Estrutura da Matéria II

3a LISTA

II/2018

1) Os níveis de energia de átomos do tipo He, quando um elétron está no seu estado fundamental (n = 1) e outro em um estado excitado (n > 1), podem ser expressos por,

$$E = -RhcZ^2 - \frac{Rhc(Z-1)^2}{n^2}.$$

Esta expressão assume que o elétron no estado fundamental blinda plenamente uma carga nuclear. Discuta a plausibilidade desta expresão. Compute os níveis de energia do He quando n = 2, 3, 4, e compare com os valores experimentais (tabelados). Por quê a precisão da expresão acima cresce à medida que n aumenta?

- 2) O estado fundamental do lítio tem a configuração eletrônica $1s^2$ 2s. Escreva a sua função de onda em forma de determinante para o estado com $M_S = 1/2$.
- 3) Considere 3 elétrons numa configuração sp² na aproximação de 1-elétron. Escreva a função de onda total corresondente a $M_L=1\,{\rm e}\,M_S=1/2$ em forma de determinante.
- 4) Encontre as configurações dos estados fundamentais dos seguintes átomos: (a) Si, (b) Mn, (c) Rb, e (d) Ni. Escreva ainda o termo correspondente a cada estado fundamental.
- 5) Encontre os termos correspondentes a cada uma das configurações em seguida e indique, em cada caso, que termo tem a menor energia: (a) ns, (b) np^3 , (c) $(np^2)(n's)$, (d) np^5 (e) $(nd^2)(n'p)$, (f) (nd)(n'd).

- 6) No acoplamento L-S, pode-se obter o momento magnético de um átomo como $\mathbf{M}=-(e/2m_e)g\mathbf{J}$ onde \mathbf{J} é o momento angular do átomo e g é o fator de Landé substituindo-se l,s e j por L,S e J. Encontre g para o cálcio e alumínio. Discuta o desdobramento do termo 3p sob a ação de um campo fraco. Determine este desdobramento se o campo é forte.
- 7) A transição $4^{1}D_{2} \rightarrow 4^{1}P_{1}$ no cálcio nos fornece uma linha única com $\lambda = 6439\,\text{Å}$. Quais são os comprimentos de onda observados quando um átomo de cálcio é submetido a um campo de 1.40 T?
- 8) O limiar de absorção K para o tungstênio é 0.178 Å e os comprimentos de onda médios das linhas da série K são $K_{\alpha}=0.210$ Å, $K_{\beta}=0.184$ Å e $K_{\gamma}=0.179$ Å. Construa, então, um diagrama de níveis de raios-X para o tungstênio. Qual o mínimo de energia necessário para excitar a série L do tungstênio? Determine o comprimento de onda da linha L_{α} .