. Together, the statesS and dynamic T give the
process’s so-called ε-machine.

Why should one use the ε-machine representation of a
process? First, there are three optimality theorems that say it
captures all of the process’s properties36–38: prediction: a process’s
ε-machine is its optimal predictor; minimality: compared with
all other optimal predictors, a process’s ε-machine is its minimal
representation; uniqueness: any minimal optimal predictor is
equivalent to the ε-machine.

Second, we can immediately (and accurately) calculate the
system’s degree of randomness. That is, the Shannon entropy rate
is given directly in terms of the ε-machine:

hµ=−
∑
σ∈S

Pr(σ )
∑
{x}

Pr(x|σ )log2Pr(x|σ )

where Pr(σ ) is the distribution over causal states and Pr(x|σ ) is the
probability of transitioning from state σ onmeasurement x .

Third, the ε-machine gives us a new property—the statistical
complexity—and it, too, is directly calculated from the ε-machine:

Cµ=−
∑
σ∈S

Pr(σ )log2Pr(σ )

The units are bits. This is the amount of information the process
stores in its causal states.

Fourth, perhaps the most important property is that the
ε-machine gives all of a process’s patterns. The ε-machine itself—
states plus dynamic—gives the symmetries and regularities of
the system. Mathematically, it forms a semi-group39. Just as
groups characterize the exact symmetries in a system, the
ε-machine captures those and also ‘partial’ or noisy symmetries.

Finally, there is one more unique improvement the statistical
complexity makes over Kolmogorov–Chaitin complexity theory.
The statistical complexity has an essential kind of representational
independence. The causal equivalence relation, in effect, extracts
the representation from a process’s behaviour. Causal equivalence
can be applied to any class of system—continuous, quantum,
stochastic or discrete.

Independence from selecting a representation achieves the
intuitive goal of using UTMs in algorithmic information theory—
the choice that, in the end, was the latter’s undoing. The
ε-machine does not suffer from the latter’s problems. In this sense,
computational mechanics is less subjective than any ‘complexity’
theory that per force chooses a particular representational scheme.

To summarize, the statistical complexity defined in terms of the
ε-machine solves the main problems of the Kolmogorov–Chaitin
complexity by being representation independent, constructive, the
complexity of an ensemble, and ameasure of structure.

In these ways, the ε-machine gives a baseline against which
any measures of complexity or modelling, in general, should be
compared. It is a minimal sufficient statistic38.

To address one remaining question, let us make explicit the
connection between the deterministic complexity framework and
that of computational mechanics and its statistical complexity.
Consider realizations {x:`} from a given information source. Break
the minimal UTM program P for each into two components:
one that does not change, call it the ‘model’ M ; and one that
does change from input to input, E , the ‘random’ bits not
generated by M . Then, an object’s ‘sophistication’ is the length
of M (refs 40,41):

SOPH(x:`)= argmin{|M | : P =M+E,x:`=UTM ◦P}

1.0|H 0.5|H0.5|T

0.5|T0.5|H
1.0|T

1.0|H

A B
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d
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D

C

Figure 1 | ε-machines for four information sources. a, The all-heads
process is modelled with a single state and a single transition. The
transition is labelled p|x, where p∈ [0;1] is the probability of the transition
and x is the symbol emitted. b, The fair-coin process is also modelled by a
single state, but with two transitions each chosen with equal probability.
c, The period-2 process is perhaps surprisingly more involved. It has three
states and several transitions. d, The uncountable set of causal states for a
generic four-state HMM. The causal states here are distributions
Pr(A;B;C;D) over the HMM’s internal states and so are plotted as points in
a 4-simplex spanned by the vectors that give each state unit probability.
Panel d reproduced with permission from ref. 44, © 1994 Elsevier.

As done with the Kolmogorov–Chaitin complexity, we can
define the ensemble-averaged sophistication 〈SOPH〉 of ‘typical’
realizations generated by the source. The result is that the average
sophistication of an information source is proportional to its
process’s statistical complexity42:

KC(`)∝Cµ+hµ`
That is, 〈SOPH〉∝Cµ.

Notice how far we come in computational mechanics by
positing only the causal equivalence relation. From it alone, we
derive many of the desired, sometimes assumed, features of other
complexity frameworks. We have a canonical representational
scheme. It is minimal and so Ockham’s razor43 is a consequence,
not an assumption. We capture a system’s pattern in the algebraic
structure of the ε-machine. We define randomness as a process’s
ε-machine Shannon-entropy rate. We define the amount of
organization in a process with its ε-machine’s statistical complexity.
In addition, we also see how the framework of deterministic
complexity relates to computational mechanics.

Applications
Let us address the question of usefulness of the foregoing
by way of examples.

Let’s start with the Prediction Game, an interactive pedagogical
tool that intuitively introduces the basic ideas of statistical
complexity and how it differs from randomness. The first step
presents a data sample, usually a binary times series. The second asks
someone to predict the future, on the basis of that data. The final
step asks someone to posit a state-based model of the mechanism
that generated the data.

The first data set to consider is x:0 = ...HHHHHHH—the
all-heads process. The answer to the prediction question comes
to mind immediately: the future will be all Hs, x: =HHHHH....
Similarly, a guess at a state-based model of the generating
mechanism is also easy. It is a single state with a transition
labelled with the output symbol H (Fig. 1a). A simple model
for a simple process. The process is exactly predictable: hµ = 0
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Figure 2 | Structure versus randomness. a, In the period-doubling route to chaos. b, In the two-dimensional Ising-spinsystem. Reproduced with permission
from: a, ref. 36, © 1989 APS; b, ref. 61, © 2008 AIP.

bits per symbol. Furthermore, it is not complex; it has vanishing
complexity: Cµ= 0 bits.

The second data set is, for example, x:0 = ...THTHTTHTHH.
What I have done here is simply flip a coin several times and report
the results. Shifting frombeing confident and perhaps slightly bored
with the previous example, people take notice and spend a good deal
more time pondering the data than in the first case.

The prediction question now brings up a number of issues. One
cannot exactly predict the future. At best, one will be right only
half of the time. Therefore, a legitimate prediction is simply to give
another series of flips from a fair coin. In terms of monitoring
only errors in prediction, one could also respond with a series of
all Hs. Trivially right half the time, too. However, this answer gets
other properties wrong, such as the simple facts that Ts occur and
occur in equal number.

The answer to the modelling question helps articulate these
issues with predicting (Fig. 1b). The model has a single state,
now with two transitions: one labelled with a T and one with
an H. They are taken with equal probability. There are several
points to emphasize. Unlike the all-heads process, this one is
maximally unpredictable: hµ = 1 bit/symbol. Like the all-heads
process, though, it is simple: Cµ= 0 bits again. Note that the model
is minimal. One cannot remove a single ‘component’, state or
transition, and still do prediction. The fair coin is an example of an
independent, identically distributed process. For all independent,
identically distributed processes,Cµ=0 bits.

In the third example, the past data are x:0 = ...HTHTHTHTH.
This is the period-2 process. Prediction is relatively easy, once one
has discerned the repeated template word w =TH. The prediction
is x: = THTHTHTH.... The subtlety now comes in answering the
modelling question (Fig. 1c).

There are three causal states. This requires some explanation.
The state at the top has a double circle. This indicates that it is a start
state—the state in which the process starts or, from an observer’s
point of view, the state in which the observer is before it begins
measuring. We see that its outgoing transitions are chosen with
equal probability and so, on the first step, a T or an H is produced
with equal likelihood. An observer has no ability to predict which.
That is, initially it looks like the fair-coin process. The observer
receives 1 bit of information. In this case, once this start state is left,
it is never visited again. It is a transient causal state.

Beyond the first measurement, though, the ‘phase’ of the
period-2 oscillation is determined, and the process has moved
into its two recurrent causal states. If an H occurred, then it

is in state A and a T will be produced next with probability
1. Conversely, if a T was generated, it is in state B and then
an H will be generated. From this point forward, the process
is exactly predictable: hµ = 0 bits per symbol. In contrast to the
first two cases, it is a structurally complex process: Cµ= 1 bit.
Conditioning on histories of increasing length gives the distinct
future conditional distributions corresponding to these three
states. Generally, for p-periodic processes hµ = 0 bits symbol−1

and Cµ= log2p bits.
Finally, Fig. 1d gives the ε-machine for a process generated

by a generic hidden-Markov model (HMM). This example helps
dispel the impression given by the Prediction Game examples
that ε-machines are merely stochastic finite-state machines. This
example shows that there can be a fractional dimension set of causal
states. It also illustrates the general case for HMMs. The statistical
complexity diverges and so we measure its rate of divergence—the
causal states’ information dimension44.

As a second example, let us consider a concrete experimental
application of computational mechanics to one of the venerable
fields of twentieth-century physics—crystallography: how to find
structure in disordered materials. The possibility of turbulent
crystals had been proposed a number of years ago by Ruelle53.
Using the ε-machine we recently reduced this idea to practice by
developing a crystallography for complexmaterials54–57.

Describing the structure of solids—simply meaning the
placement of atoms in (say) a crystal—is essential to a detailed
understanding of material properties. Crystallography has long
used the sharp Bragg peaks in X-ray diffraction spectra to infer
crystal structure. For those cases where there is diffuse scattering,
however, finding—let alone describing—the structure of a solid
has been more difficult58. Indeed, it is known that without the
assumption of crystallinity, the inference problem has no unique
solution59. Moreover, diffuse scattering implies that a solid’s
structure deviates from strict crystallinity. Such deviations can
come in many forms—Schottky defects, substitution impurities,
line dislocations and planar disorder, to name a few.

The application of computational mechanics solved the
longstanding problem—determining structural information for
disordered materials from their diffraction spectra—for the special
case of planar disorder in close-packed structures in polytypes60.
The solution provides the most complete statistical description
of the disorder and, from it, one could estimate the minimum
effective memory length for stacking sequences in close-packed
structures. This approach was contrasted with the so-called fault
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Figure 3 | Complexity–entropy diagrams. a, The one-dimensional, spin-1/2 antiferromagnetic Ising model with nearest- and next-nearest-neighbour
interactions. Reproduced with permission from ref. 61, © 2008 AIP. b, Complexity–entropy pairs (hµ,Cµ) for all topological binary-alphabet
ε-machines with n= 1,...,6 states. For details, see refs 61 and 63.

model by comparing the structures inferred using both approaches
on two previously published zinc sulphide diffraction spectra. The
net result was that having an operational concept of pattern led to a
predictive theory of structure in disorderedmaterials.

As a further example, let us explore the nature of the interplay
between randomness and structure across a range of processes.
As a direct way to address this, let us examine two families of
controlled system—systems that exhibit phase transitions. Consider
the randomness and structure in two now-familiar systems: one
from nonlinear dynamics—the period-doubling route to chaos;
and the other from statistical mechanics—the two-dimensional
Ising-spin model. The results are shown in the complexity–entropy
diagrams of Fig. 2. They plot a measure of complexity (Cµ and E)
versus the randomness (H (16)/16 and hµ, respectively).

One conclusion is that, in these two families at least, the intrinsic
computational capacity is maximized at a phase transition: the
onset of chaos and the critical temperature. The occurrence of this
behaviour in such prototype systems led a number of researchers
to conjecture that this was a universal interdependence between
randomness and structure. For quite some time, in fact, there
was hope that there was a single, universal complexity–entropy
function—coined the ‘edge of chaos’ (but consider the issues raised
in ref. 62). We now know that although this may occur in particular
classes of system, it is not universal.

It turned out, though, that the general situation is much more
interesting61. Complexity–entropy diagrams for two other process
families are given in Fig. 3. These are rather less universal looking.
The diversity of complexity–entropy behaviours might seem to
indicate an unhelpful level of complication. However, we now see
that this is quite useful. The conclusion is that there is a wide
range of intrinsic computation available to nature to exploit and
available to us to engineer.

Finally, let us return to address Anderson’s proposal for nature’s
organizational hierarchy. The idea was that a new, ‘higher’ level is
built out of properties that emerge from a relatively ‘lower’ level’s
behaviour. He was particularly interested to emphasize that the new
level had a new ‘physics’ not present at lower levels. However, what
is a ‘level’ and how different should a higher level be from a lower
one to be seen as new?

We can address these questions now having a concrete notion of
structure, captured by the ε-machine, and a way to measure it, the
statistical complexityCµ. In line with the theme so far, let us answer
these seemingly abstract questions by example. In turns out that
we already saw an example of hierarchy, when discussing intrinsic
computational at phase transitions.

Specifically, higher-level computation emerges at the onset
of chaos through period-doubling—a countably infinite state
ε-machine42—at the peak of Cµ in Fig. 2a.

How is this hierarchical? We answer this using a generalization
of the causal equivalence relation. The lowest level of description is
the raw behaviour of the system at the onset of chaos. Appealing to
symbolic dynamics64, this is completely described by an infinitely
long binary string. We move to a new level when we attempt to
determine its ε-machine. We find, at this ‘state’ level, a countably
infinite number of causal states. Although faithful representations,
models with an infinite number of components are not only
cumbersome, but not insightful. The solution is to apply causal
equivalence yet again—to the ε-machine’s causal states themselves.
This produces a new model, consisting of ‘meta-causal states’,
that predicts the behaviour of the causal states themselves. This
procedure is called hierarchical ε-machine reconstruction45, and it
leads to a finite representation—a nested-stack automaton42. From
this representation we can directly calculate many properties that
appear at the onset of chaos.

