PROBLEM SET 5

Macroscopic Quantum Phenomena and Quantum Dissipation

1) Consider a particle in the potential

$$
V(q)=\frac{M \omega_{0}^{2} q_{0}^{2}}{32}\left[\left(\frac{q}{\left(q_{0} / 2\right)}\right)^{2}-1\right]^{2}
$$

Project the full Hamiltonian $H=\frac{p^{2}}{2 M}+V(q)$ onto the space spanned by the states $\psi_{L}(q)$ and $\psi_{R}(q)$, where $\psi_{L}(q)=\psi_{0}\left(q+q_{0} / 2\right)$ and $\psi_{R}(q)=\psi_{0}\left(q-q_{0} / 2\right)$ and $\psi_{0}(q)$ is the ground state of a harmonic oscillator of frequency ω_{0}. Show that the projected operator has the form

$$
H_{2}=-\frac{\hbar}{2} \Delta \sigma_{x}
$$

and compute Δ. (3 points)
2) Considering that in the spin-boson model the coupling to the reservoir can be treated perturbatively show that, for $\vec{S} \equiv \frac{\hbar\langle\vec{\sigma}\rangle}{2}$,

$$
\begin{aligned}
\frac{d S_{x}}{d t} & =-\frac{S_{x}-S_{x}^{(e q)}}{T_{1}} \\
\frac{d S_{y}}{d t} & =\Delta S_{z}-\frac{S_{y}}{T_{2}} \\
\frac{d S_{z}}{d t} & =-\Delta S_{y}
\end{aligned}
$$

where $S_{x}^{(e q)}=\frac{\hbar}{2} \tanh \left(\frac{\beta \hbar \Delta}{2}\right)$ is the thermal equilibrium value of S_{x}. Show that to $2^{\text {nd }}$ order in the system - environment coupling

$$
T_{1}^{-1}=T_{2}^{-1}=\frac{q_{0}^{2}}{2 \hbar} J(\Delta) \operatorname{coth}\left(\frac{\beta \hbar \Delta}{2}\right)
$$

Notice that $J(\omega)$ isn't necessarily Ohmic. (5 points)
3) Perform the unitary transformation $\hat{H}^{\prime}=\hat{U} H \hat{U}^{-1}$ of the spin-boson Hamiltonian,

$$
H=-\frac{1}{2} \hbar \Delta \sigma_{x}+\frac{1}{2} \epsilon \sigma_{z}+\frac{1}{2} q_{0} \sigma_{z} \sum_{k} C_{k} q_{k}+\sum_{k} \frac{p_{k}^{2}}{2 m_{k}}+\sum_{k} \frac{1}{2} m_{k} \omega_{k}^{2} q_{k}^{2}
$$

to the basis of harmonic-oscillators displaced by $\delta_{k} \sigma_{z}$, where

$$
\delta_{k}=-\frac{1}{2} q_{0} C_{k} / m_{k} \omega_{k}^{2} .
$$

which yields

$$
\hat{H}^{\prime}=-\frac{1}{2} \hbar \Delta\left(\sigma_{+} e^{-i \hat{\Omega}}+H . c .\right)+\frac{1}{2} \epsilon \sigma_{z}+\sum_{k} \frac{p_{k}^{2}}{2 m_{k}}+\sum_{k} \frac{1}{2} m_{k} \omega_{k}^{2} q_{k}^{2}
$$

Write down the corresponding unitary operator \hat{U} and $\hat{\Omega}$. (2 points)

