THE PROBLEM
OF KINETIC THEORY

3.1 FORMULATION OF THE PROBLEM

The system under consideration in the classical kinetic theory of gases is a dilute
gas of N molecules enclosed in a box of volume V. The temperature is sufficiently
high and the density is sufficiently low for the molecules to be localized wave
packets whose extensions are small compared to the average intermolecular
distance. For this to be realized the average de Broglie wavelength of a molecule
must be much smaller than the average interparticle separation:
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Under such conditions each molecule may be considered a classical particle with
a rather well-defined position and momentum. Furthermore, two molecules may
be considered to be distinguishable from each other. The molecules interact with
each other through collisions whose nature is specified through a given differen-
tial scattering cross section o. Throughout our discussion of kinetic theory only
the special case of a system of one kind of molecule will be considered.

An important simplification of the problem is made by ignoring the atomic
structure of the walls containing the gas under consideration. That is, the
physical walls of the container are replaced by idealized surfaces which act on an
impinging gas molecule in a simple way, e.g., reflecting it elastically.

We are not interested in the motion of each molecule in detail. Rather, we
are interested in the distribution function f(r,p, ¢), so defined that

f(r,p,t)d’rd’p (3.2)

is the number of molecules which, at time ¢, have positions lying within a volume
element d°3r about r and momenta lying within a momentum-space element d°p
about p. The volume elements d3r and d’p are not to be taken literally as
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d3pI 0

d’r Fig. 3.1 The six-dimensional p space of a molecule.

mathematically infinitesimal quantities. They are finite volume elements which
are large enough to contain a very large number of molecules and yet small
enough so that compared to macroscopic dimensions they are essentially points.
That such a choice is possible can be seen by an example. Under standard
conditions there are about 3 X 10!° molecules/cm® in a gas. If we choose
d*r ~ 10719 ¢cm®, which to us is small enough to be called a point, there are still
on the order of 3 X 10° molecules in d°r.

To make the definition of f(r,p, ) more precise, let us consider the six-
dimensional space, called the p space, spanned by the coordinates* (r,p) of a
molecule. The p space is schematically represented in Fig. 3.1. A point in this
space represents a state of a molecule. At any instant of time, the state of the
entire system of N molecules is represented by N points in g space. Let a volume
element d°rd>p be constructed about each point in p space, such as that shown
about the point O in Fig. 3.1. If we count the number of points in this volume
element, the result is by definition f(r,p, t) d°rd>p. If the sizes of these volume
elements are chosen so that each of them contains a very large number of points,
such as 10° and if the density of these points does not vary rapidly from one
element to a neighboring element, then f(r, p, 1) may be regarded as a continuous
function of its arguments. If we cover the entire p space with such volume
elements, we can make the approximation

L/(p,t)dpdr = [f(r.p.1) d*pd’r (3.3)

where the sum on the left extends over all the centers of the volume elements,
and the integral on the right side is taken in the sense of calculus. Such an
approximation will always be understood.

Having defined the distribution function, we can express the information
that there are N molecules in the volume V' through the normalization condition

ff(r,p,t)d3rd3p =N (3.4)

*For brevity, the collection of spatial and momentum coordinates (r,p) is referred to as the
coordinates of a molecule.
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If the molecules are uniformly distributed in space, so that f is independent of r,
then

N
Jfe.p1)d’p = % (3.5)

The aim of kinetic theory is to find the distribution function f(r,p, ¢) for a
given form of molecular interaction. The limiting form of f(r,p, t) as 1t — o0
would then contain all the equilibrium properties of the system. The aim of
kinetic theory therefore includes the derivation of the thermodynamics of a dilute
gas.

To fulfill this aim, our first task is to find the equation of motion for the
distribution function. The distribution function changes with time, because
molecules constantly enter and leave a given volume element in p space. Suppose
there were no molecular collisions (i.e., 6 = 0). Then a molecule with the
coordinates (r, p) at the instant ¢ will have the coordinates (r + v é:,p + Fé¢) at
the instant ¢ + &8¢, where F is the external force acting on a molecule, and
v = p/m is the velocity. We may take &t to be a truly infinitesimal quantity.
Thus all the molecules contained in a p-space element d3rd3p, at (r,p), at the
instant ¢, will all be found in an element d°r’ d3p’, at (r + v81,p + Fét), at the
instant ¢ + 6¢. Hence in the absence of collisions we have the equality

f(r+v8t,p+F8t, t+8t)dr d =f(r,v,1)d’rd%
which reduces to
f(r+v8t,p+Fder,t +8t)=f(r,p, 1) (3.6)

because d3rd>p = d3r’ d>p’. The last fact is easily established if we assume that
the external force F depends on position only. At any instant ¢, we may choose
d3rd>p to be a six-dimensional cube. It is sufficient to show that the area of any
projection of this cube, say, dxdp,, does not change. A simple calculation will
show that this projection, originally a square, becomes a parallelogram of the
same area in the time d¢, as illustrated in Fig. 3.2. This invariance is valid as long
as (r, p) are canonically conjugate generalized coordinates.

When there are collisions (i.e., 6 > 0), equality (3.6) must be modified. We
write

ad
f(r+vot,p+Fde,t+8t)=f(r,p, t) + a—{) 8t (3.7)
coli

which defines (3f/3dt) ;- Expanding the left-hand side to the first order in 8¢, we
obtain the equation of motion for the distribution function as we let 8¢ — 0:

. F-v,|f( i 338
— 4+ — v, +Fv |f(r,p,t)=|— :
8 t m r P f P ) 31 colil ( )
where V,,V, are, respectively, the gradient operators with respect to r and p.
This equation is not meaningful until we explicitly specify (df/dt) . It is in
specifying this term that the assumption that the system is a dilute gas becomes
relevant.
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Fig. 3.2 The invariance of the volume element
in p space under dynamical evolution in time.

An explicit form for (df/dt) ., can be obtained by going back to its
definition (3.7). Consider Fig. 3.3, where the square labeled A4 represents the
p-space volume element at {r,p, ¢} and the one labeled B represents that at
{r +vér,p + Fét, ¢t + 8t}, where 8¢ eventually tends to zero. During the time
interval 8¢, some molecules in A will be removed from A4 by collision. We regard
A as so small that any collision that a molecule in A suffers will knock it out of
A. Such a molecule with not reach B. On the other hand, there are molecules
outside A4 which, through collisions, will get into 4 during the time interval §z.
These will be in B. Therefore the number of molecules in B at ¢ + §¢, as 8¢ — 0,
equals the original number of molecules in 4 at time ¢ plus the nes gain of
molecules in A4 due to collisions during the time interval 8z. This statement is the
content of (3.7), and may be expressed in the form
(ﬂ) 8t=(R —R) &t (3.9)

01 | con
where R 8td’rd’p = no. of collisions occurring during the time
between ¢ and ¢ + 8¢ in which one of the
initial molecules is in d*rd>p about (r, p) (3.10)
R 8:d*rd3p = no. of collisions occurring during the time
between ¢ and ¢ + 8¢, in which one of the
final molecules is in d*rd’p about (r, p) (3.11)

Strictly speaking, we make a small error here. For example, in (3.10), we are
implicitly assuming that if a molecule qualifies under the description, none of its

A
Fig. 3.3 A volume element in p space at the
times ¢ and ¢ + 1.
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partners in collision qualifies. This error is negligible because of the smallness of
d3p.

To proceed further, we assume that the gas is extremely dilute, so that we
may consider only binary collisions and ignore the possibility that three or more
molecules may collide simultaneously. This considerably simplifies the evaluation
of R and R. It is thus natural to study the nature of binary collisions next.

3.2 BINARY COLLISIONS

We consider an elastic collision in free space between two spinless molecules of
respective masses m; and m,. The momenta of the molecules in the initial state
are denoted by p, and p,, respectively, and the energies by ¢, and €,, with
¢, = p?/2m,. The corresponding quantities in the final state are indicated by a
prime. Momentum and energy conservation require that

P1 tP,= P+ P;

E=¢ +e,=¢ + ¢ (3.12)
where E is the total energy. We define the total mass M and reduced mass p by
mym,
M=m + m,, = — 313
my, « m; I my, + m, ( )
and the total momentum P and relative momentum p by
P=p +p,
m;p — mp, 3.14
P= =p(vy — v) ( )
my+ m,
where v, = p,/m;, is the velocity. Solving these for p; and p, gives
e " p 3.15
=—P- = —P + :
Po=",P-P P=P+p (3.15)
It can be easily verified that the total energy is given by
P2 p2
E=—+ — (3.16)
2M 2

The conditions for momentum-energy conservation become simply
P=Pp, pl=1p (3.17)

That is, the collision merely rotates the relative momentum without changing its
magnitude. Let the angle between p’ and p be 8, and the azimuthal angle of p/
about p be ¢. These angles completely specify the kinematics of the collision.
They are collectively denoted by {2, and are called the scattering angles. We
depict the kinematics geometrically in Fig. 3.4. If the potential responsible for the
scattering is a central potential (i.e., dependent only on the magnitude of the
distance between the molecules), then the scattering is independent of ¢.
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2p

P2

(a) b)

Fig. 3.4 Geometrical representation of the kinematics of a binary
collision. (a) The total momentum P is unchanged (momentum
conservation). The relative momentum is rotated from the initial
direction i to the final direction f, without change in magnitude
(energy conservation). The scattering angles are the angles 6, ¢ of
f relative to i. (b) The individual momenta of the colliding
partners p; and p, may be constructed from P and 2p, as shown.
The points A and B will coincide at O, the midpoint of P, if the
colliding molecules have equal mass.