Notice, though, that in this prescription the statistical complexity
at the ‘state’ level diverges. Careful reflection shows that this
also occurred in going from the raw symbol data, which were
an infinite non-repeating string (of binary ‘measurement states’),
to the causal states. Conversely, in the case of an infinitely
repeated block, there is no need to move up to the level of causal
states. At the period-doubling onset of chaos the behaviour is
aperiodic, although not chaotic. The descriptional complexity (the
ε-machine) diverged in size and that forced us to move up to the
meta- ε-machine level.

This supports a general principle that makes Anderson’s notion
of hierarchy operational: the different scales in the natural world are
delineated by a succession of divergences in statistical complexity
of lower levels. On the mathematical side, this is reflected in the
fact that hierarchical ε-machine reconstruction induces its own
hierarchy of intrinsic computation45, the direct analogue of the
Chomsky hierarchy in discrete computation theory65.

Closing remarks
Stepping back, one sees that many domains face the confounding
problems of detecting randomness and pattern. I argued that these
tasks translate into measuring intrinsic computation in processes
and that the answers give us insights into hownature computes.

Causal equivalence can be adapted to process classes from
many domains. These include discrete and continuous-output
HMMs (refs 45,66,67), symbolic dynamics of chaotic systems45,
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molecular dynamics68, single-molecule spectroscopy67,69, quantum
dynamics70, dripping taps71, geomagnetic dynamics72 and
spatiotemporal complexity found in cellular automata73–75 and in
one- and two-dimensional spin systems76,77. Even then, there are
many remaining areas of application.

Specialists in the areas of complex systems and measures of
complexity will miss a number of topics above: more advanced
analyses of stored information, intrinsic semantics, irreversibility
and emergence46–52; the role of complexity in a wide range of
application fields, including biological evolution78–83 and neural
information-processing systems84–86, to mention only two of
the very interesting, active application areas; the emergence of
information flow in spatially extended and network systems74,87–89;
the close relationship to the theory of statistical inference85,90–95;
and the role of algorithms from modern machine learning for
nonlinear modelling and estimating complexity measures. Each
topic is worthy of its own review. Indeed, the ideas discussed here
have engaged many minds for centuries. A short and necessarily
focused review such as this cannot comprehensively cite the
literature that has arisen even recently; not so much for its
size, as for its diversity.

I argued that the contemporary fascination with complexity
continues a long-lived research programme that goes back to the
origins of dynamical systems and the foundations of mathematics
over a century ago. It also finds its roots in the first days of
cybernetics, a half century ago. I also showed that, at its core, the
questions its study entails bear on some of the most basic issues in
the sciences and in engineering: spontaneous organization, origins
of randomness, and emergence.

The lessons are clear. We now know that complexity arises
in a middle ground—often at the order–disorder border. Natural
systems that evolve with and learn from interaction with their im-
mediate environment exhibit both structural order and dynamical
chaos.Order is the foundation of communication between elements
at any level of organization, whether that refers to a population of
neurons, bees or humans. For an organismorder is the distillation of
regularities abstracted from observations. An organism’s very form
is a functional manifestation of its ancestor’s evolutionary and its
own developmental memories.

A completely ordered universe, however, would be dead. Chaos
is necessary for life. Behavioural diversity, to take an example, is
fundamental to an organism’s survival. No organism canmodel the
environment in its entirety. Approximation becomes essential to
any system with finite resources. Chaos, as we now understand it,
is the dynamical mechanism by which nature develops constrained
and useful randomness. From it follow diversity and the ability to
anticipate the uncertain future.

There is a tendency, whose laws we are beginning to
comprehend, for natural systems to balance order and chaos, to
move to the interface between predictability and uncertainty. The
result is increased structural complexity. This often appears as
a change in a system’s intrinsic computational capability. The
present state of evolutionary progress indicates that one needs
to go even further and postulate a force that drives in time
towards successively more sophisticated and qualitatively different
intrinsic computation. We can look back to times in which
there were no systems that attempted to model themselves, as
we do now. This is certainly one of the outstanding puzzles96:
how can lifeless and disorganized matter exhibit such a drive?
The question goes to the heart of many disciplines, ranging
from philosophy and cognitive science to evolutionary and
developmental biology and particle astrophysics96. The dynamics
of chaos, the appearance of pattern and organization, and
the complexity quantified by computation will be inseparable
components in its resolution.
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Communities, modules and large-scale structure
in networks
M. E. J. Newman

Networks, also called graphs by mathematicians, provide a useful abstraction of the structure of many complex systems,
ranging from social systems and computer networks to biological networks and the state spaces of physical systems. In the
past decade there have been significant advances in experiments to determine the topological structure of networked systems,
but there remain substantial challenges in extracting scientific understanding from the large quantities of data produced by
the experiments. A variety of basic measures and metrics are available that can tell us about small-scale structure in networks,
such as correlations, connections and recurrent patterns, but it is considerably more difficult to quantify structure on medium
and large scales, to understand the ‘big picture’. Important progress has been made, however, within the past few years, a
selection of which is reviewed here.

A network is, in its simplest form, a collection of dots joined
together in pairs by lines (Fig. 1). In the jargon of the field,
a dot is called a ‘node’ or ‘vertex’ (plural ‘vertices’) and a

line is called an ‘edge’. Networks are used in many branches of
science as a way to represent the patterns of connections between
the components of complex systems1–6. Examples include the
Internet7,8, in which the nodes are computers and the edges are data
connections such as optical-fibre cables, food webs in biology9,10,
in which the nodes are species in an ecosystem and the edges
represent predator–prey interactions, and social networks11,12, in
which the nodes are people and the edges represent any of a
variety of different types of social interaction including friendship,
collaboration, business relationships or others.

In the past decade there has been a surge of interest in both em-
pirical studies of networks13 and development of mathematical and
computational tools for extracting insight from network data1–6.
One common approach to the study of networks is to focus on
the properties of individual nodes or small groups of nodes, asking
questions such as, ‘Which is the most important node in this net-
work?’ or ‘Which are the strongest connections?’ Such approaches,
however, tell us little about large-scale network structure. It is this
large-scale structure that is the topic of this paper.

The best-studied form of large-scale structure in networks is
modular or community structure14,15. A community, in this context,
is a dense subnetwork within a larger network, such as a close-knit
group of friends in a social network or a group of interlinked web
pages on the World Wide Web (Fig. 1). Although communities
are not the only interesting form of large-scale structure—there
are others that we will come to—they serve as a good illustration
of the nature and scope of present research in this area and will
be our primary focus.

Communities are of interest for a number of reasons. They
have intrinsic interest because they may correspond to functional
units within a networked system, an example of the kind of
link between structure and function that drives much of the
present excitement about networks. In a metabolic network16,
for instance—the network of chemical reactions within a cell—a
community might correspond to a circuit, pathway or motif that
carries out a certain function, such as synthesizing or regulating a
vital chemical product17. In a social network, a community might
correspond to an actual community in the conventional sense of the

Department of Physics and Center for the Study of Complex Systems, University of Michigan, Ann Arbor, Michigan 48109, USA. e-mail: mejn@umich.edu.

Figure 1 | Example network showing community structure. The nodes of
this network are divided into three groups, with most connections falling
within groups and only a few between groups.

word, a group of people brought together by a common interest, a
common location or workplace or family ties18.

However, there is another reason, less often emphasized, why
a knowledge of community structure can be useful. In many
networks it is found that the properties of individual communities
can be quite different. Consider, for example, Fig. 2, which shows
a network of collaborations among a group of scientists at a
research institute. The network divides into distinct communities as
indicated by the colours of the nodes. (We will see shortly how this
division is accomplished.) In this case, the communities correspond
closely to the acknowledged research groups within the institute, a
demonstration that indeed the discovery of communities can point
to functional divisions in a system. However, notice also that the
structural features of the different communities are widely varying.
The communities highlighted in red and light blue, for instance,
appear to be loose-knit groups of collaborators working together
in various combinations, whereas the groups in yellow and dark
blue are both organized around a central hub, perhaps a group
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Figure 2 |A network of collaborations among scientists at a research
institute. Nodes in this network represent the scientists and there is an
edge between any pair of scientists who co-authored a published paper
during the years of the study. Colours represent communities, as
discovered using a modularity-maximization technique.

leader or principal investigator of some kind. Distinctions such as
these, which may be crucial for understanding the behaviour of
the system, become apparent only when one looks at structure on
the community level.

The network in this particular example has the nice property that
it is small enough and sparse enough to be drawn clearly on the page.
One does not need any calculations to pick out the communities in
this case: a good eye will do the job. However, when we are working
with larger or denser networks, networks that can have thousands
or even millions of nodes (or a smaller number of nodes but very
many edges), clear visualization becomes impossible and we must
turn instead to algorithmic methods for community detection and
the development of such methods has been a highly active area of
research in the past few years15.

The community-detection problem is challenging in part be-
cause it is not verywell posed. It is agreed that the basic problem is to
find locally dense regions in a network, but this is not a precise for-
mulation. If one is to create a method for detecting communities in
amechanical way, onemust first define exactly what onemeans by a
community. Researchers have been aware of this issue from the out-
set and have proposed a wide variety of definitions, based on counts
of edges within and between communities, counts of paths across
networks, spectral properties of network matrices, information-
theoretic measures, randomwalks andmany other quantities. With
this array of definitions comes a corresponding array of algorithms
that seek to find the communities so defined14,15,19–31. Unfortu-
nately, it is no easy matter to determine which of these algorithms
are the best, because the perception of good performance itself
depends on how one defines a community and each algorithm
is necessarily good at finding communities according to its own

definition. To get around this circularity, we typically take one of
two approaches. In the first, algorithms are tested against real-world
networks for which there is an accepted division into communities,
often based on additionalmeasurements that are independent of the
network itself, such as interviews with participants in a social net-
work or analysis of the text of web pages. If an algorithm can reliably
find the accepted structure then it is considered successful. In the
second approach, algorithms are tested against computer-generated
networks that have some form of community structure artificially
embedded within them. A number of standard benchmark net-
works have been proposed for this purpose, such as the ‘four groups’
networks14 or so-called the LFR benchmark networks32. A number
of studies have been published that compare the performance of
proposed algorithms in these benchmark tests33,34. Although these
approaches do set concrete targets for performance of community-
detectionmethods, there is room for debate over whether those tar-
gets necessarily align with good performance in broader real-world
situations. If we tune our algorithms to solve specific benchmark
problems we run the risk of creating algorithms that solve those
problemswell but other (perhapsmore realistic) problems poorly.

This is a crucial issue and one that is worth bearing inmind as we
take a look in the following sections at the present state of research
on community detection. As we will see, however, researchers have,
in spite of the difficulties, come up with a range of approaches that
return real, useful information about the large-scale structure of
networks, and in the process have learned much, both about indi-
vidual networks that have been analysed and about mathematical
methods for representing and understanding network structure.

Hierarchical clustering
Studies of communities in networks go back at least to the 1970s,
when a number of techniques were developed for their detection,
particularly in computer science and sociology. In computer
science the problem of graph partitioning35, which is similar
but not identical to the problem of community detection, has
received attention for its engineering applications, but the methods
developed, such as spectral partitioning36 and the Kernighan–
Lin algorithm37, have also been fruitfully applied in other areas.
However, it is thework of sociologists that is perhaps themost direct
ancestor ofmodern techniques of community detection.

An early, and still widely used, technique for detecting
communities in social networks is hierarchical clustering5,11.
Hierarchical clustering is in fact not a single technique but an
entire family of techniques, with a single central principle: if we
can derive a measure of how strongly nodes in a network are
connected together, then by grouping the most strongly connected
we can divide the network into communities. Specific hierarchical
clusteringmethods differ on the particularmeasure of strength used
and on the rules by which we group strongly connected nodes.
Most common among themeasures used are the so-called structural
equivalence measures, which focus on the number nij of common
network neighbours that two nodes i, j have. In a social network
of friendships, for example, two people with many mutual friends
are more likely to be close than two people with few and thus a
count of mutual friends can be used as a measure of connection
strength. Rather than using the raw count nij , however, one typically
normalizes it in some way, leading to measures such as the Jaccard
coefficient and cosine similarity. For example, the cosine similarity
σij between nodes i and j is defined by

σij =
nij
√
kikj

where ki is the degree of node i (that is, the number of con-
nections it has). This measure has the nice property that its
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Figure 3 |Average-linkage clustering of a small social network. This tree or ‘dendrogram’ shows the results of the application of average-linkage
hierarchical clustering using cosine similarity to the well-known karate-club network of Zachary38, which represents friendship between members of a
university sports club. The calculation finds two principal communities in this case (the left and right subtrees of the dendrogram), which correspond
exactly to known factions within the club (represented by the colours).

value falls always between zero and one—zero if the nodes have
no common neighbours and one if they have all their neigh-
bours in common.

Once one has defined a measure of connection strength, one
can begin to group nodes together, which is done in hierarchical
fashion, first grouping single nodes into small groups, then
grouping those groups into larger groups and so forth. There are a
number of methods by which this grouping can be carried out, the
three common ones being the methods known as single-linkage,
complete-linkage and average-linkage clustering. Single-linkage
clustering is the most widely used by far, primarily because it is
simple to implement, but in fact average-linkage clustering gener-
ally gives superior results and is notmuch harder to implement.

