PROBLEM SET 4

Macroscopic Quantum Phenomena and Quantum Dissipation

1) Consider a complex function $F(z)=-V(z)=-\frac{1}{2} m \omega^{2} z^{2}-\frac{1}{4} \lambda z^{4}$, where $z=x+i y$ as usual.
i) Find the points on the complex plane where $\frac{d F}{d z}=0$ for the case $\lambda>0$ and $\lambda<0$. (0.5 points)
ii) Expand $F(z)$ up to $2^{\text {nd }}$ order about each of the points and show that they are all saddle points of $F(z)$ for both cases $\lambda \gtrless 0$. (0.5 points)
iii) Study the path of the steepest descent of $F(z)$ at each of these points for $\lambda \gtrless 0$. (1 point)
iv) Compute the classical partition function

$$
Z=\iint \frac{d q d p}{h} e^{-\beta H}, \quad H=\frac{p^{2}}{2 m}+V(q)
$$

for $\lambda>0$ and $\lambda<0$ in the saddle point approximation. (1 point)
v) Using that the fact that the Helmholtz free energy $F=-\frac{1}{\beta} \ln Z$, compute it for $V(q)$ when $\lambda \gtrless 0$ and show that the imaginary part of the free energy when $\lambda<0$ is proportional to $e^{-\Delta V / k T}$, where ΔV is the barrier height measured from $V(0)=0$. (1 point)
2) Assuming that $q_{c}^{(0)}(\tau)$ in eq. (8.22) is the undamped ($\eta=0$) bounce solution of (8.15), show that (8.23) holds and evaluate it to demonstrate (8.24). (2 points)
3) Write the equation (8.15) in terms of the Fourier transform $q(\omega)$ of $q\left(\tau^{\prime}\right)$ and obtain (8.28). Neglecting the ω^{2} term in the latter show that (8.29) is indeed a solution of this equation for the values A and κ given in (8.31). (2 points)
4) Compute the overdamped action of $q_{c}(\omega)=A e^{-\kappa|\omega|}$ in (8.29) and show that it is given by (8.33). (2 points)