The dynamical aspects of the collision are contained in the differential cross
section do /df}, which is defined experimentally as follows. Consider a beam of
particle 2 incident on particle 1, regarded as the target. The incident flux I is
defined as the number of incident particles crossing unit area per second, from
the viewpoint of the target:

I=ny, — v, (3.18)
where » is the density of particles in the incident beam. The differential cross
section do/df} is defined by the statement

I(do/dQ) dQ = Number of incident molecules scattered per second

into the solid angle element 4Q about the direction £ (3.19)

The differential cross section has the dimension of area. The number of molecules
scattered into d} per second is equal to the number of molecules in the incident
beam crossing an area do/d{) per second. The total cross section is the number
of molecules scattered per second, regardless of scattering angle:

g do
0= [ d o (3.20)

In classical mechanics the differential cross section can be calculated from
the intermolecular potential as follows. First we transform the coordinate system
to the center-of-mass system, in which the total momentum is zero. Since we are
considering only the nonrelativistic domain, this involves a trivial translation of
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Fig. 3.5 Classical scattering of a molecule by a fixed center of force O.

all velocities by a constant amount. We only need to follow the trajectory of one
of the particles, which will move along an orbit, as if it were scattered by a fixed
center of force O, as illustrated in Fig. 3.5. It approaches O with momentum p,
the relative momentum, and will recede from O with momentum p’, the rotated
relative momentum. The normal distance between the line of approach and O is
called the impact parameter b. By conservation of angular momentum, it is also
the normal distance between the line of recession and O. This is indicated in Fig.
3.5, together with the scattering angles. From the geometry it is clear that

do
dQ

We can find the relation between b and the scattering angles from the classical
orbit equation, thereby obtaining do/d€ as a function of the scattering angles.*

The use of classical mechanics to calculate the differential cross section in
this problem is an old tradition (started by Maxwell) predating quantum mechan-
ics. To be correct, however, we must use quantum mechanics, notwithstanding
the fact that between collisions we regard the molecules as classical particles. The
reason is that when the molecules collide their wave functions necessarily overlap,
and they see each other as plane waves of definite momenta rather than wave
packets of well-defined positions. Furthermore, formulating the scattering prob-
lem quantum mechanically makes the kinematics and symmetries of the problem
more obvious.

In quantum mechanics the basic quantity in a scattering problem is the
transition matrix (7 matrix), whose elements are the matrix elements of a certain
operator T( E) between the initial (i) and final (f) state:

Ty =V, 2|T(E)N,2)
T(E) ="+ H#"(E—Hy+ic) " H + -
where 5%, is the unperturbed Hamiltonian, J#’ the potential, and € » 0*. A

I—dQ =1bdbdo (3.21)

(3.22)

*See any book on classical mechanics, for example, L. D. Landau and E. M. Lifshitz, Mechanics
(Pergamon, Oxford, 1960), Chapter IV.
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collision is a transition from the initial state to a set of final states. For final
states in the infinitesimal momentum-space element d°p} d°p5, the rate is*

dPyy 1y = ITdo = dBPi d3P§64(Pf - Pi)|Tﬁ|2

The transition rate into any region of momentum space can be obtained by
integrating the above over the appropriate region. To obtain the differential cross
section, integrate over the recoill momentum p, (which is fixed by momentum
conservation) and the magnitude pj (which is determined by energy conserva-
tion) to obtain

(3.23)

de
Taa ~ J dbs p3? f d’pi 84(B = P)IT* (3.24)

The integrations are trivial, and yield a factor representing the density of final
states because of the § functions that enforce momentum-energy conservation.
For the formal manipulations that we are going to do, however, it is best to leave
the integrations undone.

The T matrix is invariant under spatial rotations and reflections and under
time reversal, because all molecular interactions originate in the electromagnetic
interaction, which have these invariance properties. Explicitly, we have

(P2, PiITIp1, P2} = (Rpy, Rpy|T|Rp;, Rpy)

(P2 PUTIPL Do) = € — P2, —PuIT| = P1, —P2)
where Rp is the vector obtained from p after performing a spatial rotation about
an axis, and/or a reflection with respect to a plane. For elastic scattering the
density of states are the same in the initial and final states. Thus invariances of
the 7 matrix directly implies corresponding invariances of the differential cross
section.

If the molecules have spin, (3.25) remains valid provided we interpret p to
include the spin coordinate. A rotation rotates both the momentum and the spin,
but a reflection does not affect the spin. Under time reversal both the momentum
and the spin change sign.

From (3.25) we can deduce that the inverse collision, defined as the collision
with initial and final states interchanged, has the same T matrix (and hence the
same Cross section):

P, PUTIPLPy) = (P2, PUTIPL.PS)  or Tz =T, (3.26)

To show this we represent the collision by the schematic drawing A of Fig. 3.6,
which is self-explanatory. The diagram A’ beneath it has the same meaning as

(3.25)

*A word about normalization. With the definition (3.22), and with single-particle states
normalized to one particle per unit volume, there should be a factor (27h)° multiplying the
three-dimensional & function for momentum conservation, a factor 2« /k multiplying the § function
for energy conservation, and a factor (274)~ 3 multiplying each volume element d*p of momentum
space. Since we are not going to calculate cross sections, these factors are a nuisance to write out. We
redefine the T matrix appropriately to absorb these factors.
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Fig. 3.6 Symmetry operations that take a collision to the inverse collision. In

A’, B’, C’, and D’, i and f, respectively, denote initial and final relative
momenta.

Fig. 3.4. The T matrix for this collision is the same as the time-reversed collision
represented by B. Now rotate the coordinate system through 180° about a
suitable axis n perpendicular to the total momentum, and then reflect with
respect to a plane pp’ perpendicular to n. As a result we obtain the collision D,
which is the inverse of the original collision, and which has the same 7" matrix
because of (3.25).

If collisions were treated classically, the inverse collision could be very
different from the original collision. As a concrete example consider the classical
collision between a sphere and a wedge.* A glance at Fig. 3.7 proves the point.
But this is irrelevant for molecular scattering, because molecules are not describ-
able as “wedges” or the like. A nonspherically symmetric molecule is one with
nonzero spin, and exists in an eigenstate of the spin. The angular orientation,
being conjugate to the angular momentum, is completely uncertain. The symme-
try between collision and inverse collision remains valid when the spin is taken
into account, as stated previously.

3.3 THE BOLTZMANN TRANSPORT EQUATION

To derive an explicit formula for (3f/dt),,;, we assume that the gas is suffi-
ciently dilute that only binary collisions need be taken into account. The effect of

*Both made of concrete.
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Collision Inverse collision
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Fig. 3.7 Classical collision between macroscopic objects.

external forces on collisions are ignored on the assumption that these forces, if
present, would vary little over the range of the intermolecular potential.

The number of transitions 12 — 172/ in a volume element 4°r at r, owing to
collisions during the time interval 8¢ is

where dN,, is the initial number of colliding pairs (p;,p,)- We introduce the
two-particle correlation function F by

dN12=F(r,p1,p2,t) d3"d3P1 d3P2 (3-27)

Thus, in the notation of (3.10), we have
R&8tdrd®p, = 6td3rd3p1fd3p2 APy vy F(r,p. P 1) (3.28)
Using (3.23), we obtain
R = [d’p,d’p;d’ps 84( P~ P)Tul’F(r,p1.P2. 1) (3.29)

Similarly, we find

R = fd3P2 d3Pi d3p§ 34(})1' - Pf)|Tif|2F(r’p'1sP'25 t) (3-30)

The & functions in (3.29) and (3.30) are identical, and T;; = T;; by (3.25). Hence

af _
(a_r) S RoR= [ d*py d*pi d’p 8*(Pr— P)|Tel*(Frp = Fp) (331)

where F,, = F(r,p,, p,, t). Note that we can integrate over the vector p; and the
magnitude p,, so that the differential cross section appears in the integrand of

(3.30):

dt

For formal manipulations, however, it is more convenient to leave it in the form
(3.31).

af ,
(_) n - fd P2 dQ N, — v,|(do/dQ)(Fyy — Fpy) (3.32)
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The expression we obtained is exact for a sufficiently dilute gas. But it
contains the unknown correlation function F.
We now introduce the crucial assumption

F(r,p,po, t) = f(r,py, 1)/ (1, s, 1) (3.33)

This says that the momenta of two particles in the volume element d3r are
uncorrelated, so that the probability of finding them simultaneously is the
product of the probability of finding each alone. This is known as the “assump-
tion of molecular chaos.” It is necessary to obtain a closed equation for the
distribution function, but there is otherwise no justification for it at this point.
We shall come back to analyze its meaning later.

With the assumption of molecular chaos, we have

af
(3{1) N fd3p2 d9|"1 - V2|(d°/d9)(f1'f2' - f1f2) (3-34)
coll

where the following abbreviations have been used:
H=f(p, 1)
L=f(rp.t)
fi=f(r,pi, 1)
fi=f(r,p5, 1)

Substituting (3.34) into (3.8) we obtain the Boltzmann transport equation

(3.35)

d P:
(— +—+v,+F- Vpl)f1 = fd3P2 d’pi d’p; 8 (P — P)|Tu|*( 1! — L)
(3.36)

which is a nonlinear integro-differential equation for the distribution function.

We have considered only the case of a single species of spinless molecules. If
we consider different types of molecules, then we have to introduce a separate
distribution function for each type, and the collision term will couple them if
different types of molecules can scatter each other. If the molecules have spin, or
if we consider excitation of the molecules through scattering, then the different
spin states or excited states should be considered as different species of mole-
cules.