Figure 3 shows the result of applying average-linkage hierarchical
clustering based on cosine similarity to a famous network from
the social networks literature, Zachary’s karate-club network38.
This network represents patterns of friendship between members
of a karate club at a US university, compiled from observations
and interviews of the club’s 34 members. The network is of
particular interest because during the study a dispute arose among
the club’s members over whether to raise club fees. Unable to
reconcile their differences, the members of the club split into
two factions, with one faction departing to start a separate club.
It has been claimed repeatedly that by examining the pattern
of friendships depicted in the network (which was compiled
before the split happened) one can predict the membership of the
two factions14,20,26,27,38–40.

Figure 3 shows the output of the hierarchical clustering proce-
dure in the form of a tree or ‘dendrogram’ representing the order in
which nodes are grouped together into communities. It should be
read from the bottom up: at the bottom we have individual nodes
that are grouped first into pairs, and then into larger groups as
we move up the tree, until we reach the top, where all nodes have
been gathered into one group. In a single image, this dendrogram
captures the entire hierarchical clustering process. Horizontal cuts
through the figure represent the groups at intermediate stages.

As we can see, the method in this case joins the nodes together
into two large groups, consisting of roughly half the network each,
before finally joining those two into one group at the top of the
dendrogram. It turns out that these two groups correspondprecisely
to the groups into which the club split in real life, which are
indicated by the colours in the figure. Thus, in this case the method
works well. It has effectively predicted a future social phenomenon,
the split of the club, fromquantitative datameasured before the split
occurred. It is the promise of outcomes such as this that drivesmuch
of the present interest in networks.

Hierarchical clustering is straightforward to understand and to
implement, but it does not always give satisfactory results. As it
exists in many variants (different strength measures and different
linkage rules) and different variants give different results, it is not
clear which results are the ‘correct’ ones. Moreover, the method
has a tendency to group together those nodes with the strongest
connections but leave out those with weaker connections, so that
the divisions it generates may not be clean divisions into groups,
but rather consist of a few dense cores surrounded by a periphery of
unattached nodes. Ideally, wewould like amore reliablemethod.

Optimization methods
Over the past decade or so, researchers in physics and applied
mathematics have taken an active interest in the community-
detection problem and introduced a number of fruitful approaches.
Among the first proposals were approaches based on a measure
known as betweenness14,21,41, in which one calculates one of
several measures of the flow of (imaginary) traffic across the
edges of a network and then removes from the network those
edges with the most traffic. Two other related approaches are
the use of fluid-flow19 and current-flow analogies42 to identify
edges for removal; the latter idea has been revived recently
to study structure in the very largest networks30. A different
class of methods are those based on information-theoretic ideas,
such as the minimum-description-length methods of Rosvall and
Bergstrom26,43 and related methods based on statistical inference,
such as the message-passing method of Hastings25. Another large
class exploits links between community structure and processes
taking place on networks, such as randomwalks44,45, Potts models46
or oscillator synchronization47. A contrasting set of approaches
focuses on the detection of ‘local communities’23,24 and seeks to
answer the question of whether we can, given a single node,
identify the community to which it belongs, without first finding
all communities in the network. In addition to being useful for
studying limited portions of larger networks, this approach can give
rise to overlapping communities, in which a node can belong to
more than one community. (The generalized community-detection
problem in which overlaps are allowed in this way has been an area
of increasing interest within the field in recent years22,31.)

However, the methods most heavily studied by physicists, per-
haps unsurprisingly, are those that view the community-detection
problem by analogy with equilibrium physical processes and treat
it as an optimization task. The basic idea is to define a quantity
that is high for ‘good’ divisions of a network and low for ‘bad’
ones, and then to search through possible divisions for the one
with the highest score. This approach is similar to the minimization
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of energy when finding the ground state or stable state of a
physical system, and the connection has been widely exploited. A
variety of different measures for assigning scores have been pro-
posed, such as the so-called E/I ratio48, likelihood-based measures49
and others50, but the most widely used is the measure known
as the modularity18,51.

Suppose you are given a network and a candidate division into
communities. A simple measure of the quality of that division
is the fraction of edges that fall within (rather than between)
communities. If this fraction is high then you have a good division
(Fig. 1). However, this measure is not ideal. It is maximized by
putting all nodes in a single group together, which is a correct but
trivial form of community structure and not of particular interest.
A better measure is the so-called modularity, which is defined to be
the fraction of edges within communities minus the expected value
of that fraction if the positions of the edges are randomized51. If
there are more edges within communities than one would find in a
randomized network then the modularity will be positive and large
positive values indicate good community divisions.

Let Aij be equal to the number of edges between nodes i and j
(normally zero or one); Aij is an element of the ‘adjacency matrix’
of the network. It can be shown that for a network with m edges
in total, the expected number that fall between nodes i and j if
the positions of the edges are randomized is given by kikj/2m,
where ki is again the degree of node i. Thus, the actual number of
edges between i and j minus the expected number is Aij−kikj/2m
and the modularity Q is the sum of this quantity over all pairs of
nodes that fall in the same community. If we label the communities
and define si to be the label of the community to which node i
belongs, then we can write

Q=
1
2m

∑
ij

[
Aij−

kikj
2m

]
δsi,sj

where δij is the Kronecker delta and the leading constant 1/2m is
included only by convention—it normalizesQ to measure fractions
of edges rather than total numbers but its presence has no effect on
the position of the modularity maximum.

The modularity takes precisely the form H = −
∑

ij Jijδsi,sj of
the Hamiltonian of a (disordered) Potts model, apart from a
minus sign, and hence its maximization is equivalent to finding the
ground state of the Potts model—the community assignments si act
similarly to spins on the nodes of the network. Unfortunately, direct
optimization of the modularity by an exhaustive search through the
possible spin states is intractable for any but the smallest of net-
works, and faster indirect (but exact) algorithms have been proved
rigorously not to exist52. A variety of approximate techniques from
physics and elsewhere, however, are applicable to the problem and
seem to give good, but not perfect, solutions with relatively modest
computational effort. These include simulated annealing17,53,
greedy algorithms54,55, semidefinite programming28, spectral
methods56 and several others40,57. Modularity maximization forms
the basis for other more complex approaches as well, such as the
methodof Blondel et al.27, amultiscalemethod inwhichmodularity
is first optimized using a greedy local algorithm, then a ‘supernet-
work’ is formed whose nodes represent the communities so discov-
ered and the greedy algorithm is repeated on this supernetwork.
The process iterates until no further improvements in modularity
are possible. This method has become widely used by virtue of its
relative computational efficiency and the high quality of the results
it returns. In a recent comparative study it was found to be one of the
best available algorithms when tested against computer-generated
benchmark problems of the type described in the introduction34.

Figure 2, showing collaboration patterns among scientists, is an
example of community detection using modularity maximization.

One of the nice features of the modularity method is that one does
not need to know in advance the number of communities contained
in the network: a free maximization of the modularity, in which
the number of communities is allowed to vary, will tell us the most
advantageous number, as well as finding the exact division of the
nodes among communities.

Although modularity maximization is efficient, widely used
and gives informative results, it—like hierarchical clustering—has
deficiencies. In particular, it has a known bias in the size of the
communities it finds—it has a preference for communities of size
roughly equal to the square root of the size of the network58.
Modifications of the method have been proposed that allow one
to vary this preferred size59,60, but not to eliminate the preference
altogether. The modularity method also ignores any information
stored in the positions of edges that run between communities:
as modularity is calculated by counting only within-group edges,
one could move the between-group edges around in any way
one pleased and the value of the modularity would not change
at all. One might imagine that one could do a better job of
detecting communities if one were to make use of the information
represented by these edges.

In the past few years, therefore, researchers have started to look
for a more principled approach to community detection, and have
gravitated towards the method of block modelling, a method that
traces its roots back to the 1970s (refs 61,62), but which has recently
enjoyed renewed popularity, with some powerful new methods
and results emerging.

Block models
Block modelling63–67 is in effect a form of statistical inference for
networks. In the same way that we can gain some understanding
from conventional numerical data by fitting, say, a straight line
through data points, so we can gain understanding of the structure
of networks by fitting them to a statistical network model. In
particular, if we are interested in community structure then we can
create a model of networks that contain such structure, then fit it
to an observed network and in the process learn about community
structure in that observed network, if it exists.

A simple example of a block model is a model network in
which one has a certain number n of nodes and each node is
assigned to one of several labelled groups or communities. In
addition, one specifies a set of probabilities prs, which represent
the probability that there will be an edge between a node in
group r and a node in group s. This model can be used, for
instance, in a generative process to create a random network with
community structure. By making the edge probabilities higher for
pairs of nodes in the same group and lower for pairs in different
groups, then generating a set of edges independently with exactly
those probabilities, one can produce an artificial network that has
many edges within groups and few between them—the classic
community structure.

However, we can also turn the experiment around and ask, ‘If we
observe a real network and we suppose that it was generated by this
model, what would the values of the model’s parameters have to
be?’ More precisely, what values of the parameters are most likely
to have generated the network we see in real life? This leads us to
a ‘maximum likelihood’ formulation of the community-detection
problem. The probability, or likelihood, that an observed network
was generated by this blockmodel is given by

L=
∏
i<j

pAij
sisj (1−psisj )

1−Aij

where Aij is an element of the adjacency matrix, as before,
and si is again the community to which node i belongs. Now
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we simply maximize this quantity over the probabilities prs and
the communities si. Again we have turned the detection of
communities into an optimization problem, albeit a harder one
than the modularity-maximization problem. The values of the
probabilities prs are usually of lesser interest to us, but if we can find
the community parameters si that maximize the likelihood then we
have solved our community-detection problem.

Although it seems elegant and well-founded in principle, the
surprising thing about this approach, at least as we have described
it here, is that it does not work well. Figure 4a shows an example
application of (a slight variant of) the method to a network of
weblogs, or ‘blogs’—personal web pages maintained by individuals
or groups, on which they publish their thoughts on topics of their
choosing. This particular network, which was assembled by Adamic
and Glance68, is composed of blogs about US politics that were
active around the time of the US presidential election in 2004, and
the edges in the network represent web hyperlinks between blogs.
Adamic and Glance showed that this network was strongly divided
into two communities, one of left-leaning (that is, liberal) blogs,
which commonly link to one another, and the other of right-leaning
(conservative) ones, which also link to one another, but that there
were few links between left and right. The communities appear as
roughly the left and right halves of the network as it is drawn in
Fig. 4a. The colours in the figure show the division of the network
into two communities foundwith themaximum likelihoodmethod
above, and it is clear that the method has failed to find the known
division in this case. What has gone wrong?

On closer inspection, we find that the method fails in this case
because it does not take into account the wide variation among the
degrees of nodes in the network. In this network (and many others)
degrees vary over a great range, whereas degrees in the block model
are Poisson distributed and narrowly peaked about their mean.
This means, in effect, that there is no choice of parameters for the
model that gives a good fit to the data. Fitting this block model
is similar to fitting a straight line through an inherently curved
set of data points—you can do it, but it is unlikely to give you a
meaningful answer.

It turns out, however, that one can fix such problems by suitably
modifying the model. Figure 4b shows a different fit to the same
network using now a ‘degree-corrected’ block model that allows for
widely varying degrees49. As the figure shows, the model now finds
a division that corresponds closely to the known division between
left- and right-leaning blogs. The moral of the story is that it is not
hard to come up with models so unrealistic that they will not fit
the observed network for any parameter values and one must guard
against this possibility if the method is to work.

Once we deal with this issue, however, the block-model method
has some promising features. If we have found the parameter values
for the best fit of the model to an observed network, we can
then plug those values back into the model and use the model to
generate further networks that are similar to the original network,
but not identical. This ability to generate similar networks can be
used, for instance, to guess at the locations of possible missing
edges in a network. For many networks our data are incomplete
or unreliable, and there may be edges missing from the recorded
structure. Looking at a large selection of generated networks that are
similar to the original, one can find edges that appear often in the
generated networks but not in the original; such edges turn out to
be reliable candidates for missing data. Guimerá and Sales-Pardo69
have shown that this approach is at least as accurate as, and often
better than, previousmethods for predictingmissing edges.

Another nice feature of the block-model method is that it lends
itself to many variants that are suitable for particular types of
problem. For instance, in some problems we can, with some effort,
carry out experiments to determine the community membership of

a

b

Figure 4 |Analysis of a network of links between web sites about US
politics. The two panels represent the divisions found in a network of
political weblogs using two different versions of the block model method.
a, Division into two communities discovered using a fit to the basic block
model described in the text, which fails to find the acknowledged division of
the network into politically left- and right-leaning communities. b, Division
using a block model that corrects for the broad distribution of node degrees
in the network. This division corresponds closely to the acknowledged one.
Figure reproduced with permission from ref. 49, © 2011 APS. Network data
taken from ref. 68.

a few nodes, and the goal is to determine the rest. In recent work,
Yan et al.70 have devised a variant of the block-model method
in which one can use the model to determine on which nodes
these experiments should be done, by looking for the nodes whose
membership information will be most useful, in the sense that it
will tell us as much as possible not only about the measured nodes
but also about the membership of other nodes in the network. They
show that the accuracy of community detection can be enormously
improved by carrying out just a few experiments on nodes carefully
chosen using this technique.

