PROBLEM SET 1

Macroscopic Quantum Phenomena and Quantum Dissipation

Problem 1

Consider the microscopic fields \vec{e} and \vec{h} . Using the London equations, the Maxwell equations (Gaussian units) and the two fluid model $\vec{j} = \vec{j_s} + \vec{j_n}$, where $\vec{j_n} = \sigma \vec{e}$, show that a) $\vec{h}, \vec{e}, \vec{j}$ satisfy equations of the form

$$c^2 \vec{\nabla} \times (\vec{\nabla} \times \vec{f}) + \frac{4\pi}{\Lambda} \vec{f} + 4\pi\sigma \dot{\vec{f}} + \ddot{\vec{f}} = 0, \qquad (1)$$

whereas the charge density ρ satisfies

$$\frac{4\pi}{\Lambda}\rho + 4\pi\sigma\dot{\rho} + \ddot{\rho} = 0. \tag{2}$$

b) Solve the equation for ρ and show that it relaxes within $\tau \approx 10^{-12} sec$.

c) Using the continuity equation, argue that \vec{h} , \vec{e} , and \vec{j} now obey

$$c^2 \nabla^2 \vec{f} = \frac{4\pi}{\Lambda} \vec{f} + 4\pi\sigma \dot{\vec{f}} + \ddot{\vec{f}}.$$
(3)

d) Relate the 3 terms on the RHS of the above equations to the contributions of the supercurrent $\vec{j_s}$, the normal current $\vec{j_n}$, and the displacement current $\vec{j_d} = \dot{\vec{e}}/4\pi$.

e) Show that, for an alternating field of frequency $\omega/2\pi$, the share of each of the 3 currents is given by the proportion

$$|\vec{j_s}| : |\vec{j_n}| : |\vec{j_d}| = 1 : \Lambda \sigma \omega : \frac{\Lambda \omega^2}{4\pi}.$$
(4)

f) Then, for quasistationary conditions $\omega \ll 1/\sigma \Lambda ~(\approx 10^{12} sec^{-1})$ the field equations of (c) become of the form

$$-\nabla^2 \vec{f} + \frac{4\pi}{\Lambda c^2} \vec{f} = 0.$$
(5)

g) Establish the following boundary conditions for the fields: $h_{\parallel}, e_{\parallel}$ and h_{\perp}, j_{\perp} must be continuous at the boundaries. Furthermore $(\Lambda j_s)_{\parallel}$ must be continuous at the boundary between two different superconductors.

2 Problem

Determine the fields and currents of a superconducting sphere of radius R in a magnetic field $\vec{H_0}$. (3 points)

3 Problem

Consider a cylindrical wire of radius a whose axis points along \hat{z} . Between z = -b and z = b the material is a superconductor. Find the current distribution within the superconducting region once the current is uniformly fed in the normal region. (4 points)

4 Problem

Find the equation for the flux ϕ inside a superconducting ring with two equal Josephson junctions when it is subject to an external flux ϕ_x . (3 points)