3.4 THE GIBBSIAN ENSEMBLE

Gibbs introduced the idea of a statistical ensemble to describe a macroscopic
system, which has proved to be a very important concept. We shall use it here to
present another approach to the Boltzmann transport equation.

A state of the gas under consideration can be specified by the 3N canonical
coordinates ¢,,...,qs;y and their conjugate momenta p,,..., p;y- The 6N-
dimensional space spanned by { p,, ¢,} is called the T space, or phase space, of
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the system. A point in I' space represents a state of the entire N-particle system,
and is referred to as the representative point. This is in contrast to the p space
introduced earlier, which refers to only one particle.

It is obvious that a very large (in fact, infinite) number of states of the gas
corresponds to a given macroscopic condition of the gas. For example, the
condition that the gas is contained in a box of volume 1 ¢m’ is consistent with an
infinite number of ways to distribute the molecules in space. Through macro-
scopic measurements we would not be able to distinguish between two gases
existing in different states (thus corresponding to two distinct representative
points) but satisfying the same macroscopic conditions. Thus when we speak of a
gas under certain macroscopic conditions, we are in fact referring not to a single
state, but to an infinite number of states. In other words, we refer not to a single
system, but to a collection of systems, identical in composition and macroscopic
condition but existing in different states. With Gibbs, we call such a collection of
systems an ensemble, which is geometrically represented by a distribution of
representative points in I’ space, usually a continuous distribution. It may be
conveniently described by a density function p(p, ¢, t), where (p,g) is an
abbreviation for ( py,..., Psns G1s---» G3n), SO defined that

p(p,q.1)d"pd*Yq (3.37)

1s the number of representative points that at time ¢ are contained in the
infinitesimal volume element d**pd>"g of T space centered about the point
(p, g). An ensemble is completely specified by p( p, g, t). It is to be emphasized
that members of an ensemble are mental copies of a system and do not interact
with one another.

Given p(p, g, t) at any time ¢, its subsequent values are determined by the
dynamics of molecular motion. Let the Hamiltonian of a system in the ensemble

be X(pr,-.-s Psn G1s---» §3x)- The equations of motion for a system are given
by
dH¥
pi=—"é"¢}; (i=1,...,3N)
9 (3.38)
q,.=a—ﬁ (i=1,...,3N)

These will tell us how a representative point moves in I' space as time evolves.
We assume that the Hamiltonian does not depend on any time derivative of p
and q. It is then clear that (3.38) is invariant under time reversal and that (3.38)
uniquely determines the motion of a representative point for all times, when the
position of the representative point is given at any time. It follows immediately
from these observations that the locus of a representative point is either a simple
closed curve or a curve that never intersects itself. Furthermore, the loci of two
distinct representative points never intersect.
We now prove the following theorem.
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LIOUVILLE’S THEOREM

o N[ dp dp
— 4 5 + —a. | =0 3.39
Py El ( Pt 3, q,) (3.39)

Proof Since the total number of systems in an ensemble is conserved, the
number of representative points leaving any volume in I' space per second must
be equal to the rate of decrease of the number of representative points in the
same volume. Let w be an arbitrary volume in T space and let S be its surface. If
we denote by v the 6 N-dimensional vector whose components are

V=(P1, Prseeos Pans G102 -5 dan)
and n the vector locally normal to the surface S, then

—%Ldmp=LdSn°Vp

With the help of the divergence theorem in 6N-dimensional space, we convert
this to the equation
f dw

where V¥ is the 6 N-dimensional gradlent operator:
( d d d d d d )
VvV = A 9 g st ; ’ IR
dp, dp; Ipsy  9q, 9q, 0qsn

Since « is an arbitrary volume the integrand of (3.40) must identically vanish.
Hence

— +v (vp)] 0 (3.40)

dp N1 d J
—_—— =V = —(pp)+ —(4
o7 =V - (w) izl [ap,.(P’p) q_(q,p)}
3N [ dp 3p N[ 3p 34,
= Z ( pit Z (_—l + _”)
-1\ 9P aqz i=1 i aq;
By the equations of motion (3.38) we have
a l a I
iy 2o (i=1,...,3N)
ap, " dq,
Therefore
dp 3N/ dp N dp )
—or = X ahit 5, .
dt i1\ 9p; 2q;
Liouville’s theorem is equivalent to the statement
dp
— =0 3.41
” (3.41)

since by virtue of the equations of motion p, and g, are functions of the time. Its
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geometrical interpretation is as follows, If we follow the motion of a representa-
tive point in I' space, we find that the density of representative points in its
neighborhood is constant. Hence the distribution of representative points moves
in T’ space like an incompressible fluid.

The observed value of a dynamical quantity O of the system, which is
generally a function of the coordinates and conjugate momenta, is supposed to be
its averaged value taken over a suitably chosen ensemble:

fd3di3Nq0(p, q)e(p,q,1)
(0) - (3.42)

fd3NPd3qu(P>q, t)

This is called the ensemble average of O. Its time dependence comes from that of
p, which is governed by Liouville’s theorem. In principle, then, this tells us how a
quantity approaches equilibrium—the central question of kinetic theory. In the
next section we shall derive the Boltzmann transport equation using this ap-
proach.

Under certain conditions one can prove an ergodic theorem, which says that
if one waits a sufficiently long time, the locus of the representative point of a
system will cover the entire accessible phase space. More precisely, it says that
the representative point comes arbitrarily close to any point in the accessible
phase space. This would indicate that the ensemble corresponding to thermody-
namic equilibrium is one for which p is constant over the accessible phase space.
This is actually what we shall assume.*

3.5 THE BBGKY HIERARCHY

One can define correlation functions f,, which give the® probability of finding s
particles having specified positions and momenta, in the systems forming an
ensemble. The function f; is the familiar distribution function. The exact
equations of motion for f, in classical mechanics can be written down. They
show that to find f; we need to know f,, which in turns depends on a knowledge
of f;, and so on till we come the full N-body correlation function f,. This system
of equations is known as the BBGKY ' hierarchy. We shall derive it and show
how the chain of equations can be truncated to yield the Boltzmann transport
equation. The “derivation” will not be any more rigorous than the one already
given, but it will give new insight into the nature of the approximations.
Consider an ensemble of systems, each being a gas of N molecules enclosed
in volume V, with Hamiltonian 5. Instead of the general notation { p;, g;}

*See the remarks about the relevance of the ergodic theorem in Section 4.5.

YBBGKY stands for Bogoliubov-Born-Green-Kirkwood-Yvon. For a detailed discussion and
references see N. N. Bogoliubov in Studies in Statistical Mechanics, J. de Boer and G. E. Uhlenbeck,
Eds., Vol. I (North-Holland, Amsterdam, 1962).
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(i =1,...,3N), we shall denote the coordinates by the Cartesian vectors {p,,T;}
(i=1,..., N), for which we use the abbreviation

;= (piari)’ fdzi = fdzpid3’} (3-43)

The density function characterizing the ensemble is denoted by p(1,..., N, 1),
and assumed to be symmetric in zy,..., z,. Its integral over all phase space is a
constant by Liouville’s theorem; hence we can normalized it to unity:

fdz1 oo dzyp(l,...,N, 1) =1 (3.44)

Thus the ensemble average of any function O(1,..., N) of molecular coordinates
can be written as

0y = [dzy -+ dzyp(1,...,N,1)O(1,..., N) (3.45)

Using the Hamiltonian equations of motion (3.38), we rewrite Liouville’s
theorem in the form

N
— =2 (V,p "V, #~V,pV,X) (3.46)

i=1 2m { i<
U= U(,) (3.47)
v, = U, = U(|l‘i - rjl)
Then
P,
v, K= —
P m
N 3.48
v, #= —F - Z Kij ( )
i J_=1
(j=#1)
where
Fi = _vr,U(ri)
(3.49)
K, = _Vr,v(h'i - rjl)
Liouville’s theorem can now be cast in the form
d .
— +hy(1,...,N)|p(1,...,N) =0 (3.50)

dt
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where
N 1 N
hy(1,...,N)= ) S + ) 2 P,
i=1 i, j=1
(i%/)
_ b
Si=-_ v, +Ev, (3.51)

it Vp, = Kyt (vp;- - vp,)

The single-particle distribution function is defined by

fl(p’ra I) = < §163(p - pi)63(r - r:‘)> = Nfd22 dsz(la"'a N, t)
(3.52)

The factor N in the last form comes from the fact that all terms in the sum in the
preceding term have the same value, owing to the fact that p is symmetric in
Zy,..., zy. Integrating f, over z,; yields the correct normalization N, by virtue of
(3.44).