However, perhaps the most promising feature of the block-
model method is that it is not limited to detecting traditional
community structure in networks. In principle, any type of
structure that can be formulated as a probabilistic model can be
detected, including overlapping communities, bipartite or k-partite
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Figure 5 |Hierarchical divisions in a food web of grassland species.
Outlined sets of nodes represent groups of species at different levels in the
hierarchy. For clarity only two levels in the hierarchy are shown, although
five levels were found in some parts of the network. Reproduced from
ref. 71.

structures, communities within communities andmany others. The
field is only just beginning to explore the wide range of possibilities
that this approach offers, but Fig. 5 shows one example, drawn
from my own work71. In this study we examined the food web of
a grassland ecosystem—the network of predator–prey interactions
between species—and searched for a generalized form of hierar-
chical community structure in which groups divide into subgroups
and subsubgroups and so on. Using a model that employs a tree
structure reminiscent of the dendrogram of Fig. 3 to represent the
hierarchy of groups, and edge probabilities that depend on shortest
paths through the tree, we were able to discover an entire spectrum
of structure within the network, spanning the range from small
motifs of a few nodes to the size of the entire network. Of particular
note in this example is the way in which the method groups host
species (squares) with their parasites (yellow triangles), but at the
next level in the hierarchy also gathers the parasites separately
into their own groups. In some sense, the parasites have more in
common with each other than with their host, and hence can be
thought of as belonging to a separate group, even though they have
no direct interactions with one another through the food web. The
calculation realizes this and divides the network accordingly.

Conclusion
The study of network structure and its links with the function and
behaviour of complex systems is a large and active field of endeavor,
with new results appearing daily and an energetic community of
researchers working on both methods and applications. Some of
the ideas discussed here are now well established and widely used,
whereas others, such as the block-modelmethods, are being actively
researched and developed, and there are many others still that there
is not room to describe in this article. The pace of developments
is, if anything, accelerating, and the field offers substantial promise
for those in physics, biology, the social sciences and elsewhere, for
whom the ability to make sense of the structures, large and small,
found in networks can open a new window on the behaviour of
systems of many kinds.
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Modelling dynamical processes in complex
socio-technical systems
Alessandro Vespignani1,2

In recent years the increasing availability of computer power and informatics tools has enabled the gathering of reliable data
quantifying the complexity of socio-technical systems. Data-driven computational models have emerged as appropriate tools to
tackle the study of dynamical phenomena as diverse as epidemic outbreaks, information spreading and Internet packet routing.
These models aim at providing a rationale for understanding the emerging tipping points and nonlinear properties that often
underpin the most interesting characteristics of socio-technical systems. Here, using diffusion and contagion phenomena as
prototypical examples, we review some of the recent progress in modelling dynamical processes that integrates the complex
features and heterogeneities of real-world systems.

Questions concerning how pathogens spread in population
networks, how blackouts can spread on a nationwide scale,
or how efficiently we can search and retrieve data on large

information structures are generally related to the dynamics of
spreading and diffusion processes. Social behaviour, the spread
of cultural norms, or the emergence of consensus may often
be modelled as the dynamical interaction of a set of connected
agents. Phenomena as diverse as ecosystems or animal and insect
behaviour can all be described as the dynamic behaviour of
collections of coupled oscillators. Although all these phenomena
refer to very different systems, their mathematical description
relies on very similar models that depend on the definition
and characterization of a large number of individuals and their
interactions in spatially extended systems.

The modelling of dynamical processes is a research field that
crosses different disciplines and has developed an impressive array
of methods and approaches, ranging from simple explanatory
models to realistic approaches capable of providing quantitative
insight into real-world systems. Initially these models used
simplistic assumptions for the micro-processes of interaction and
were mostly concerned with the study of the emerging macro-level
behaviour. This interest has favoured the use of techniques akin
to statistical physics and the analysis of nonlinear, equilibrium
and non-equilibrium physical systems in the study of collective
behaviour in social and population systems. In recent years,
however, the increase in interdisciplinary work and the availability
of system-level high-quality data has opened the way to data-driven
models aimed at a realistic description of complex socio-technical
systems. Modelling approaches to dynamical processes in complex
systems have been expanded into schemes that explicitly include
spatial structures and have thus grown into a multiscale framework
in which the various possible granularities of the system are
considered through different approximations. These models offer
a number of interesting and sometimes unexpected behaviours
whose theoretical understanding represents a new challenge that
has considerably transformed the mathematical and conceptual
framework for the study of dynamical processes in complex systems.

Dynamical processes and phase transitions
The study of dynamical processes and the emergence of macro-
level collective behaviour in complex systems follows a conceptual
route essentially similar to the statistical physics approach to

1Department of Physics, College of Computer and Information Sciences, Bouvé College of Health Sciences, Northeastern University, Boston,
Massachusetts 02115, USA, 2Institute for Scientific Interchange (ISI), Torino, 10133, Italy. e-mail: a.vespignani@neu.edu.

non-equilibrium phase transitions. A prototypical example is that
of contagion processes. Epidemiologists, computer scientists and
social scientists share a common interest in studying contagion
phenomena and rely on very similar spreading models for
the description of the diffusion of viruses, knowledge and
innovations1–5. All these processes define a contagion dynamics
that can be seen as an actual biological pathogen that spreads
from host to host, or a piece of information or knowledge that
is transmitted during social interactions. Let us consider the
simple susceptible–infected–recovered (SIR) epidemic model. In
this model, infected individuals (labelled with the state I ) can
propagate the contagion to susceptible neighbours (labelled with
the state S) with rate λ, while infected individuals recover with
rate µ and become removed from the population. This is the
prototypical model for the spread of infectious diseases where
individuals recover and are immune to disease after a typical
time that, on average, can be expressed as the inverse of the
recovery rate. A classic variation of this model is the susceptible–
infected–susceptible (SIS) model, in which individuals revert to
the susceptible state with rate µ, modelling the possibility of
re-infection of individuals. The mapping between epidemic models
and non-equilibrium phase transitions was pointed out in physics
long ago, making those models of very broad relevance also
outside the area of information and disease spreading. The static
properties of the SIR model can indeed be mapped to an edge-
percolation process6. Analogously, the SIS model can be regarded
as a generalization of the contact-process model7, widely studied
as the paradigmatic example of an absorbing-state phase transition
with a unique absorbing state8.

A cornerstone feature of epidemic processes is the presence of the
so-called epidemic threshold1. In a fully homogeneous population,
the behaviour of the SIR model is controlled by the reproductive
number R0=β/µ, where β = λ〈k〉 is the per-capita spreading rate,
which takes into account the average number of contacts 〈k〉 of each
individual. The reproductive number simply identifies the average
number of secondary cases generated by a primary case in an
entirely susceptible population and defines an epidemic threshold
such that only if R0 ≥ 1 (β ≥µ) can epidemics reach an endemic
state and spread into a closed population. The SIS and SIR models
are indeed characterized by a threshold defining the transition
between two very different regimes. These regimes are determined
by the values of the disease parameters, and characterized by
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Figure 1 | Phase diagram of epidemic models. Illustration of the behaviour
of the prevalence i∞ for the SIS and SIR model in a heterogeneous network
(solid line) as a function of the spreading rate β/µ, compared with the
theoretical prediction for a homogeneous network (dashed line). The figure
clearly shows the difference between homogeneous and heterogeneous
networks, where the epidemic threshold is shifted to very small values. For
scale-free networks with degree distribution exponent γ ≤ 3, however, the
associated prevalence i∞ is extremely small over a large range of values of
β/µ. In other words, as noted since the first work on epidemic spreading in
complex networks, the bad news about the suppression (or very small
value) of the epidemic threshold is balanced by the very low prevalence
attained by the epidemic46.

the global parameter i∞, which identifies the density of infected
individuals (or nodes in a network) in the infinite-time limit. In
the limit of an infinitely large population, this density is zero
below the threshold and assumes a finite value above the threshold.
From this perspective we can consider the epidemic threshold as
the critical point of the system and i∞ as representing the order
parameter characterizing the transition. Below the critical point the
system relaxes in a frozen state with null dynamics—the healthy
phase. Above this point, a dynamical state characterized by a
macroscopic number of infected individuals sets in, defining an
infected phase (Fig. 1).

Many other pioneering works in the area of social sciences use
simple dynamical models to explore the emergence of macro-level
collective behaviour as a function of themicro-level processes acting
among the agents of a large population9–11, and the incursions by
statistical physicists in the area of social sciences have become very
frequent (see, for example, the recent review by Castellano et al.12).
A first class of models is represented by behavioural models where
the attributes of agents are binary variables similar to Ising spins,
as in the case of the voter model13, the majority-rule model14,15
and the Sznajd model16. In other instances, further realism has
been introduced by the use of continuous opinion variables17–19.
Along the path opened by Axelrod11, models in which opinions or
cultures are represented by vectors of cultural traits have introduced
the notion of bounded confidence: an agent will not interact
with any other agent, independently of their opinions, unless the
opinions are close enough.

Finally, there is a vast class of models that focus on the analysis
of diffusion processes as a tool to study phase transitions and
emergent phenomena in simple models mimicking the routing
of information packets in technological systems and networks.
In this case the focus is on what lies behind the appearance of
congestion and traffic self-similarity20–26. In traffic problems, one
of the main issues is that the diffusion process is not random
but determined by recurrent patterns, reinforcing mechanisms
and routing strategies that represent formidable challenges to the
modelling of systems27. Interestingly, it is the study of traffic
dynamics in the Internet and the World Wide Web that has made
clear the central role of networks and their structural properties
in the understanding and characterization of dynamical processes
in real-world systems.

Box 1 | The heterogeneous mean-field approach.

The heterogeneousmean-field approach generalizes, for the case
of networks with arbitrary degree distribution, the equations
describing the dynamical process, by considering degree-block
variables grouping nodes within the same degree class k. If we
consider the SIS model, the variables describing the system are ik
and sk , which respectively represent the fraction of nodes with
degree k in the infected and susceptible class. The evolution
equation for the infected individual is

dik(t )
dt
=−µik+λ[1− ik(t )]k2k(t )

The first term just expresses the fact that any node in the infected
state may recover with rateµ. The second term, which generates
new infected individuals, is proportional to the probability of
transmission λ, the degree k, the probability 1− ik that a vertex
with degree k is not infected, and the density 2k of infected
neighbours of vertices of degree k, which is the probability
of contacting an infected individuals. As we are still assuming
a mean-field description of the system, the latter term is the
average probability that any given neighbour of a vertex of
degree k is infected. This quantity can be expressed as 2k(t )=∑

k ′ P(k
′
|k)ik ′(t ), which is the average over all possible degrees

k ′ of the probability P(k ′|k) that any edge of a node of degree k
is pointing to a node of degree k ′ times the probability ik ′ that
the node is infected. This expression can be further simplified by
considering a random network in which the conditional proba-
bility does not depend on the originating node. In this case we
have that P(k ′|k)= k ′P(k ′)/〈k〉, following simply from the fact
that any edge has a probability proportional to the degree itself
of pointing to a node with degree k ′ (see ref. 38). On substituting
the expression for 2 in the main equation and adopting the
early-epidemic assumption (that is, assuming that all second-
order terms of ik and rk can be neglected), we readily recover the
topology-dependent epidemic threshold result, λ/µ=〈k〉/〈k2〉.

Following the results obtained with the HMF assumption, a
number of rigorous results that link the network topology to
the epidemic threshold have been derived53,57,58. These results
relate the epidemic threshold to the largest eigenvalue of the
adjacency matrix of the network, showing that the HMF does
not recover the correct behaviour for the SIS model when the
degree distribution of the graph P(k) ∼ k−γ has γ > 3. The
rigorous results refer to quenched networks where the adjacency
matrix is fixed in time. The HMF assumption instead, in its
mean-field perspective, is equivalent to a system in which edges
are continuously reshuffled so that the elements of the adjacency
matrix are defined by the effective probabilities kikj/

∑
iki that

two nodes i and j with degree ki and kj , respectively, are
connected. This consideration clearly shows the shortcomings of
the HMF assumption in the case of systems where the timescale
of the transmission or infection is very short with respect to
the duration of the contact and the adjacency matrix can be
considered as quenched. The HMF can be considered, however,
as a description of the system closer to reality in situations where
the transmission occurs on rapidly varying networks; this is for
instance the case for many influenza-like illnesses, where the
infectious period is much longer than the duration of contacts
responsible for the transmission57.

Complex networks and dynamical processes
We live in an increasingly interconnected world, where infras-
tructures composed of different technological layers inter-operate
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Figure 2 | Progression of an epidemic process. The progression of a
susceptible–infected (SI) epidemic in a heavy-tailed network at three
snapshots of the process, corresponding to time t= 5, 10 and 20, measured
in unitary time integration steps of the model. The SI model assumes that
infected nodes will spread the infection indefinitely to neighbours with rate
α. In this case we know that the system is eventually completely infected,
whatever the spreading rate of the infection. However, we can highlight the
effect of topological fluctuations on the spreading hierarchy. Susceptible
nodes are coloured blue and infected nodes are coloured from yellow to red
according to the time of infection (red corresponding to later times). The
size of a node is proportional to the node degree. In general, the first nodes
to be infected are the large hubs with high degree, then the epidemic
progresses in time by a dynamical cascade through degree classes, finally
affecting low-degree nodes.

within the social component that drives their use and development.
Examples are the Internet, the World Wide Web, mobile tech-
nologies, and transportation and mobility infrastructures28–34. The
multiscale nature and complexity of these networks are crucial
features in understanding and managing socio-technical systems
and the dynamical processes occurring on top of them. For this
reason, in the past decade, the study of models unfolding on
complex networks has generated a body of work that includes
results of conceptual and practical relevance35–40. The resilience of
networks, their vulnerability to attacks, and their synchronization
properties are all drastically affected by topological heterogeneities.
Consensus formation, disease spreading and the accessibility of
information can benefit or be impaired by the connectivity pattern
of the population or infrastructure we are looking at. Network
science has thus become pervasive in the study of complex sys-
tems and presented us with a number of surprising discoveries

that have steered our way of thinking on dynamical processes in
socio-technical systems.

