
PROBLEM SET 5

Macroscopic Quantum Phenomena and Quantum Dissipation

1) Consider a particle in the potential
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Project the full Hamiltonian H = p2

2M
+ V (q) onto the space spanned by the

states ψL(q) and ψR(q), where ψL(q) = ψ0(q+q0/2) and ψR(q) = ψ0(q−q0/2)
and ψ0(q) is the ground state of a harmonic oscillator of frequency ω0. Show
that the projected operator has the form
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and compute ∆. (3 points)

2) Considering that in the spin-boson model the coupling to the reservoir

can be treated perturbatively show that, for ~S ≡ ~<~σ>
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,
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) is the thermal equilibrium value of Sx. Show that

to 2nd order in the system - environment coupling
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Notice that J(ω) isn’t necessarily Ohmic. (5 points)

3) Perform the unitary transformation Ĥ ′ = ÛHÛ−1 of the spin-boson
Hamiltonian,
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to the basis of harmonic-oscillators displaced by δkσz, where
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which yields
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Write down the corresponding unitary operator Û and Ω̂. (2 points)
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