The general s-particle distribution function, or correlation function, is
defined by

N!
fs(l,...,z,t) = (T—s—)'fdszrl dZNp(l,...,N,I) (Sz 1,...,N)
(3.53)

The combinatorial factor in front comes from the fact that we do not care which
particle is at z,, which is at z,, etc. The equation of motion is

ad N! d N!
Fre e mfdzs+l v dzy e = —mfdzs+1 oo dzy hyp
(3.54)
We isolate those terms in 4, involving only the coordinates z,,..., z,:

5 N 1 s 1 N 5 N

hN(l,...,N)=AZSi+ ZS,-+‘2— Z P,'j+5 Z Pf,-+2 Z Pz’j
i=1 s+1 i, j=1 i, j=s+1 i=1 j=s+1

(i#)) (i#))

Note that
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because & ,,_ consists of gradient terms in p with p-independent coefficients, and
a gradient term in r with an r-independent coefficient. Thus the integral evaluates
p on the boundary of phase space, where we assume p to vanish. Substituting
(3.55) into (3.54), we obtain

(2 n)s- o e d B L Bl )

dJt i=1 j=s5s+1
=_Zfdzs+l 13+1(N s+1)'fdz “dZNp(l,...,N)
= - Z fdzs+1Pi,s+1 v, s+ 1) (3.57)
i=1

In passing from the first to the second equation we have used the fact that the
sum over j gives N — s identical terms. Now substitute P, ; from (3.51), and note
that the second term there does not contribute, because it leads to a vanishing
surface term. We then arrive at

d s
(_ + hs)fs(l,...,s) =-2 [dzs+1Ki,s+l ’ Vp;le(l,...,S +1)
i=1

dt
(s=1,...,N) (3.58)
which is the BBGKY hierarchy. The left side of each of the equations above is a
“streaming term,” involving only the s particles under consideration. For s > 1 it
includes the effect of intermolecular scattering among the s particles. The
right-hand side is the “collision integral,” which describes the effect of scattering
between the particles under consideration with an “outsider,” thus coupling f, to

fs+1'

The first two equations in the hierarchy read

d P
(“ + vV, t F, - vpl)fl(zlﬂ t) = —fd22 K- vp1f2(‘21’ z,,t) (3.59)

dt m
d P P2
lé—t * m 'V,l + m 'V,2+ Fl.vl’l +F2.VP2+ %Ku.(vm - va)
xfz(zlszzst)
= - fd23 (Kis* V,, + Kyy * v, ) fi(21, 23, 25, 1) (3.60)

The terms in the equations above have dimensions f,/time, and different time
scales are involved:

Fev,~— (3.61)
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where 7, is the duration of a collision, 7, is the time for a molecule to traverse a
characteristic distance over which the external potential varies significantly, and
7, is the time for a molecule to traverse a characteristic distance over which the
correlation function varies significantly. The time 7. is the shortest, and 7, the
longest.

The equation for f, is unique in the hierarchy, in that “streaming” sets a
rather slow time scale, for it does not involve intermolecular scattering, (there
being only one particle present.) The collision integral, which has more rapid
variations, sets the time scale of f;. This is why the equilibrium condition is
determined by the vanishing of the collision integral.

In contrast, the equation for f, (and higher ones as well) contains a collision
term of the order 1/7, on the left side. The collision integral on the right side is
smaller by a factor of the order nr; (where n is the density, and r, the range of
the intermolecular potential) because the integration of r, extends only over a
volume of radius r,. Now r, = 107% cm and n = 10'° em 3 under standard
conditions. Hence nr{ =~ 1075, Thus for f, (and higher equations too) the time
scale is set by the streaming terms instead of the collision integral, which we shall
neglect.

With neglect of the right side of (3.60), the hierarchy is truncated at f,, and
we have only two coupled equations for f; and f,:

_?__}_Pl
at m

3,
VA = = [ @R v, ha 0 = (S G

d P P,
E * m ) V"l + ; ) vrz + %Klz .(VPI B VPZ) fz(zl’ 22 t) =0 (363)

where we have set all external forces to zero, for simplicity. We shall also assume
for simplicity that the force K vanishes outside a range r,. To remind us of this
fact, we put the subscript r, on the integral in the first equation, indicating that
the spatial part of the integral is subject to |r, — r,| < 7.

The salient qualitative features of (3.62) and (3.63) are that f, varies in time
with characteristic period 7, and in space with characteristic distance r,, while f,
varies much less rapidly, by a factor nr;. Thus f, measures space and time with
much coarser scales than f,. -

The correlations in f, are produced by collisions between particles 1 and 2.
When their positions are so far separated as to be out of molecular interaction
range, we expect that there will be no correlation between 1 and 2, and £, will
assume a product form (neglecting, of course, possible correlations produced by
collisions with a third particle):

fz(Zl,Zz,I)mjfl(Z,t)fl(Zz,I) (3-64)

To evaluate (df,/dt).,, however, we need f, not in the uncorrelated
region, but in the region where the two particles are colliding. To look at this
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Range of force

Fig. 3.8 Illustration of behavior of two-particle correlation function. The
separation between the two particles is r, and the relative momentum p.
The two particles are correlated only inside the range of the intermolecular
force, indicated by the sphere of radius 7,. Outside the sphere, the
correlation function is a product of two one-particle distribution functions.
In equilibrium there is a steady scattering of beams of particles of all
momenta, from all directions, at all impact parameters.

region it is convenient to use total and relative coordinates, defined as follows:

P=p,+p, P=¥
r,+r, (3'65)
R = 2 r=r,—r
Then (3.63) becomes
(i+p- +~l-)—- + K(r}) - P,R =0
Gt at VKV (PR b ) 66

K(r) = -v(r)

Transform to the center-of-mass system by putting P = 0. The above can then be
rewritten, to first order in df, as the streaming condition (with P and R
suppressed for clarity):

fz(p + K(r) dt,r + %dt, t+ dt) = f,(p,r, t) (3.67)

It traces the classical trajectories in the force field K centered at O, as illustrated
in Fig. 3.8. If f, were peaked at point A initially, then (3.67) says that as time
goes on the peak will move along the trajectory for that particular initial
condition.
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The equilibrium situation, for which df,/d¢ = 0, is a steady-state scattering,
by the force field K, of a beam of particles consisting of all momenta, at all
impact parameters. Referring to Fig. 3.8, we may describe the steady state as
follows: Outside the sphere of interaction the uncorrelated factorized form (3.64)
holds. However, boundary values of the momenta are correlated through the fact
that momenta entering the sphere at a specific impact parameter must leave the
sphere at the correct scattering angle, and vice versa.

To “derive” the Boltzmann transport equation, we assume that, since f, has
a shorter time scale than f|, it reaches equilibrium earlier than f,. Thus we set
df,/dt = 0, and assume f, has attained the equilibrium form described earlier.
Similarly, we assume that the range of force r, is essentially zero from the point
of view of f,. Thus in the factorized form of £, just before and after a collision,
we can put r, and r; both equal to the same value.

With this in mind, we substitute (3.63) into (3.62) to obtain

af
- = — (& K. t
( dt )coll 'Ir-o 7281 Vplfz(zl’zz’ )
= *f dz, K, °(VP1 — sz)fz(zl, Z,, 1)
{1

1
= ";f dz, (pl * vrl +p vrz)fZ(zlﬂ 23, t) (368)
o

Using the coordinates defined in (3.66), and neglecting the gradient with respect
to R, we have

(8—f1)co“= —%dePZf d’r (p, — p,) * Y./,

dt r<m
1 , x5 d
= — [d’p, 10, — ol f dobab [“dx ——1, (3.69)

where the notation is indicated in Fig. 3.8. Now we set

fr(x) = fl(Pl)fl(Pz)
H(xy) = fi(p) f1(p5)

where pj,p5 are the final momenta in the scattering process, when the initial
momenta are p,, p, and the impact parameter is b. Using the definition (3.21) of
the classical cross section, we finally have

(2%

9z ) = [,y ~ vidosa@)(fif; - 1) (3:70)

which is the same as (3.34).
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PROBLEMS

3.1 Give a few numerical examples to show that the condition (3.1) is fulfilled for
physical gases at room temperatures.

3.2 Explain qualitatively why all molecular interactions are electromagnetic in origin.

3.3 For the collision between perfectly ¢lastic spheres of diameter a,

(a) calculate the differential cross section with classical mechanics in the coordinate
system in which one of the spheres is initially at rest;

(b) compare your answer with the quantum mechanical result. Consider both the low-
energy and the high-energy limit. (See, e.g., L. I. Schiff, Quantum Mechanics, 2nd ed.
(McGraw-Hill, New York, 1955), p. 110).

3.4 Consider a mixture of two gases whose molecules have masses m and M, respec-
tively, and which are subjected to external forces F and Q, respectively. Denote the
respective distribution functions by f and g. Assuming that only binary collisions between
molecules are important, derive the Boltzmann transport equation for the system.

3.5 This problem illustrates in a trivial case how the ensemble density tends to a uniform
density over the accessible phase space. Consider an ensemble of systems, each of which
consists of a single free particle in one dimension with momentum p and coordinate g.
The particle is confined to a one-dimensional box with perfectly reflecting walls located at
g= —1 and ¢ =1 (in arbitrary units.) Draw a square box of unit sides in the pg plane
(the phase space). Draw a square of sides 1/2 in the upper left corner of this box. Let the
initial ensemble correspond to filling this corner box uniformly with representative points.

(a) What is the accessible part of the phase space? (i.e., the region that the representative
points can reach through dynamical evolution from the initial condition.)

(b) Consider how the shape of the distribution of representative point changes at regular
successive time intervals. How does the distribution look after a long time?

Suggestion: When a particle is being reflected at a wall, 1ts momentum changes sign.
Represent what happens in phase space by continuing the locus of the representative point
to a fictitious adjacent box in pg space, as if the wall were absent. “Fold” the adjacent
box onto the original box properly to get the actual trajectory of the representative point.
After a long time, you need many such adjacent boxes. The *“folding back” will then give
you a picture of the distribution.