One of the most important features affecting dynamical
processes in real-world networks is the presence of dynamic
self-organization and the lack of characteristic scales—typical
hallmarks of complex systems40–44. Although those characteristics
have long been acknowledged as a relevant factor in determining
the properties of dynamical processes, many real-world networks
exhibit levels of heterogeneity that were not anticipated until a
few years ago. In particular, the various statistical distributions
characterizing these networks are generally heavy-tailed, skewed,
and varying over several orders of magnitude. This is a very
peculiar feature, typical of many natural and artificial complex
networks, characterized by virtually infinite degree fluctuations,
where the degree k of a given node represents its number of
connections to other nodes. In contrast to regular lattices and
homogeneous graphs, characterized by nodes having a typical
degree k close to the average 〈k〉, such networks are structured in
a hierarchy where a few nodes (the hubs) have very high degree
whereas the vast majority of nodes have lower degrees. This feature
is usually manifest in a heavy-tailed degree distribution, often
approximated by a power-law behaviour of the form P(k)∼ k−γ ,
which implies a non-negligible probability of finding vertices
with very high degree40,42–44. Furthermore, the presence of large-
scale fluctuations associated with heavy-tail distributions is also
observed for the intensity carried by the connecting links, transport
flows, and other basic quantities that go beyond the connectivity
description of the network45.

The presence of large-scale fluctuations virtually acting at all
scales of the network connectivity pattern calls for a mathematical
analysis where the variables characterizing each node of the network
explicitly enter the description of the system. Unfortunately, the
general solution, handling the master equation of the system, is
hardly, if ever, achievable—even for very simple dynamical pro-
cesses. For this reason, a viable theoretical approach has to be based
on techniques such as mean-field and deterministic continuum
approximations, which usually provide the understanding of the
basic phenomenology and phase diagram of the process under
study. In both cases, the heterogeneous nature of the network-
connectivity pattern is introduced by aggregating variables accord-
ing to a degree-block formalism that assumes that all nodes with
the same degree k are statistically equivalent38,46,47. This assumption
allows the grouping of nodes in degree classes, yielding a convenient
representation of the system. For instance, if for each node i
we associate a corresponding state σi characterizing its dynamical
state, a convenient representation of the system is provided by the
quantity Sk , which indicates the number of nodes of degree k in the
dynamical state σ = s, and the corresponding degree-block density
of nodes of degree k in the state s

sk =
Sk
Vk

where Vk is the number of nodes of degree k. Finally, the global
averages on the network are given by the expression

ρs=
∑
k

P(k)sk

where ρs is the probability that any given node is in the state s. This
formalism defines a mean-field approximation within each degree
class, relaxing, however, the overall homogeneity assumption on
the degree distribution38. This framework, first introduced for the
description of epidemic processes, is at the basis of the heteroge-
neous mean-field (HMF) approach that allows the analytical study
of dynamical processes in complex networks by writing mean-field
dynamical equations for each degree class variable. An example
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Box 2 | The particle–network framework.

The particle–network framework extends the HMF approach to
the case of a reaction–diffusion system in which particles (or
individuals) diffuse on a network with arbitrary topology. A
convenient representation of the system is therefore provided by
quantities defined in terms of the degree k

Nk =
1
Vk

∑
i|ki=k

Ni

where Vk is the number of nodes with degree k and the sums
run over all nodes i having degree ki equal to k. The degree-block
variable Nk represents the average number of particles in nodes
with degree k. The use of the HMF approach amounts to the
assumption that nodes with degree k, and thus the particles in
those nodes, are statistically equivalent. In this approximation the
dynamics of particles randomly diffusing on the network is given
by a mean-field dynamical equation expressing the variation in
time of the particle subpopulations Nk(t ) in each degree block k.
This can simply be written as:

∂Nk

∂t
=−dkNk(t )+k

∑
k ′

P(k ′|k)dk ′kNk ′(t )

The first term of the equation just considers that only a fraction
of particles dk moves out of the node per unit time. The second
term accounts for particles diffusing from its neighbours into the
node of degree k. This term is proportional to the number of
links k times the average number of particles coming from each
neighbour. The number of particles arriving from each neighbour
is thus equal to that of particles dk ′kNk ′(t ) diffusing on any edge
connecting a node of degree k ′ with a node of degree k, averaged
over the conditional probability P(k ′|k) that an edge belonging to
a node of degree k is pointing to a node of degree k ′. Here the term
dk ′k is the diffusion rate along the edges connecting nodes of degree
k and k ′. The rate at which individuals leave a subpopulation
with degree k is then given by dk = k

∑
k ′P(k

′
|k)dkk ′ . The function

P(k ′|k) encodes the topological connectivity properties of the
network and allows the study of different topologies and mixing
patterns. The above equation explicitly introduces the diffusion
of particles into the description of the system. The equation
can easily be generalized to particles with different states, and
reacting among themselves, by adding a reaction term to the
above equations. For instance, the generalization of the SIRmodel
described in the main text would consider three types of particle,
denoting infected, susceptible and recovered individuals. The
reaction taking place among individuals in the same node would
be the usual contagion process among susceptibles and infected
individuals, and the spontaneous recovery of infected individuals.

The analysis of a simple diffusion process immediately indi-
cates the importance of network topology. In a random network
with arbitrary degree distribution, the stationary state reached by
a swarm of particles diffusing with the same diffusive rate yields
Nk ∼ k and the probability to find a single diffusing walker in a
node of degree k is

pk =
k
〈k〉

1
V

where V is the total number of nodes in the network. This
expression implies that the higher the degree of the nodes,
the greater the probability to be visited by the walker. This
observation has profound consequences for the way we can
discover, retrieve and rank information in complex networks.
The PageRank algorithm117 is in this respect a major break-
through, based on the idea that a viable ranking depends on
the topological structure of the network, and is defined by
essentially simulating the random surfing process on the web
graph. The most important pages are simply those with the
highest probability of being discovered if the web-surfer had
infinite time to explore the web. Analogously, search processes
can take advantage of this property using degree-biased searching
algorithms that bias the routing of messages towards nodes with
high degree115,116.

of the HMF approach is given in Box 1 for the case of the SIS
model. The HMF technique is often the first line of attack towards
understanding the effects of complex connectivity patterns on
dynamical processes and it has been used widely in a broad range of
phenomena, although with different names and specific assump-
tions, depending on the problem at hand. Although it contains
several approximations, the HMF approach readily shows that the
heterogeneity found in the connectivity pattern of many networks
may drastically affect the unfolding of the dynamical process.

The classic example for the effect of degree heterogeneity on
dynamical processes in complex networks is epidemic spreading.
The previously discussed result of the presence of an epidemic
threshold in the SIR and SIS models is obtained under the
assumption that each individual in the system has, to a first
approximation, the same number of connections k'〈k〉. However,
social heterogeneity and the existence of ‘super-spreaders’ have long
been known in the epidemics literature48. Generally, it is possible to
show that the reproductive rateR0 is renormalized by fluctuations in
the transmissibility or contact pattern as R0→R0(1+ f (ν)), where
f (ν) is a positive and increasing function of the standard deviation
ν of the individual transmissibility or connectivity pattern49. In
particular, by generalizing the dynamical equations of the SIS
model, the HMF approach yields that the disease will affect a
finite fraction of the population only if β/µ ≥ 〈k〉2/〈k2〉, that is

the ratio between the first and second moments of the degree
distribution38,46,47. This readily suggests that the topology of the
network enters the very definition of the epidemic threshold.
Furthermore, this implies that in heavy-tailed networks such that
〈k2〉 →∞, in the limit of infinite network size, we have a null
epidemic threshold. Although this is not the case in any finite-size
real-world network50,51, larger heterogeneity levels lead to smaller
epidemic thresholds (Fig. 1). This is an important result, which
indicates that heterogeneous networks behave very differently from
homogeneous networks with respect to physical and dynamical
processes. Indeed, the heterogeneous connectivity pattern of
networks affects also the dynamical progression of the epidemic
process, which results in a striking hierarchical dynamics in
which the infection propagates from higher-degree to lower-degree
classes. The infection first takes control of the high-degree vertices
in the network, then rapidly invades the network via a cascade
through progressively lower-degree classes (Fig. 2). It also turns
out that the time behaviour of epidemic outbreaks and the growth
of the number of infected individuals are governed by a timescale
τ proportional to the ratio between the first and second moment
of the network’s degree distribution, thus suggesting a velocity of
progression that increaseswith the heterogeneity of the network52.

The change of framework suggested by the network heterogene-
ity in the case of epidemic processes has triggered many studies
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Figure 3 | Illustration of the global threshold in reaction–diffusion processes. a, Schematic of the simplified modelling framework based on the
particle–network scheme. At the macroscopic level the system is composed of a heterogeneous network of subpopulations. The contagion process
in one subpopulation (marked in red) can spread to other subpopulations as particles diffuse across subpopulations. b, At the microscopic level,
each subpopulation contains a population of individuals. The dynamical process, for instance a contagion phenomena, is described by a simple
compartmentalization (compartments are indicated by different coloured dots). Within each subpopulation, individuals can mix homogeneously, or
according to a subnetwork, and can diffuse with rate d from one subpopulation to another, following the edges of the network. c, A critical value dc of the
diffusion strength for individuals or particles identifies a phase transition between a regime in which the contagion affects a large fraction of the system
and one in which only a small fraction is affected (see the discussion in the text). Panels a and b reproduced from ref. 118.

aimed at providing a more rigorous analytical basis for the results
obtained with the HMF and other approximate methods exploring
different spreading models53–58. Equally important is the research
activity concerned with developing dynamical ad hoc strategies for
network protection; targeted immunization strategies and targeted
prophylaxis that evolve with time might be particularly effective
in the control of epidemics on heterogeneous patterns, compared
with massive uniform vaccinations or stationary interventions59–62.
Following the results on epidemic processes, an avalanche of studies
addressed the study of the effect of the network’s structure on the
behaviour of the most widely used classes of dynamical processes.
For instance, in the area of synchronization it has been shown
that networks with heavy-tailed degree distributions, and therefore
a large number of hubs, are more difficult to synchronize than
homogeneous networks, a counterintuitive insight dubbed the
paradox of heterogeneity63–66. In the case of packet-traffic routing,
homogeneous networks have typically much larger congestion
thresholds than heterogeneous graphs67–69. Finally, a wealth of
surprising results, often overturning the commonwisdom obtained
by studies on regular networks, have been harvested on the voter
and the Axelrod models70–73, and many other models for the
emergence of cooperation38,74.

Reaction–diffusion processes and computational thinking
Although most approaches assume systems in which each node
of the network corresponds to a single individual, it is of crucial
importance for the study of many phenomena to provide a general
understanding of processes where the multiple occupancy of nodes
is a key feature. Examples of multiple occupancy are provided by
chemical reactions, in which different molecules or atoms diffuse
in space and may react whenever in close contact. Mechanistic
metapopulation epidemic models, where particles represent people
moving between different locations, and the routing of information

packets in technological networks provides relevant examples in the
case of socio-technical systems75–79. All those phenomena fall into
the category of reaction–diffusion processes, where each node i is
allowed to have any non-negative integer number of particles Ni
so that the total particle population of the system is N =

∑
Ni.

The particle–network framework extends the heterogeneous mean-
field approach to reaction–diffusion systems in networks with
arbitrary degree distribution (Box 2). Particles diffuse along the
edges connecting nodes, with a diffusion coefficient that depends on
the node degree and/or other nodes’ attributes. Within each node,
particles may react according to different schemes characterizing
the interaction dynamic of the system.

The consideration of complex networks in reaction–diffusion
systems has broadened our knowledge of non-equilibrium
reaction–diffusion systems in heterogeneous systems. For instance,
the Turing mechanism represents a classical model for the
formation of self-organized spatial structures in non-equilibrium
activator–inhibitor systems. By studying the Turingmechanism80 in
systems with heterogeneous connectivity patterns it has been found
that the relevant instabilities of the systems are localized in a set
of vertices with degree inversely proportional to the characteristic
scale of diffusion81. Interestingly, and contrary to other models and
systems where the hubs are the playmakers, the segregation process
takes place mainly in vertices of low degree.

Another interesting example is that of simple epidemic pro-
cesses, such as the SIR model in a metapopulation context79,82–90.
In this case, each node of the network is a subpopulation (ideally an
urban area) connected by a transportation system (the edges of the
network) that allows individuals to move from one subpopulation
to another (Fig. 3). If we assume a diffusion rate d for each individ-
ual and consider that the single-population reproductive number
of the SIR model is R0 > 1, we can easily identify two different
limits. If d = 0, any epidemic occurring in a given subpopulation
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will remain confined; no individual could travel to a different
subpopulation and spread the infection across the system. In the
limit d→∞ we have that individuals are constantly wandering
from one subpopulation to the other and the system is in practice
equivalent to awell-mixed unique population. In this case, asR0>1,
the epidemic will spread across the entire system. A transition
point between these two regimes occurs at a threshold value dc
of the diffusion rate, identifying a global invasion threshold. This
threshold cannot be uncovered by continuousmodels as it is related
to the stochastic diffusion rate of single individuals. Furthermore,
the global invasion threshold is affected by the connectivity fluctu-
ations of the metapopulation network. In particular, the greater the
network heterogeneity, the smaller the value of the diffusion rate
above which the epidemic may globally invade the metapopulation
system. This result assumes a particular relevance, as it explains
why travel restrictions seem to be highly ineffective in containing
epidemics: the complexity and heterogeneity of present-day trans-
port networks favour considerably the global spread of infectious
diseases. Only infeasibly tight mobility restrictions, reducing global
travel fluxes by 90% ormore, would be effective84,91,92.

Reaction–diffusion models lend themselves to the implemen-
tation of large-scale computer simulations (Monte-Carlo and
individual-based simulations) that allow one to track microscop-
ically the state of each node and the evolution of the dynamical
process. At the most detailed level, the introduction of agent-based
models has enabled the usual modelling perspective to be extended
further by simulating the population and embedding environment
on an individual-by-individual basis. An example is epidemic mod-
elling, where spatially structured and agent-basedmodels at various
granularities (country, inter-city, intra-city) have been pushed to
the computational limits with the integration of huge amount
of data describing the flows of people and/or animals93–97. These
models can generate results at an unprecedented level of detail and
have been used successfully in the analysis and anticipation of real
epidemics, such as the 2009 H1N1 pandemic98,99. Computer simu-
lations thus become valuable in allowing both in silico experiments
that would be infeasible in real systems and the capability to analyse
and forecast scenarios. This computational approach is also helping
to guide researchers in identifying typical nonlinear behaviour
and tipping points100 not accessible by analytical means, using the
numerical simulations as a novel experimental workbench101,102.

Co-evolution, timescale and control
Although in recent years our understanding of dynamical processes
in complex networks has progressed at an exponential pace, there
are still a number of major challenges that keep the research
community actively engaged. The first challenge stems from the
fact that the analysis of dynamical processes is generally performed
in the presence of a timescale separation between the network
evolution and the dynamical process unfolding on its structure.
In one limit we can consider the network as quenched in its
connectivity pattern, thus evolving on a timescale that is much
longer that the dynamical process itself. In the other limiting case,
the network evolves on a timescalemuch shorter than the dynamical
process, which thus effectively disappears from the definition of
the interaction among individuals such that this interaction can
be conveniently replaced by effective random coupling. Although
the timescale separation is extremely convenient with a view to
the numerical and analytical tractability of the models, networks
generally evolve on a timescale that might be comparable to that
of the dynamical process. Furthermore, the network properties
used in defining models generally represent a time-integrated
static snapshot of the system. However, in many systems the
timing and duration of interactions define processes on a timescale
very different from, and often conflicting with, those of the

Figure 4 |Visualization of the dynamical network generated by Twitter
interactions. Twitter is a microblogging tool that allows users to post and
relay (’re-tweet’) short messages. The topic of the message is signalled by
short identifiers (@mentions, #hash-tags and urls). This feature allows one
to trace the spreading of specific discussion topics (also called memes).
The figure shows the diffusion network for the tag #gop. Each node
corresponds to an individual user. Blue edges represent re-tweets and
orange edges represent mentions. Two communities are clearly visible,
corresponding to politically left- and right-leaning users113.
Communications between the two communities take place primarily
through the use of mentions, while within a group communication occurs
through re-tweets. The figure, obtained using the Truthy infrastructure114,
clearly exemplifies the co-evolution of the communication network with the
spreading process.

time-integrated view. This highlights the importance of considering
the concurrency of network evolution and dynamical processes in
realisticmodels to avoidmisleading conclusions103–106.

A second challenge is the co-evolution of networks with the
dynamical process. Access to the mathematical and statistical laws
that characterize the interplay and feedback mechanisms between
the network evolution and the dynamical processes is extremely
important, especially in social systems, where the adaptive nature
of agents is of paramount importance106–108. The spreading of an
opinion is affected by the interaction among individuals, but the
presence and/or establishment of interaction among individuals is
affected by their opinion. This issue is increasingly relevant in the
area of the modern social networks populating the information-
technology ecosystem, such as those defined by the Facebook and
Twitter applications. In this case the network and the spread of
information cannot be defined in isolation, because of rapidly
changing interactions and modes of communication that depend
on the type of information exchanged and the adaptive behaviour
of individuals (Fig. 4).

The adaptive behaviour of individuals to the dynamical
processes they are involved in represents another modelling
challenge, as it calls for the understanding of the feedback
among different and competing dynamical processes. For instance,
relatively little systematic work has been done to provide coupled
behaviour–disease models able to close the feedback loop between
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behavioural changes triggered in the population by an individual’s
perception of the disease spread and the actual disease spread109,110.
Similar issues arise in many areas where we find competing
processes of adaptation and awareness to information or knowledge
spreading in a population111.

Finally, the overall goal is not only to understand complex
systems, mathematically describe their structure and dynamics,
and predict their behaviour, but also to control their dynamics.
Also in this case, although control theory offers a large set of
mathematical tools for steering engineered and natural systems, we
are just taking the first steps towards a full understanding of how the
network heterogeneities influence our ability to control the network
dynamics andhow the network evolution impacts controllability112.

Conclusions
There are no doubts that a complete understanding of complex
socio-technical systems requires diving into the specifics of each
system by adopting a domain-specific perspective. Data-driven
models, however, are generating new questions, the answers to
which should preferably be analytical and applicable to a wide range
of systems. What are the fundamental limits to predictability with
computational modelling? How does our understanding depend
on the level of accuracy of our description and knowledge of the
state of the system? The research community needs, nowmore than
ever, the kind of basic theoretical understanding that would help
discriminate betweenwhat is relevant andwhat is superfluous in the
description of socio-technical systems. This is a crucial endeavour if
we want to complement data-driven approaches with a conceptual
understanding that would help guide the management, prediction
and control of dynamical processes in complex systems—a
conceptual understanding that necessarily descends from the study
of the dynamicalmodels and processes presented here.
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Networks formed from interdependent networks
Jianxi Gao1,2, Sergey V. Buldyrev3, H. Eugene Stanley1 and Shlomo Havlin4*

Complex networks appear in almost every aspect of science and technology. Although most results in the field have been
obtained by analysing isolated networks, many real-world networks do in fact interact with and depend on other networks. The
set of extensive results for the limiting case of non-interacting networks holds only to the extent that ignoring the presence
of other networks can be justified. Recently, an analytical framework for studying the percolation properties of interacting
networks has been developed. Here we review this framework and the results obtained so far for connectivity properties of
‘networks of networks’ formed by interdependent random networks.

The interdisciplinary field of network science has attracted a
great deal of attention in recent years1–30. This development is
based on the enormous number of data that are now routinely

being collected, modelled and analysed, concerning social31–39,
economic14,36,40,41, technological40,42–48 and biological9,13,49,50 sys-
tems. The investigation and growing understanding of this extraor-
dinary volume of data will enable us to make the infrastructures we
use in everyday life more efficient andmore robust.

The original model of networks, random graph theory, was
developed in the 1960s by Erdős and Rényi, and is based on the
assumption that every pair of nodes is randomly connected with
the same probability, leading to a Poisson degree distribution. In
parallel, in physics, lattice networks, where each node has exactly the
same number of links, have been studied tomodel physical systems.
Although graph theory is a well-established tool in the mathematics
and computer science literature, it cannot describe well modern,
real-life networks. Indeed, the pioneering 1999 observation by
Barabasi2, that many real networks do not follow the Erdős–Rényi
model but that organizational principles naturally arise in most
systems, led to an overwhelming accumulation of supporting data,
new models and computational and analytical results, and to the
emergence of a new science, that of complex networks.

Complex networks are usually non-homogeneous structures
that in many cases obey a power-law form in their degree (that
is, number of links per node) distribution. These systems are
called scale-free networks. Real networks that can be approximated
as scale-free networks include the Internet3, the World Wide
Web4, social networks31–39 representing the relations between
individuals, infrastructure networks such as those of airlines51,
networks in biology9,13,49,50, in particular networks of protein–
protein interactions10, gene regulation and biochemical pathways,
and networks in physics, such as polymer networks or the potential-
energy-landscape network. The discovery of scale-free networks led
to a re-evaluation of the basic properties of networks, such as their
robustness, which exhibit a drastically different character than those
of Erdős–Rényi networks. For example, whereas homogeneous
Erdős–Rényi networks are extremely vulnerable to random failures,
heterogeneous scale-free networks are remarkably robust4,5. A great
part of our current knowledge on networks is based on ideas
borrowed from statistical physics, such as percolation theory,
fractals and scaling analysis. An important property of these
infrastructures is their stability, and it is thus important that we
understand and quantify their robustness in terms of node and
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link failures. Percolation theory was introduced to study network
stability and predicted the critical percolation threshold5. The
robustness of a network is usually either characterized by the value
of the critical threshold analysed using percolation theory52 or
defined as the integrated size of the largest connected cluster during
the entire attack process53. The percolation approach was also
proved to be extremely useful in addressing other scenarios, such as
efficient attacks or immunization6,7,54,55, and for obtaining optimal
paths56 aswell as for designing robust networks53. Network concepts
have also proven to be useful for the analysis and understanding of
the spread of epidemics57,58, and the organizational laws of social
interactions, such as friendships59,60 or scientific collaborations61,62.
Ref. 63 investigated topologically biased failure in scale-free
networks network and control of the robustness or fragility through
fine-tuning of the topological bias in the failure process.

A large number of new measures and methods have been
developed to characterize network properties, including measures
of node clustering, network modularity, correlation between
degrees of neighbouring nodes, measures of node importance
and methods for the identification and extraction of community
structures. These measures demonstrated that many real networks,
and in particular biological networks, contain network motifs—
small specific subnetworks—that occur repeatedly and provide
information about functionality9. Dynamical processes, such
as flow and electrical transport in heterogeneous networks,
were shown to be significantly more efficient when compared
with Erdős–Rényi networks64,65. Furthermore, it was shown that
networks can also possess self-similar properties, so that under
proper coarse graining (or, renormalization) of the nodes the
network properties remain invariant19.

However, these complex systems were mainly modelled and
analysed as single networks that do not interact with or depend
on other networks. In interacting networks, the failure of nodes
in one network generally leads to the failure of dependent
nodes in other networks, which in turn may cause further
damage to the first network, leading to cascading failures and
catastrophic consequences. It is known, for example, that blackouts
in various countries have been the result of cascading failures
between interdependent systems such as communication and
power grid systems67,68. Furthermore, different kinds of critical
infrastructure are also coupled together, such as systems of water
and food supply, communications, fuel, financial transactions
and power generation and transmission. Modern technology has
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Figure 1 | Schematic demonstration of first- and second-order percolation
transitions. In the second-order case, the giant component is continuously
approaching zero at the percolation threshold p= pc. In the first-order case,
the giant component approaches zero discontinuously.

produced infrastructures that are becoming more and more
interdependent, and understanding how robustness is affected by
these interdependences is one of the main challenges faced when
designing resilient infrastructures67,69–72. In recent decades, research
was carried out in applied science on cataloguing, analysing and
modelling the interdependences in critical infrastructure as well
as modelling cascading failures in coupled critical infrastructure
networks40,42–48. However, no systematic mathematical framework,
such as percolation theory, is currently available for adequately
addressing the consequences of disruptions and failures occurring
simultaneously in interdependent critical infrastructures.

Recently, motivated by the fact that modern, crucially important
infrastructures significantly interact, a mathematical framework
was developed73 to study percolation in a system of two inter-
dependent networks subject to cascading failure. The analytical
framework is based on a generating-function formalismwidely used
for studies of percolation and structure within a single network73–75.
The framework for interdependent networks enables us to follow
the dynamics of the cascading failures as well as to derive the
analytic solutions for the final steady state. It was found73 that
certain types of interdependent network were significantly more
vulnerable than their non-interacting counterparts. The failure of
even a small number of elements within a single network may
trigger a catastrophic cascade of events that destroys the global
connectivity. For a fully interdependent case in which each node
in one network depends on a functioning node in other networks
and vice versa, a first-order discontinuous phase transition, which
is dramatically different from the second-order continuous phase
transition found in isolated networks (Fig. 1), was found73. This
phenomenon is caused by the presence of two types of link:
connectivity links within each network; and dependence links
between networks. Connectivity links enable the network to carry
out its function and dependence links represent the fact that the
function of a given node in one network depends crucially on
nodes in other networks. The case of connectivity links between
the different networks was studied in ref. 66. It was shown76

that, when the dependence coupling between the networks is
reduced, at a critical coupling strength the percolation transition
becomes second order.

More recently, two important generalizations of the basic model
of ref. 73 have been developed:

One generalization takes into account that in real-world
scenarios the initial failure of important nodes (or hubs) may
be not random but targeted. A mathematical framework for
understanding the robustness of interdependent networks under
an initial targeted attack has been studied in ref. 77. The
authors of that work developed a general technique that uses the
random-attack problem to map the targeted-attack problem in
interdependent networks.

The other generalization takes into account that, in real-world
scenarios, the assumption that each node in network A depends
on one and only one node in network B and vice versa may not
be valid. To correct this shortcoming, a theoretical framework for
understanding the robustness of interdependent networks with a
random number of support and dependence relationships has been
developed and studied78.