THE EQUILIBRIUM STATE
OF A DILUTE GAS

4.1 BOLTZMANN’S H THEOREM

We define the equilibrium distribution function as the solution of the Boltzmann
transport equation that is independent of time. We shall see that it is also the
limiting form of the distribution function as the time tends to infinity. Assume
that there is no external force. It is then consistent to assume further that the
distribution function is independent of r and hence can be denoted by f(p, 1).
The equilibrium distribution function, denoted by f,(p), is the solution to the
equation df(p, t)/dt = 0. According to the Boltzmann transport equation (3.36),
fo(p) satisfies the integral equation

0= fd3p2 d’p; dp;8°( P, — P)ITI*(fiff — Kf) (4.1)

where p, is a given momentum.
A sufficient condition for f,(p) to solve (4.1) is

5o05) fo(p1) — folp2) fo(py) = O (4.2)

where {p;,p,} — {p}, P>} is any possible collision (i.e., one with nonvanishing
cross section). We show that this condition is also necessary, and we thus arrive
at the interesting conclusion that f,( p) is independent of do/df}, as long as the
latter is nonzero.

To show the necessity of (4.2) we define with Boltzmann the functional

H(t) = [df(p.1)log f(p, 1) (4.3)

where f(p, ¢) is the distribution function at time ¢, satisfying

f(py,t)
a—; = [d*p, d’p dp84(P = P)ITP(fifi — 1) (44)

73
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Differentiation of (4.3) yields

M) o LD g ) (45)

Therefore df/dt = 0 implies dH /dt = 0. This means that a necessary condition
for df/dt = 0 1s dH /dt = 0. We now show that the statement

dH

dt
is the same as (4.2). It would then follow that (4.2) is also a necessary condition
for the solution of (4.1). To this end we prove the following theorem.

= 0 (4.6)

BOLTZMANN'S H THEOREM
If f satisfies the Boltzmann transport equation, then

dH(t)
o = 0 (4.7)

Proof Substituting (4.4) into the integrand of (4.5) we have*

dH
— = [ d’py i &’ 8* (P~ PYT(Sify — fo/)(L +log f;) (438)

Interchanging p, and p, in this integrand leaves the integral invariant because T
is invariant under such an interchange. Making this change of variables of
integration and taking one-half of the sum of the new expression and (4.8), we
obtain
dH 1
o Efd3p2 d’pi d’py 8*( P — P))|Ty|?

X(fif — fL.1)[2 + log (f117)] (4.9)

This integral is invariant under the interchange of {p,,p,} and {p’, p;} because
for every collision there is an inverse collision with the same T matrix. Hence

aH 1 3. 33 3, 04 2
ar = _Efd p,d°p1d°ps 8* (P — PITI* (S f — f.1)
X [2 + log (fify)] (4.10)
Taking half the sum of (4.9) and (4.10) we obtain
‘Z_i[ = %fd3p2 d’p; d°p; 84(Pf - Pi)|Tﬁ|2(f2'f1' - fh)
X[log(f1fz) — log (f{ 2’)] (4.11)
The integrand of the integral in (4.11) is never positive. _

*Note that the use of {4.4) presupposes that the state of the system under consideration satisfies
the assumption of molecular chaos.
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As a by-product of the proof, we deduce from (4.11) that dH /dr = 0 if and
only if the integrand of (4.11) identically vanishes. This proves that the statement
(4.6) is 1dentical with (4.2). It also shows that under an arbitrary initial condition

f(p, t) :oof“(p)‘

4.2 THE MAXWELL-BOLTZMANN DISTRIBUTION

It has been shown that the equilibrium distribution function f,(p) is a solution of
(4.2). It will be called the Maxwell-Boltzmann distribution. To find it, let us take
the logarithm of both sides of (4.2):

log f,(p1) + log fo(p,) = log f,(p}) + log fo(p3) (4.12)

Since {p,,p,} and {p},p5} are, respectively, the initial and final velocities of any
possible collision, (4.12) has the form of a conservation law. If x(p) is any
quantity associated with a molecule of velocity p, such that x(p;) + x(p,) is
conserved in a collision between molecules p, and p,, a solution of (4.12) is

log fo(p) = x(p)
The most general solution of (4.12) is

log fo(p) = x,(p) + x2(p) + -+~

where the list x,, x,,... exhausts all independently conserved quantities. For
spinless molecules, these are the energy and the momentum of a molecule, and, of
course, a constant. Hence log f is a linear combination of p* and the three
components of p plus an arbitrary constant:

log fo(p) = —A(p — p,)° + log C
or

fo(p) = Ce™A®-po)” (4.13)

where C, A, and the three components of p, are five arbitrary constants. We can
determine these constants in terms of observed properties of the system.

Applying the condition (3.5), and denoting the particle density N/V by n
we have

32
= 3y e—A®—P0) = 3,04 — o L
n Cfdpe Cfdpe C(A)
from which we conclude that 4 > 0 and
A 3/2

C- (—) " (4.14)

T
Let the average momentum (p) of a gas molecule be defined by
[ dp vsy(p)
(p) = (4.15)

[dpf()
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Then

C C
= — 3 —A(Pp-po) = 3 —Ap* _
{P) =~ [ &ppe . [ @+ po)e P (4.16)

Thus we must take p, = 0, if the gas has no translational motion as a whole.
Next we calculate the average energy ¢ of a molecule, defined by

[ 4°p (p2/2m) ()
€ = (4.17)
[ 41, (m)
We have, setting p, = 0,
C p? , 27C ;o
_ d3_—Ap__ d4Ap___
‘ 2nmf p2me nm PP 4Am
The constant A is therefore related to the average energy by
A > 4.18)
 4em (4.
Substituting this into (4.14) we obtain for the constant C the expression
3 \32
C= n( ) (4.19)
4mem

To relate the average energy e to a directly measurable quantity, let us find
the equation of state corresponding to the equilibrium distribution function. We
do this by calculating the pressure, which is defined as the average force per unit
area exerted by the gas on one face of a perfectly reflecting plane exposed to the
gas. Let the disk shown in Fig. 4.1 represent such a unit area, and let us call the
axis normal to it the x axis. A molecule can hit this disk only if the x component
of its momentum p_ is positive. Then it loses an amount of momentum 2 p_upon
reflection from this disk. The number of molecules reflected by the disk per
second is the number of molecules contained in the cylinder shown in Fig. 4.1
with v, > 0. This number is v, fo(p) d°p, with v, > 0. Therefore the pressure is,

s Disk of unit area

Fig. 4.1 Illustration for the calculation of the pressure.
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for a gas with zero average velocity
P=[ &p2ppfo0) = [d’ppo.fo(p)
v, >0

2

C C

- 3.2, —Ap* __ 3, .2 —Ap

mfd pple 3mfd pple (4.20)

where the last step comes about because f,(p) depends only on |p| so that the

average values of p2, p;, and p? are all equal to one-third of the average of
p* = p; + p} + p;. Finally we notice that
p?

P= %Cfd3p Ee_"‘pz = Zne (4.21)

This is the equation of state. Experimentally we define the temperature 7 by
P = nkT, where k is Boltzmann’s constant. Hence

€ = 3kT (4.22)

In terms of the temperature 7, the average momentum p,, and the particle

?

density n the equilibrium distribution function for a dilute gas in the absence of
external force is

n 2
fo(p) = (2‘”ka)3/2€’_(]’“]’0) /2mkT (423)

This is the Maxwell-Boltzmann distribution, the probability of finding a molecule
with momentum p in the gas, under equilibrium conditions. *

If a perfectly reflecting wall is introduced into the gas, f,(p) will remain
unchanged because f,(p) depends only on the magnitude of p, which is un-
changed by reflection from the wall.

For a gas with p, = 0 it is customary to define the most probable speed v of

a molecule by the value of v at which 47p2f(p) attains a maximum. We easily
find p = v2mkT . The most probable speed is therefore

2kT

v=1 — (4.24)
m
The root mean square speed v, is defined by
1/2
deP v*fo(p) 3T
Urms = =1 — (4.25)
m
[ f(p)

At room temperatures these speeds for an O, gas are of the order of magnitude
of 10° cm /s.

*We have assumed, in accordance with experimental facts, that the temperature T is indepen-
dent of the average momentum p,.
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A 4mp?fo(p)

5> U

o

<
=
3
in

Fig. 4.2 The Maxwell-Boltzmann distribution.

A plot of 4wp*f,(p) against v = p/m is shown in Fig. 4.2. We notice that
fo(p) does not vanish, as it should, when v exceeds the velocity of light ¢. This is
because we have used Newtonian dynamics for the molecules instead of the more
correct relativistic dynamics. The error is negligible at room temperatures,
because v < c. The temperature above which relativistic dynamics must be used
can be roughly estimated by putting 7 = ¢, from which we obtain k7 = mc?,
Hence T = 10" K for H,.