In all of the above studies73,76–78, the dependent pairs of
nodes in both networks were chosen randomly. Thus when high-
degree nodes in one network depend with a high probability
on low-degree nodes of another network the configuration
becomes vulnerable. To quantify and better understand this
phenomenon, we proposed two ‘intersimilarity’ measures between
the interdependent networks79. On the one hand, intersimilarity
occurs in interdependent networks when nodes with similar degrees
tend to be interdependent. On the other hand, it occurs if the
neighbours of interdependent nodes in each network also tend to
be interdependent. Refs 79–81 found that as the interdependent
networks become more intersimilar the system becomes more
robust. A system composed of an interdependent world-wide
seaport and airport networks and the world-wide airport network
was studied in ref. 79, where it was found that well-connected
seaports tend to couple with well-connected airports, and two
ways of measuring the intersimilarity of interdependent networks
were developed. The case in which all pairs of interdependent
nodes in both networks have the same degree was solved
analytically in ref. 82.

The robustness of a two-coupled-networks system has been
studied for dependence coupling73 and for connectivity coupling66.
Very recently a more realistic coupled network system with both
dependence and connectivity links between the coupled networks
was studied83. Using a percolation approach, rich andunusual phase
transition phenomena were found, including a mixed first-order
and second-order hybrid transition. This hybrid transition shows
that a discontinuous jump in the size of the giant component (as in
a first-order transition) is followed by a continuous decrease to zero
(as in a second-order transition).

Previous studies of isolated networks in which dependence links
cause cascading failure fall into two categories:

The first studies failures due to network overload when the
network flow is a physical quantity, for example, in power trans-
mission systems, transportation networks, or Internet traffic84–87.
The models produced by these studies demonstrate that when an
overloaded node stops traffic flow, the choosing of alternative paths
can overload other nodes, and a cascading failure that disables the
entire network can result.

The second is studies that produce models based on local depen-
dences, such as the decision-making of interacting agents11. In these
models the state of a node depends on the state of its neighbours,
that is, a failing node will cause its neighbours to also fail.

The rich phenomena found in interdependent networks and
the insights obtained from the percolation framework developed
in refs 73,76 have led to a better understanding of the effect of
dependence links within single isolated networks. A percolation
approach for a single network in the presence of random
dependence links was developed recently88–90. The results show that
cascading failures occur, yielding a first-order transition, and that
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the percolation threshold of the network significantly increases with
an increase in the number of dependence links.

Generating functions for a single network
We begin by describing the generating-function formalism74 for a
single network that will also be useful in studying interdependent
networks. We assume that all Ni nodes in network i are randomly
assigned a degree k from a probability distribution Pi(k), and are
randomly connected with the only constraint that the node with
degree k has exactly k links91. We define the generating function of
the degree distribution

Gi(x)≡
∞∑
k=0

Pi(k)xk (1)

where x is an arbitrary complex variable. Using equation (1), the
average degree of network i is

〈k〉i=
∞∑
k=0

kPi(k)=
∂Gi

∂x

∣∣∣∣
x→1
=G′i(1) (2)

In the limit of infinitely large networks Ni→∞, the random
connection process can bemodelled as a branching process inwhich
an outgoing link of any node has a probability kPi(k)/〈k〉i of being
connected to a node with degree k, which in turn has k−1 outgoing
links. Using equations (1) and (2), the generating function of this
branching process is defined as

Hi(x)≡
∑
∞

k=0Pi(k)kxk−1

〈k〉i
=

G′i(x)
G′i(1)

(3)

Let fi be the probability that a randomly selected link does
not lead to the giant component. If a link leads to a node with
k − 1 outgoing links this probability is f k−1i . Thus Hi(fi) also
has the meaning that a randomly selected link does not lead to
the giant component and hence fi satisfies the recursive relation
equation fi = Hi(fi). The probability that a node with degree k
does not belong to the giant component is f ki and hence the
probability that a randomly selected node belongs to the giant
component is gi= 1−Gi(fi).

Once a fraction 1− p of nodes is randomly removed from a
network, the generating function remains the same, but with a
new argument zi ≡ px + 1− p (ref. 75). Accordingly, owing to
the definition of fi and gi the probability that a randomly chosen
surviving node belongs to a giant component is given by

gi(p)= 1−Gi[pfi(p)+1−p] (4)

where fi(p) satisfies

fi(p)=Hi[pfi(p)+1−p] (5)

Thus P∞,i, the fraction of nodes that belongs to the giant
component, is given by the product75

P∞,i= pgi(p) (6)

As p decreases, the non-trivial solution fi < 1 of equation (5)
gradually approaches the trivial solution fi = 1. Accordingly, P∞,i
gradually approaches zero as in a second-order phase transition and
becomes zero when two solutions of equation (5) coincide at p=pc.
At this point the straight line corresponding to the left-hand side

of equation (5) becomes tangent to the curve corresponding to its
right-hand side, yielding

pc= 1/H ′ i(1) (7)

For example, for Erdős–Rényi networks92–94, characterized by
a Poisson degree distribution, using equations (1), (3) and (7)
we obtain

Gi(x)=Hi(x)= exp[〈k〉i(x−1)] (8)

gi(p)= 1− fi(p) (9)

fi(p)= exp{p〈k〉i[fi(p)−1]} (10)

and using equations (7) and (8)

pc=
1
〈k〉i

(11)

Finally, using equations (6), (9) and (10), we obtain a direct
equation for P∞,i

P∞,i= p[1−exp(−〈k〉iP∞,i)] (12)

Framework of two partially interdependent networks
A generalization of the percolation theory of two fully interdepen-
dent networks73 has been developed by Parshani et al.76, where a
more realistic case of a pair of partially interdependent networks
has been studied. In this case, both interacting networks have a
certain fraction of completely autonomous nodes whose function
does not directly depend on the nodes of the other network. It has
been found that, once the fraction of autonomous nodes increases
above a certain threshold, the abrupt collapse of the interdependent
networks characterized by a first-order transition observed in ref. 73
changes, at a critical coupling strength, to a continuous second-
order transition as in classical percolation theory52.

In the following we describe in more detail the framework
developed in ref. 76. This framework consists of two networks A
and B with the numbers of nodes NA and NB, respectively. Within
network A, the nodes are randomly connected by A edges with
degree distribution PA(k), whereas the nodes in network B are
randomly connected by B edges with degree distribution PB(k). The
average degrees of the networks A and B are a and b respectively. In
addition, a fraction qA of network A nodes depends on the nodes in
network B and a fraction qB of network B nodes depends on the
nodes in network A. We assume that a node from one network
depends on no more than one node from the other network,
and if node Ai depends on node Bj , and Bj depends on Ak , then
k = i. The latter condition, which we call a no-feedback condition
(Fig. 2), excludes configurations that completely collapse even for
fully interdependent networks once a single node is removed78.
We assume that the initial removal of nodes from network A
is a fraction 1 − p.

Next we present the formalism for the cascade process
step by step (Fig. 3). After an initial removal of nodes, the
remaining fraction of nodes in network A is ψ ′1 ≡ p. The initial
removal of nodes will disconnect some nodes from the giant
component. The remaining functional part of network A therefore
constitutes a fraction ψ1 =ψ

′

1gA(ψ
′

1) of the network nodes, where
gA(ψ ′1) is defined by equations (4) and (5). As a fraction qB of
nodes from network B depends on nodes from network A, the
number of nodes in network B that become non-functional is
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Figure 2 | Differences between the feedback condition and no-feedback
condition. a,b In the case of feedback (a), node A3 depends on node B2,
and node B3 6= B2 depends on node A3, whereas if there is no feedback (b)
this is forbidden. The blue links between the two networks show the
dependence links and the red links in each network show the connectivity
links, which enable each network to function.

(1−ψ1)qB= qB[1−ψ ′1gA(ψ
′

1)]. Accordingly, the remaining fraction
of network B nodes is φ′1=1−qB[1−ψ ′1gA(ψ

′

1)], and the fraction of
nodes in the giant component of network B isφ1=φ′1gB(φ

′

1).
Following this approach we can construct the sequence, ψ ′t and

φ′t , of the remaining fraction of nodes at each stage of the cascade of
failures. The general form is given by

ψ ′1≡ p

φ′1= 1−qB[1−pgA(ψ ′1)]

ψ ′t = p[1−qA(1−gB(φ′t−1))]

φ′t = 1−qB[1−pgA(ψ ′t−1)]

(13)

To determine the state of the system at the end of the cascade
process we look atψ ′τ and φ

′

τ at the limit of τ→∞. This limit must
satisfy the equationsψ ′τ =ψ

′

τ+1 andφ
′

τ =φ
′

τ+1 because eventually the
clusters stop fragmenting and the fractions of randomly removed
nodes at steps τ and τ +1 are equal. Denoting ψ ′τ = x and φ′τ = y ,
we arrive in the stationary state at a system of two equations
with two unknowns,

x = p{1−qA[1−gB(y)]}

y = 1−qB[1−gA(x)p]
(14)

The giant components of networks A and B at the end of the
cascade of failures are, respectively, P∞,A = ψ∞ = xgA(x) and
P∞,B=φ∞= ygB(y). Figure 4 shows the excellent agreement for
the cascading failures in the giant component between computer
simulations and the analytical results. The analytical results were
obtained by recursive relations (13), where gA(ψ ′t ) and gB(φ′t ) are
computed using equations (9) and (10).

Equation (14) can be illustrated graphically by two curves cross-
ing in the (x,y) plane. For sufficiently large qA and qB the curves
intersect at two points (0< x0,0< y0) and (x0< x1< 1,y0< y1< 1).
Only the second solution (x1,y1) has a physical meaning. As p
decreases, the two solutions become closer to each other, remaining
inside the unit square (0< x<1;0< y<1), and at a certain thresh-
old p= pc they coincide: 0< x0 = x1 = xc < 1, 0< y0 = y1 = yc < 1.

Attack

I stage

II stage

III stage

IV stage

Network A

Network B

a

b

c

e

d

Figure 3 | Description of the dynamic process of cascading failures on two
partially interdependent networks, which can be generalized to n partially
interdependent networks. The black nodes represent the survival nodes,
the yellow node represents the initially attacked node, the red nodes
represent the nodes removed because they do not belong to the largest
cluster and the blue nodes represent the nodes removed because they
depend on the failed nodes in the other network. In each stage, for one
network, we first remove the nodes that depend on the failed nodes in the
other network or on the initially attacked nodes. Next we remove the nodes
that do not belong to the largest cluster of the network.

For p<pc the non-trivial solution corresponding to the intersection
abruptly disappears. Thus for sufficiently large qA and qB, P∞,A
and P∞,B as a function of p show a first-order phase transition. As
qB decreases, the intersection of the curves moves out of the unit
square; therefore, for small enough qB, P∞,A as a function of p shows
a second-order phase transition. For the graphical representation of
equation (14) and all possible solutions see Fig. 3 in ref. 76.

In a recent study95, it was shown that a pair of interdependent
networks can be designed to be more robust by choosing the
autonomous nodes to be high-degree nodes. This choice mitigates
the probability of catastrophic cascading failure.

Framework for a network of interdependent networks
In many real systems there are more than two interdependent
networks, and diverse infrastructures—water and food supply
networks, communication networks, fuel networks, financial
transaction networks or power-station networks—can be coupled
together69,70. Understanding the way system robustness is affected
by such interdependences is one of the main challenges when
designing resilient infrastructures.

Here we review the generalization of the theory of a pair
of interdependent networks73,76 to a system of n interacting
networks96, which can be graphically represented (Fig. 5) as a
network of networks (NON). We develop an exact analytical
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Figure 4 | Cascade of failures in two partially interdependent Erdős–Rényi
networks. The giant component φt for every iteration of the cascading
failures is shown for the case of a first-order phase transition with the initial
parameters p=0.8505, a= b= 2.5, qA=0.7 and qB=0.8. In the
simulations, N= 2× 105 with over 20 realizations. The grey lines represent
different realizations. The squares represent the average over all
realizations and the black line is obtained from equation (13).

approach for percolation of an NON system composed of n fully
or partially interdependent randomly connected networks. The
approach is based on analysing the dynamical process of the
cascading failures. The results generalize the known results for
percolation of a single network (n= 1) and the n= 2 result found
in refs 73,76, and show that, whereas for n= 1 the percolation
transition is a second-order transition, for n> 1 cascading failures
occur and the transition becomes first order. Our results for
n interdependent networks suggest that the classical percolation
theory extensively studied in physics and mathematics is a limiting
case of n = 1 of a general theory of percolation in NON. As we
shall discuss here this general theory has many features that are not
present in the classical percolation theory.

In our generalization, each node in the NON is a network itself
and each link represents a fully or partially dependent pair of
networks. We assume that each network i (i = 1,2, ...,n) of the
NON consists of Ni nodes linked together by connectivity links.
Two networks i and j form a partially dependent pair if a certain
fraction qji > 0 of nodes of network i directly depends on nodes of
network j, that is, they cannot function if the nodes in network j on
which they depend do not function. Dependent pairs are connected
by unidirectional dependence links pointing from network j to
network i. This convention symbolizes the fact that nodes in
network i receive supply from nodes in network j of a crucial
commodity, for example electric power if network j is a power grid.