Let us now consider the equilibrium distribution for a dilute gas in the
presence of an external conservative force field given by

= —ve(r) (4.26)
We assert that the equilibrium distribution function is now
f(r.p) = fy(p)e *®/%T (4.27)

where fy(p) is given by (4.23). To prove this we show that (4.27) satisfies
Boltzmann’s equation. We see immediately that df/dz = 0 because (4.27) is
independent of the time. Furthermore (df/d¢).; = O because ¢(r) is indepen-
dent of p:

of
(a—t) = e=2#O/T [ @%p, dpi dpy 84( Py — PYITH*(fif{ — fofy) = O

Hence it is only necessary to verify that
p
(— * vl'+ F. vp)f(r’p) = 0
m

and this is trivial. We may absorb the factor exp(—¢/kT) in (4.27) into the
density » and write

f(r p) — n(l') e_(P_P0)2/2ka (4 28)
’ (277ka)3/2 -
where
n(r) = [dpf(r.p) = nge *O/AT (4.29)

Finally we derive the thermodynamics of a dilute gas. We have defined the
temperature by (4.22) and we have obtained the equation of state. By the very
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definition of the pressure, the work done by the gas when its volume increases by
dV is PdV. The internal energy is defined by

U(T) = Ne = 3NKT (4.30)

which is obviously a function of the temperature alone.
The analog of the first law of thermodynamics now takes the form of a
definition for the heat absorbed by the system:

dQ = dU + PdVv (4.31)

It tells us that heat added to the system goes into the mechanical work P dV and
the energy of molecular motion dU. From (4.31) and (4.30) we obtain for the
heat capacity at constant volume

C, = 3Nk (4.32)

The analog of the second law of thermodynamics is Boltzmann’s H theorem,
where we identify H with the negative of the entropy per unit volume divided by
Boltzmann’s constant:

H > (4.33)
vk ‘
Thus the H theorem states that for a fixed volume (i.e., for an isolated gas) the
entropy never decreases, which is a statement of the second law.
To justify (4.33) we calculate H in equilibrium:

1 3/2 3
Hy= [d*pf, logfo="{1°g[”(zwka) ]_ 5}

Using the equation of state we can rewrite this as
—kVH, = iNklog(PV>/?) + constant (4.34)

We recognize that the right-hand side is the entropy of an ideal gas in thermody-
namics. It follows from (4.34), (4.33), and (4.31) that dS = dQ/T.

Thus we have derived all of classical thermodynamics for a dilute gas; and
moreover, we were able to calculate the equation of state and the specific heat.
The third law of thermodynamics cannot be derived here because we have used
classical mechanics and thus are obliged to confine our considerations to high
temperatures.

4.3 THE METHOD OF THE MOST
PROBABLE DISTRIBUTION

We have noted the interesting fact that the Maxwell-Boltzmann distribution is
independent of the detailed form of molecular interactions, as long as they exist.
This fact endows the Maxwell-Boltzmann distribution with universality. We
might suspect that as long as we are interested only in the equilibrium behavior of
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P
A

/W;E

Fig. 4.3 The microcanonical ensemble correspond-
ing to a gas contained in a finite volume with
>g energy between E and E + A.

a gas there is a way to derive the Maxwell-Boltzmann distribution without
explicitly mentioning molecular interactions. Such a derivation is now supplied.
Through it we shall understand better the meaning of the Maxwell-Boltzmann
distribution. The conclusion we reach will be the following. If we choose a state
of the gas at random from among all its possible states consistent with certain
macroscopic conditions, the probability that we shall choose a Maxwell-
Boltzmann distribution is overwhelmingly greater than that for any other distri-
bution,

We shall use the approach of the Gibbsian ensemble described in Sec. 3.4.
We assume that in equilibrium the system is equally likely to be found in any
state consistent with the macroscopic conditions. That is, the density function is a
constant over the accessible portion of I' space.

Specifically we consider a gas of N molecules enclosed in a box of volume V'
with perfectly reflecting walls. Let the energy of the gas lie between E and
E + A, with A < E. The ensemble then consists of a uniform distribution of
points in a region of T space bounded by the energy surfaces of energies E and
E + A, and the surfaces corresponding to the boundaries of the containing box,
as illustrated schematically in Fig. 4.3. Since the walls are perfectly reflecting,
energy is conserved, and a representative point never leaves this region. By
Liouville’s theorem the distribution of representative points moves likes an
incompressible fluid, and hence maintains a constant density at all times. This
ensembile is called a microcanonical ensemble.

Next consider an arbitrary distribution function of a gas. A molecule in the
gas is confined to a finite region of p space because the values of p and g are
restricted by the macroscopic conditions. Cover this finite region of p space with
volume elements of volume w = d3p d’q, and number them from 1 to X, where
K is a very large number which eventually will be made to approach infinity. We
refer to these volume elements as cells. An arbitrary distribution function is
defined if we specify the number of molecules n, found in the ith cell. These are
called occupation numbers, and they satisfy the conditions

K

Y n,=N (4.35)
i=1
K
Y en =E (4.36)

i=1
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where ¢, is the energy of a molecule in the ith cell:

p!

€ = —

" 2m
where p; is the momentum of the ith cell. It is in (4.36), and only in (4.36), that
the assumption of a dilute gas enters. An arbitrary set of integers {n,)} satisfying

(4.35) and (4.36) defines an arbitrary distribution function. The value of the
distribution function in the ith cell, denoted by £, is

fi= = (4.37)

This is the distribution function for one member in the ensemble. The equi-
librium distribution function is the above averaged over the microcanonical
ensemble, which assigns equal weight to all systems satisfying (4.35) and (4.36):

fi _ <ni>

This is the same definition as (3.52) except that we have replaced the infinitesimal
element d’rd’p by a finite cell of volume w. Unfortunately this ensemble
average is difficult to calculate. So we shall adopt a somewhat different approach,
which will yield the same result for a sufficiently large system.

It is clear that if the state of the gas is given, then f is uniquely determined;
but if f is given, the state of the gas is not uniquely determined. For example,
interchanging the positions of two molecules in the gas leads to a new state of the
gas, and hence moves the representative in I' space; but that does not change the
distribution function. Thus a given distribution function f corresponds not to a
point, but to a volume in T' space, which we call the volume occupied by f. We
shall assume that the equilibrium distribution function is the most probable
distribution function, i.e., that which occupies the largest volume in T space.

The procedure is then as follows:

w

(a) Choose an arbitrary distribution function by choosing an arbitrary set
of allowed occupations numbers. Calculate the volumes it occupies by
counting the number of systems in the ensemble that have these
occupation numbers.

(b) Vary the distribution function to maximize the volume.
Let us denote by £{n,} the volume in T' space occupied by the distribution
function corresponding to the occupation numbers {n,}. It is proportional to the

number of ways of distributing N distinguishable molecules among K cells so
that there are n, of them in the ith cell ( = 1,2,..., K). Therefore

N!

nlnytngl - ng

Q{n,} «

F81'83% * - 8K (4.38)

where g, is a number that we will put equal to unity at the end of the calculation
but that is introduced here for mathematical convenience. Taking the logarithm
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of (4.38) we obtain
K K
logQ{n,}) =logN!— Y logn!+ ) n,logg, + constant
i=1 i=1
Now assume that each n, is a very large integer, so we can use Stirling’s
approximation, log n,! = n;log n; — 1. We then have

K K
logQ{n,}) =NlogN — Y n;logn!+ } n;logg,+ constant (4.39)
i=1 i=1
To find the equilibrium distribution we vary the set of integers {n;} subject
to the conditions (4.35) and (4.36) until log @ attains a maximum. Let {n,}
denote the set of occupation numbers that maximizes log Q. By the well-known
method Lagrange multipliers we have

K K
8[logQ{n,;}] —6(a§1n1-+BZe,.ni) =0 (n,=n;) (4.40)

i=1
where a, 8 are Lagrange’s multipliers. Now the n; can be considered independent
of one another. Substituting (4.39) into (4.40) we obtain

K
Z[_(lognf+1)+loggf_a-ﬁ€i] én; =0 (nizﬁi)

i=1
Since 8n, are independent variations, we obtain the equilibrium condition by
setting the summand equal to zero:

logn, = —1 +log g, — a — B¢,

4.41
n; = g;e_a_ﬁe'_l ( )

The most probable distribution function is, by (4.37) and (4.41),
f, = Ce P« (4.42)

where C is a constant. The determination of the constants C and B proceeds in
the same way as for (4.13). Writing f, = f(p;), we see that f(p) is the Maxwell-
Boltzmann distribution (4.23) for p, = 0. To show that (4.41) actually corre-
sponds to a maximum of log @ {n,} we calculate the second variation. It is easily
shown that the second variation of the quantity on the left side of (4.40), for
n;,=n,is

K 1 5
- Z _(ani) <0
i=1 1

We have obtained the Maxwell-Boltzmann distribution as the most probable
distribution, in the sense that among all the systems satisfying the macroscopic
conditions the Maxwell-Boltzmann distribution is the distribution common to the
largest number of them. The question remains: What fraction of these systems
have the Maxwell-Boltzmann distributions? In other words, how probable is the
most probable distribution? The probability for the occurrence of any set of
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occupation numbers {#n,} is given by

Q{n,
P{n;} = ()

_—{Z,} Ten (4.43)

where the sum in the denominator extends over all possible sets of integers {n’}
satisfying (4.35) and (4.36). The probability for finding the system in the
Maxwell-Boltzmann distribution is therefore P{n,}. A direct calculation of
P{n;} is not easy. We shall be satisfied with an estimate, which, however,
becomes an exact evaluation if this probability approaches unity.