We assume that after an attack or failure only a fraction of nodes
pi in each network i will remain. We also assume that only nodes
that belong to a giant connected component of each network i
will remain functional. This assumption helps explain the cascade
of failures: nodes in network i that do not belong to its giant
component fail, causing failures of nodes in other networks that
depend on the failing nodes of network i. The failure of these nodes
causes the direct failure of the dependent nodes in other networks,
failures of isolated nodes in them and further failure of nodes in
network i, and so on. Our goal is to find the fraction of nodes P∞,i
of each network that remain functional at the end of the cascade
of failures as a function of all fractions pi and all fractions qij .
We assume that all networks in the NON are randomly connected
networks characterized by a degree distribution of linksPi(k), where
k is a degree of a node in network i. We further assume that each

qi1

q1i

qik
qki

qi4

q4i

q3i

qi3
qi2

q2i

3

2

1

k

4

i

Figure 5 | Schematic representation of a NON. Circles represent
interdependent networks, and the arrows connect the partially
interdependent pairs. For example, a fraction of q3i of nodes in network i
depend on the nodes in network 3. The networks that are not connected by
the dependence links do not have nodes that directly depend on
one another.

node a in network i may depend with probability qji on only one
node b in network j.

We can study different models of cascading failures in which
we vary the survival time of the dependent nodes after the failure
of the nodes in other networks on which they depend and the
survival time of the disconnected nodes. We conclude that the
final state of the networks does not depend on these details but
can be described by a system of equations somewhat analogous
to the Kirchhoff equations for a resistor network. This system
of equations has n unknowns xi. These represent the fractions
of nodes that survive in network i after the nodes that fail in
the initial attack are removed, and also the nodes depending
on the failed nodes in other networks at the end of cascading
failure are removed, but without considering yet the further
failing of nodes due to the internal connectivity of the network.
The final giant component of each network can be found from
the equation P∞,i = xigi(xi), where gi(xi) is the fraction of the
remaining nodes of network i that belong to its giant component
given by equation (4).

First we shall discuss the more complex case of the no-feedback
condition. The unknowns xi satisfy the systemof n equations,

xi= pi
K∏
j=1

[qjiyjigj(xj)−qji+1] (15)

where the product is taken over the K networks interlinked with
network i by the partial dependence links (Fig. 3) and

yij =
xi

qjiyjigj(xj)−qji+1
(16)

has the meaning of the fraction of nodes in network j that survive
after the damage from all the networks connected to network
j except network i is taken into account. The damage from
network imust be excluded owing to the no-feedback condition. In
the absence of the no-feedback condition, equation (15) becomes
much simpler as yji = xj . Equation (15) is valid for any case
of interdependent NON, whereas equation (16) represents the
no-feedback condition.

Four examples of a NON solvable analytically
In this section we present four examples that can be explicitly
solved analytically: (1) a tree-like Erdős–Rényi fully dependent
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Chain-like NON Star-like NON Tree-like NON

Figure 6 | Three types of loopless NON composed of five coupled
networks. All have the same percolation threshold and the same giant
component. The dark node represents the origin network on which failures
initially occur.

NON, (2) a tree-like random regular fully dependent NON, (3) a
loop-like Erdős–Rényi partially dependent NON and (4) a random
regular network of partially dependent Erdős–Rényi networks.
All cases represent different generalizations of percolation theory
for a single network. In all examples except (3) we apply the
no-feedback condition.

(1) We solve explicitly96 the case of a tree-like NON (Fig. 6)
formed by n Erdős–Rényi networks92–94 with the same average
degrees k, p1= p, pi= 1 for i 6= 1 and qij = 1 (fully interdependent).
From equations (15) and (16) we obtain an exact expression for the
order parameter, the size of the mutual giant component for all p, k
and n values,

P∞= p[1−exp(−kP∞)]n (17)

Equation (17) generalizes known results for n= 1,2. For n= 1, we
obtain the known result pc=1/k, equation (11), of an Erdős–Rényi
network and P∞(pc) = 0, which corresponds to a continuous
second-order phase transition. Substituting n= 2 in equation (17)
yields the exact results of ref. 73.

Solutions of equation (17) are shown in Fig. 7a for several values
of n. The special case n= 1 is the known Erdős–Rényi second-order
percolation law, equation (12), for a single network. In contrast,
for any n> 1, the solution of (17) yields a first-order percolation
transition, that is, a discontinuity of P∞ at pc.

Our results show (Fig. 7a) that the NON becomes more vul-
nerable with increasing n or decreasing k (pc increases when
n increases or k decreases). Furthermore, for a fixed n, when
k is smaller than a critical number kmin(n), pc ≥ 1, meaning
that for k < kmin(n) the NON will collapse even if a single
node fails96.

(2) In the case of a tree-like network of interdependent random
regular networks97, where the degree k of each node in each network
is assumed to be the same, we obtain an exact expression for the
order parameter, the size of the mutual giant component for all
p, k and n values,

P∞= p

1−
p 1

n P
n−1
n
∞

(1−(P∞
p

) 1
n

) k−1
k

−1

+1


k


n

(18)

Numerical solutions of equation (18) are in excellent agreement
with simulations. Comparing with the results of the tree-like
Erdős–Rényi NON, we find that the robustness of n interdependent
random regular networks of degree k is significantly higher than
that of the n interdependent Erdős–Rényi networks of average
degree k. Moreover, whereas for an Erdős–Rényi NON there exists
a critical minimum average degree k = kmin that increases with n
(below which the system collapses), there is no such analogous kmin
for the random regular NON system. For any k > 2, the random
regular NON is stable, that is, pc < 1. In general, this is correct
for any network with any degree distribution, Pi(k), such that

Pi(0)= Pi(1)= 0, that is, for a network without disconnected or
singly connected nodes97.

(3) In the case of a loop-like NON (for dependences in
one direction) of n Erdős–Rényi networks96, all the links are
unidirectional, and the no-feedback condition is irrelevant. If the
initial attack on each network is the same, 1−p, qi−1i= qn1= q and
ki=k, using equations (15) and (16)we obtain thatP∞ satisfies

P∞= p(1−e−kP∞)(qP∞−q+1) (19)

Note that if q = 1 equation (19) has only a trivial solution
P∞ = 0, whereas for q = 0 it yields the known giant component
of a single network, equation (12), as expected. We present
numerical solutions of equation (19) for two values of q in
Fig. 7b. Interestingly, whereas for q = 1 and tree-like structures
equations (17) and (18) depend on n, for loop-like NON structures
equation (19) is independent of n.

(4) For NONs where each ER network is dependent on exactly
m other Erdős–Rényi networks (the case of a random regular
network of Erdős–Rényi networks), we assume that the initial attack
on each network is 1− p, and each partially dependent pair has
the same q in both directions. The n equations of equation (15)
are exactly the same owing to symmetries, and hence P∞ can be
obtained analytically,

P∞=
p
2m

(1−e−kP∞)[1−q+
√
(1−q)2+4qP∞]m (20)

from which we obtain

pc=
1

k(1−q)m
(21)

Again, as in case (3), it is surprising that both the critical threshold
and the giant component are independent of the number of
networks n, in contrast to tree-like NON (equations (17) and (18)),
but depend on the coupling q and on both degrees k and
m. Numerical solutions of equation (20) are shown in Fig. 7c,
and the critical thresholds pc in Fig. 7c coincide with the
theory, equation (21).

Remark on scale-free networks
The above examples regarding Erdős–Rényi and random regular
networks have been selected because they can be explicitly
solved analytically. In principle, the generating function formalism
presented here can be applied to randomly connected networks
with any degree distribution. The analysis of the scale-free networks
with a power-law degree distribution P(k) ∼ k−λ is extremely
important, because many real networks can be approximated
by a power-law degree distribution, such as the Internet, the
airline network and social-contact networks, such as networks
of scientific collaboration2,10,51. Analysis of fully interdependent
scale-free networks73 shows that, for interdependent scale-free
networks, pc > 0 even in the case λ ≤ 3 for which in a single
network pc = 0. In general, for fully interdependent networks,
the broader the degree distribution the greater pc for networks
with the same average degree73. This means that networks with a
broad degree distribution become less robust than networks with
a narrow degree distribution. This trend is the opposite of the
trend found in non-interacting isolated networks. The explanation
of this phenomenon is related to the fact that in randomly
interdependent networks the hubs in one network may depend on
poorly connected nodes in another. Thus the removal of a randomly
selected node in one network may cause a failure of a hub in
a second network, which in turn renders many singly connected
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Figure 7 | The fraction of nodes in the giant component P∞ as a function of p for three different examples. a, A tree-like fully (q= 1) interdependent
NON; P∞ is shown as a function of p for k= 5 and several values of n. The results are obtained using equation (17). Note that increasing n from n= 2 yields
a first-order transition. b, A loop-like NON; P∞ is shown as a function of p for k=6 and two values of q. The results are obtained using equation (19). Note
that increasing q yields a first-order transition. c, A random regular network of Erdős–Rényi networks; P∞ is shown as a function of p, for two different values
of m when q=0.5. The results are obtained using equation (20), and the number of networks, n, can be any number with the condition that any network in
the NON connects exactly to m other networks. Note that changing m from 2 to m> 2 changes the transition from second order to first order (for q=0.5).

nodes non-functional, and the multiplying damage travels back
to the first network. This explanation is corroborated by the
analytical proof in ref. 82, which shows that if the degrees of the
interdependent nodes coincide, then a network with a broader
degree distribution will become more robust than a network with
a narrower degree distribution, that is, the behaviour characteristic
of non-interacting networks is restored. Ref. 82 also reports that,
for fully interdependent scale-free networks with equal degrees of
interdependent pairs, pc = 0 for λ< 3. Moreover, the percolation
transition is a discontinuous first-order phase transition if and only
if H ′i (1)<∞, that is, if the degree distribution has a finite second
moment. For fully interdependent networks with uncorrelated
degrees of interdependent nodes, the percolation transition is
always a discontinuous phase transition73,76. These results, as well as
the results of ref. 79, show the need to studymore realistic situations
in which the interdependent networks have various correlations
in the dependences and connectivities. A recent study of partially
interdependent scale-free networks shows that, although the giant
component decreases significantly owing to cascading failures, pc is
always zero as long as q<1 (D. Zhou et al., unpublished).

Remaining challenges
We have reviewed recent studies of the robustness of a system of
interdependent networks. In interacting networks, when a node
in one network fails it usually causes dependent nodes in other
networks to fail, which, in turn, may cause further damage in the
first network and results in a cascade of failures with catastrophic
consequences. Our analytical framework enables us to follow the
dynamic process of the cascading failures step by step and to
derive steady-state solutions. Interdependent networks appear in
all aspects of life, nature and technology. Transportation systems
include railway networks, airline networks and other transportation
systems. Some properties of interacting transportation systems
have been studied recently79,80. In the field of physiology, the
human body can be regarded as a system of interdependent
networks. Examples of such interdependent NON systems include
the cardiovascular system, the respiratory system, the brain neuron
system and the nervous system. In biology, the function of each
protein is determined by its interacting proteins, which can be
described by a network. As many proteins are involved in a
number of different functions, the protein-interaction system can
be regarded as a system of interacting networks. In the field of
economics, networks of banks, insurance companies and business
firms are interdependent.

Thus far, only a very few real-world interdependent systems have
been analysed using the percolation approach71,79,80. We expect our
present work to provide insights leading to a further analysis of
real data on interdependent networks. The benchmark models we
present here can be used to study the structural, functional and
robustness properties of interdependent networks. Because, in real
NONs, individual networks are not randomly connected and their
interdependent nodes are not selected at random, it is crucial that
we understand themany types of correlation that exist in real-world
systems and that we further develop the theoretical tools to include
such correlations. Further studies of interdependent networks
should focus on an analysis of real data from many different
interdependent systems and on the development of mathematical
tools for studying real-world interdependent systems.

Many real-world networks are embedded in space, and the
spatial constraints strongly affect their properties30. We need to
understand how these spatial constraints influence the robustness
properties of interdependent networks79,80. Other properties that
influence the robustness of single networks, such as the dynamic
nature of the configuration in which links or nodes appear and
disappear and the directed nature of some links, as well as problems
associated with degree–degree correlations and clustering, should
be also addressed in future studies of coupled network systems. It is
also important to investigate the case when a node in one network
is supplied by multiple nodes in an interdependent network. In
realistic interdependent pairs of networks i and j, a node in network
imay depend on s supply nodes in network j and the total supply of
a commodity received by this node from network j must be greater
than a certain threshold sc. In the case of sc=0 and random selection
of the supply nodes, this problem was solved in ref. 78 for two in-
terdependent networks, and this solution can be straightforwardly
generalized for an arbitraryNONby replacing equation (15)with

xi= pi
K∏
j=1

{1−qjiGji
[1−xjgj(xj)]} (22)

where Gji(x) is the generating function of the distribution of the
supply degree s of nodes in network i that depend on the supply
from nodes in network j. When s= 1 for all such nodes, Gji(x)= x
and equation (22) reduces to equation (15) with yji = xj , that is, in
the absence of the no-feedback condition. More complex cases of
multiple supply nodes await further investigation.

It is very important to find a way of improving the robustness
of interdependent infrastructures. Our studies thus far show that
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there are three methods to achieve this goal: increase the fraction of
autonomous nodes76, particularly nodes with high degree95; design
the dependence links such that they connect the nodes with similar
degrees79,82 and protect the high-degree nodes against attack95.

A coupled network in which the interlinks, that is, the links
between different networks, are connectivity links was studied in
ref. 66. The robustness of this system is greatly improved when
compared with a system in which the interlinks are dependence
links. A systematic study of the competing effects of aNON inwhich
the interlinks are both dependence and connectivity interlinks is
needed. Interesting results on a model containing both dependence
and connectivity interlinks have been obtained83. Finally, we
mention an early study of the Ising model on coupled networks98.
Also, interacting networks with respect to climate systems were
studied in ref. 99.
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