The ensemble average of n, is given by

{Z niﬂ{nj}
n,}

<ni>= Zg{nj}

{n,}

(4.44)

It is obvious from (4.38) that
0
(n) = 85 log| T 2, }} (4.45
{n,}

if we let g, » 1. The deviations from the average value can be estimated by
calculating the mean square fluctuation (n?) — (n;)2. We can express (n?) in
terms of (»;) as follows:

3
. Tne Z2rr ( ag,zﬂ)
(n;) = ZQ = ZQ

where the sum X extends over all allowed { »,}. Through the series of steps given
next we obtain the desired results:

(4.46)

d 1 d Jd 1
2\ = o . Q Q
<nl> g! agl( Zﬂgi agtz ag} Zﬂ)g!aglz
) 3 1 4 g
—_ L — P — L 9
glagl(g:ag logzﬂ Zﬂglag,z )
Therefore the mean square fluctuation is
d
(niy —(n;y = g,-a—g(ni) (4.48)

where we must let g, — 1 at the end of the calculation.
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If the mean square fluctuation is large compared to (n,)?, then (n,) may
differ considerably from 7 but then neither of them will be physically meaning-
ful. If the mean square fluctuation is small compared to (n,)?, we may expect
{n;) and n; to be almost equal. We assume the latter is so, and we shall see that
this is a consistent assumption.* Putting

(n;) = n,

we find from (4.41) and (4.48) that
(n?’) - <ni>2 = n;

<(__)> i} <_> _ /N (4.49)

N N VN

Since #,/N is less than one, the right side of (4.49) becomes vanishingly small if
N is the number of molecules in 1 mol of gas, namely N = 10%3. This result
implies that the probability P{n,} defined by (4.43) has an extremely sharp peak
at {n;} = {#n,}. The width of the peak is such that P{n,} is essentially reduced
to zero when any n,/N differ from 7,/N by a number of the order of 1/ VN . A
schematic plot of P{n,} is shown in Fig. 4.4. We shall call the distributions lying
within the peak “essentially Maxwell-Boltzmann” distributions. They are physi-
cally indistinguishable from the strict Maxwell-Boltzmann distribution. From
these considerations we conclude that in a physical gas any state picked out at
random from among all those satisfying the given macroscopic conditions will
almost certainly have a distribution function that is Maxwell-Boltzmann.

The meaning of the Maxwell-Boltzmann distribution is therefore as follows.
If a dilute gas is prepared in an arbitrary initial state, and if there exist
interactions to enable the gas to go into states other than the initial state, the gas
will in time almost certainly become Maxwell-Boltzmann, because among all
possible states of the gas satisfying the macroscopic conditions (which are
conserved by the interactions), almost all of them have the Maxwell-Boltzmann
distribution. This, however, does not tell us how long it will take for the gas to
reach the equilibrium situation. Nor does it rule out the possibility that the gas
may never reach the equilibrium situation, nor that of leaving the equilibrium
situation after attaining it. From this point of view, we see that the laws of
thermodynamics are not rigorously true but only overwhelmingly probable.

To illustrate these ideas, consider a gas enclosed in a cubical box with
perfectly reflecting walls. Suppose initially the gas molecules are distributed in an
arbitrary way within the box, and all have exactly the same velocity parallel to
one edge of the box. If there are no interactions, this distribution will be
maintained indefinitely, and the system never becomes Maxwell-Boltzmann. For
such a gas thermodynamics is invalid. If there is molecular interaction, no matter
how small, the initial distribution will, through collisions, change with time. Since
almost any state of the gas will have a Maxwell-Boltzmann distribution, it is

or

*This assumption can be proved by the method described in Cha;er 9. The desired result is
essentially stated in (9.29).
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P{n;}

) Fig. 4.4 Probability of a gas having the
VN occupation numbers {#,}. The most prob-
able occupation numbers {7, } correspond to

K the Maxwell-Boltzmann distribution. Oc-

cupation numbers { n; } for which P{#n,} lies
- >~ within the peak are called “essentially
N Maxwell-Boltzmann” distributions.

J

reasonable that the distribution after a sufficiently long time, depending on the
collision cross section, will become Maxwell-Boltzmann. The considerations we
have made cannot tell us how long this time must be. They only tell us what the
equilibrium situation is, if it is reached.

The derivation of the Maxwell-Boltzmann distribution presented here is
independent of the earlier derivation based on the Boltzmann transport equation.
Neither of these derivations is rigorous. In the present one there are assumptions
that we did not justify, and in the previous one there was the assumption of
molecular chaos, which remains unproved and is not related to the assumptions
made here. The present method seems to be more satisfactory as a derivation of
the Maxwell-Boltzmann distribution because it reveals more clearly the statistical
nature of the Maxwell-Boltzmann distribution. The method of the most probable
distribution, however, does not furnish information about a gas not in equi-
librium, whereas the Boltzmann transport equation does. Hence the main value
of the Boltzmann equation lies in its application to nonequilibrium phenomena.

4.4 ANALYSIS OF THE H THEOREM

We now discuss the physical implication of Boltzmann’s H theorem. For a given
distribution function f(p, ¢), H is defined by

H= f d’pf(p,t)log f(p, 1) (4.50)

The time evolution of H is determined by the time evolution of f(p, #), which
does not in general satisfy the Boltzmann transport equation. It satisfies the
Boltzmann transport equation only at the instant when the assumption of
molecular chaos happens to be valid.

The H theorem states that if at a given instant t the state of the gas satisfies
the assumption of molecular chaos, then at the instant ¢ + e(e — 0),

dH 0
(@) 4 <
dH _ ‘
(b) —— =01f and only if f(v, ) is the Maxwell-Boltzmann distribution.

dt
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The proof of the theorem given earlier is rigorous in the limiting case of an
infinitely dilute gas. Therefore an inquiry into the validity of the H theorem can
only be an inquiry into the validity of the assumption of molecular chaos.

We recall that the assumption of molecular chaos states the following: If
f(p, t) is the probability of finding a molecule with velocity p at time ¢, the
probability of simultaneously finding a molecule with velocity p and a molecule
with velocity p’ at time ¢ is f(p, £)f(p’, ¢). This assumption concerns the
correlation between two molecules and has nothing to say about a form of the
distribution function. Thus a state of the gas possessing a given distribution
function may or may not satisfy the assumption of molecular chaos. For brevity
we call a state of the gas a state of “molecular chaos” if it satisfies the
assumption of molecular chaos.

We now show that when the gas is in a state of “molecular chaos” H is at a
local peak. Consider a dilute gas, in the absence of external force, prepared with
an initial condition that is invariant under time reversal.* Under these condi-
tions, the distribution function depends on the magnitude but not the direction
of v. Let the gas be in a state of “molecular chaos” and be non-Maxwell-
Boltzmann at time ¢ = 0. According to the H theorem dH/dt <0 at t=0".
Now consider another gas, which at ¢ = 0 is precisely the same as the original
one except that all molecular velocities are reversed in direction. This gas must
have the same H and must also be in a state of “molecular chaos.” Therefore for
this new gas dH/dt <0 at ¢t =07 On the other hand, according to the
invariance of the equations of motion under time reversal, the future of the new
gas is the past of the original gas. Therefore for the original gas we must have

dH
— <0 att=0"
dt
dH
— >0 atr=0"
dt

Thus H is at a local peak, as illustrated in Fig. 4.5.

When H is not at a local peak, such as at the points a and ¢ in Fig. 4.5, the
state of the gas is not a state of “molecular chaos.” Hence molecular collisions,
which are responsible for the change of H with time, can create “molecular
chaos” when there is none and destroy “molecular chaos™ once established.

It is important to note that dH/dt is not necessarily a continuous function
of time; it can be changed abruptly by molecular collisions. Overlooking this fact
might lead us to conclude, erroneously, that the H theorem is inconsistent with
the invariance under time reversal. A statement of the H theorem that is
manifestly invariant under time reversal is the following. If there is “molecular
chaos” now, then dH/dr < 0 in the next instant. If there will be “molecular
chaos” in the next instant, then dH /dt > 0 now.

*These simplifying features are introduced to avoid the irrelevant complications arising from
the time reversal properties of the external force and the agent preparing the system.
" The foregoing argument is due to F. E. Low (unpublished). ;
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/b\
a C

Fig. 4.5 H is at a local peak when the gas is in a state
0 of “molecular chaos.”

We now discuss the general behavior of H as a function of time. Our
discussion rests on the following premises.

(a) H is at its smallest possible value when the distribution function is
strictly Maxwell-Boltzmann. This easily follows from (4.50), and it is
independent of the assumption of molecular chaos. *

(b) Molecular collisions happen at random, i.e., the time sequence of the
states of a gas is a sequence of states chosen at random from those that
satisfy the macroscopic conditions. This assumption is plausible but
unproved.

From these premises it follows that the distribution function of the gas is
almost always essentially Maxwell-Boltzmann, i.e., a distribution function con-
tained within the peak shown in Fig. 4.4. The curve of H as a function of time
consists mostly of microscopic fluctuations above the minimum value. Between
two points at which H is at the minimum value there is likely to be a small peak.

If at any instant the gas has a distribution function appreciably different
from the Maxwell-Boltzmann distribution, then H is appreciably larger than the
minimum value. Since collisions are assumed to happen at random, it is over-
whelmingly probable that after the next collision the distribution will become
essentially Maxwell-Boltzmann and H will decrease to essentially the minimum
value. By time reversal invariance it is overwhelmingly probable that before the
last collision H was at essentially the minimum value. Thus H is overwhelmingly
hikely to be at a sharp peak when the gas is in an improbable state. The more
improbable the state, the sharper the peak.

A very crude model of the curve of H as a function of time is shown in Fig.
4.6. The duration of a fluctuation, large or small, should be of the order of the
time between two successive collisions of a molecule, i.e., 107! sec for a gas
under ordinary conditions. The large fluctuations, such as that labeled a in Fig.
4.6, almost never occur spontaneously.! We can, of course, prepare a gas in an
improbable state, e.g., by suddenly removing a wall of the container of the gas, so
that H is initially at a peak. But it is overwhelmingly probable that within a few
collision times the distribution would be reduced to an essentially Maxwell-
Boltzmann distribution.

*See Problem 4.9,
¥See Problems 4.5 and 4.6.



THERMODYNAMICS AND KINETIC THEORY

Fig. 4.6 I as a function of time. The range of values of H lying
between the two horizontal dashed lines 1s called the “noise range.”

Most of the time the value of H fluctuates within a small range above the
minimum value. This range, shown enclosed by dashed lines in Fig. 4.6, corre-
sponds to states of the gas with distribution functions that are essentially
Maxwell-Boltzmann, i.e., distribution functions contained within the peak of Fig.
4.4. We call this range the “noise range.” These features of the curve of H have
been deduced only through plausibility arguments, but they are in accord with
experience. We can summarize them as follows.

(a) For all practical purposes H never fluctuates spontaneously above the

(b)

noise range. This corresponds to the observed fact that a system in
thermodynamic equilibrium never spontaneously goes out of equi-
librium.

If at an instant H has a value above the noise range, then, for all
practical purposes, H always decreases after that instant. In a few
collision times its value will be within the noise range. This corresponds
to the observed fact that if a system is initially not in equilibrium (the
initial state being brought about by external agents), it always tends to
equilibrium. In a few collision times it will be in equilibrium. This
feature, together with (a), constitutes the second law of thermody-
namics.

Most of the time the value of H fluctuates in the noise range, in which
dH /dt is as frequently positive as negative. (This is not a contradiction
to the H theorem, because the H theorem merely requires that when the
system is in a state of “molecular chaos,” then dH/dt <0 in the next
instant.) These small fluctuations produce no observable change in the
equation of state and other thermodynamic quantities. When H 1s in the
noise range, the system is, for all practical purposes, in thermodynamic
equilibrium. These fluctuations, however, do lead to observable effects,
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>t
Fig. 4.7 The solid curve is H as a function of time for a gas
initially in an improbable state. The dots are the points at
which there is “molecular chaos.” The dashed curve is that
predicted by the Boltzmann transport equation.

e.g., the fluctuation scattering of light. We witness it in the blue of the
sky.

We have argued that whenever the distribution function is not strictly Maxwell-
Boltzmann, H is likely to be at a local peak. On the other hand, it was shown
earlier that in a state of “molecular chaos” H is at a local peak. Thus we may
regard a state of “molecular chaos™ as a convenient mathematical model for a
state that does not have a strictly Maxwell-Boltzmann distribution function.
Hence the Boltzmann transport equation may be regarded as valid in a statistical
sense. To illustrate this, let us imagine that a gas is prepared in an improbable
initial state. The curve of H as a function of time might look like the solid curve
in Fig. 4.7. Let us mark with a dot a point on this curve at which the gas is in a
state of “molecular chaos.” All these dots must be at a local peak of H (but not
all local peaks are marked with a dot). By assumption of the randomness of the
time sequence of states, they are likely to be evenly distributed in time. The
distribution of dots might look like that illustrated in Fig. 4.7.

A solution to the Boltzmann transport equation would yield a smooth curve
of negative slope that tries to fit these dots, as shown by the dashed curve in Fig.
4.7. Tt is in this sense that the Boltzmann transport equation provides a descrip-
tion of the approach to equilibrium.

These arguments make it only plausible that the Boltzmann transport
equation is useful for the description of the approach to equilibrium. The final
test lies in the comparison of results with experiments.
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4.5 THE POINCARE CYCLE

When Boltzmann announced the H theorem a century ago, objections were
raised against it on the ground that it led to “paradoxes.” These are the so-called
“reversal paradox” and “recurrence paradox,” both based on the erroneous
statement of the H theorem that dH /dt < 0 at all times. The correct statement
of the H theorem, as given in the last section, is free from such objections. We
mention these “paradoxes™ purely for historical interest.

The “reversal paradox” is as follows: The H theorem singles out a preferred
direction of time. It is therefore inconsistent with time reversal invariance. This is
not a paradox, because the statement of the alleged paradox is false. We have
seen In the last section that time reversal invariance is consistent with the H
theorem, because dH /dt need not be a continuous function of time. In fact, we
have made use of time reversal invariance to deduce interesting properties of the
curve of H.

The “recurrence paradox” is based on the following true theorem.

POINCARE’S THEOREM

A system having a finite energy and confined to a finite volume will, after a
sufficiently long time, return to an arbitrarily small neighborhood of almost any
given initial state.

By “almost any state” is meant any state of the system, except for a set of
measure zero (i.e., a set that has no volume, e.g., a discrete point set). A
neighborhood of a state has an obvious definition in terms of the I' space of the
system.

A proof of Poincaré’s theorem is given at the end of this section. This
theorem implies that H is an almost periodic function of time. The “recurrence
paradox” arises in an obvious way, if we take the statement of the H theorem to
be dH /dt < 0 at all times. Since this is not the statement of the H theorem, there
is no paradox. In fact, Poincaré’s theorem furnishes further information concern-
ing the curve of H.

Most of the time H lies in the noise range. Poincaré’s theorem implies that
the small fluctuations in the noise range repeat themselves. This 1s only to be
expected.

For the rare spontaneous fluctuations above the noise range, Poincaré’s
theorem requires that if one such fluctuation occurs another one must occur after
a sufficiently long time. The time interval between two large fluctuations is called
a Poincaré cycle. A crude estimate (see Problem 4.7) shows that a Poincaré cycle
is of the order of e”, where N is the total number of molecules in the system.
Since N = 10?3, a Poincaré cycle is extremely long. In fact, it is essentially the
same number, be it 101°” s or 101" ages of the universe, (the age of the universe
being a mere 10'° years.) Thus it has nothing to do with physics.

We mentioned the ergodic theorem in Section 3.4, but did not use it as a
basis for the microcanonical ensemble, even though, on the surface, it seems to be
the justification we need. The reason is that existing proofs of the theorem all
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share a characteristic of the proof the Poincaré theorem given below, i.e., an
avoidance of dynamics. For this reason, they cannot provide the true relaxation
time for a system to reach local equilibrium, (typically about 107'° s for real
systems,) but have a characteristic time scale of the order of the Poincaré cycle.
For this reason, the ergodic theorem has so far been an interesting mathematical
exercise irrelevant to physics.

Proof of Poincaré’s Theorem Let a state of the system be represented by a
point in T space. As time goes on, any point in I' space traces out a locus that is
uniquely determined by any given point on the locus. Let g, be an arbitrary
volume element in T space of volume w,. After time ¢ all the points in g, will be
in another volume element g,, of volume w,, which is uniquely determined by g.
By Liouville’s theorem, w, = w,.

Let T, denote the subspace that is the union of all g, for 0 <z < co. Let its
volume be §2,. Similarly, let T, denote the subspace that is the union of all g, for
T <t < o0. Let its volume be £_. The numbers @, and 2, are finite because,
since the energy of the system and the spatial extension of the system are finite, a
representative point is confined to a finite region of I' space. The definitions
immediately imply that I}, contains I’ .

We may think of T, and T, in a different way. Imagine the region I'; to be
filled uniformly with representative points. As time goes on, I'; will evolve into
some other regions that are uniquely determined. It is clear, from the definitions,
that after a time 7, I;; will become I',. Hence, by Liouville’s theorem,

Q, = Q.

We recall that T, contains all the future destinations of the points in gy, and
T, contains all the future destinations of the points in g,, which in turn is evolved
from g, after the time . It has been shown that I}y has the same volume as I.
Therefore T, and T, must contain the same set of points except for a set of
measure zero.

In particular, T, contains all of g, except for a set of measure zero. But, by
definition, all points in [, are future destinations of the points in g,. Therefore
all points in g,, except for a set of measure zero, must return to g, after a
sufficiently long time. Since g, can be made as small as we wish, Poincaré’s
theorem follows. a

PROBLEMS

4.1 Describe an experimental method for the verification of the Maxwell-Boltzmann
distribution.

4.2 A cylindrical column of gas of given temperature rotates about a fixed axis with
constant angular velocity. Find the equilibrium distribution function.
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4.3 (a) What fraction of the H, gas at sea level and at a temperature of 300 K can
escape from the earth’s gravitational field?

(b) Why do we still have H, gas in the atmosphere at sea level?

4.4 Using relativistic dynamics for gas molecules find, for a dilute gas of zero total
momentum,
(a) the equilibrium distribution function;
(b) the equation of state.
Answer. PV is independent of the volume. Hence it is NkT by definition of T.

4.5 (a) Estimate the probability that a stamp (mass = 0.1 g) resting on a desk top at
room temperature (300 K) will spontaneously fly up to a height of 107 % ¢cm above the desk
top.

Hint. Think not of one stamp but of an infinite number of noninteracting stamps
placed side by side. Formulate an argument showing that these stamps obey the Maxwell-
Boltzmann distribution,

Answer. Let m = mass of stamps, h = height, g = acceleration of gravity. Probabil-
ity = e~ msh/kT

4.6 A room of volume 3 X 3 X 3 n?’ is under standard conditions (atmospheric pressure
and 300 K). '

(a) Estimate the probability that at any instant of time a 1-cm® volume anywhere within
this room becomes totally devoid of air because of spontaneous statistical fluctuations.
(b) estimate the same for a 1-A> volume.

Answer. Let N = total number of air molecules, V = volume of room, v = the
volume devoid of air. Probability = ¢~ N(¢/¥)

4.7 Suppose the situation referred to in Problem 4.6z has occurred. Describe qualita-
tively the behavior of the distribution function thereafter. Estimate the time it takes for
such a situation to occur again, under the assumption that molecular collisions are such
that the time sequence of the state of the system is a random sequence of states.

4.8 (a) Explain why in (4.42) we arrived at the formula for the Maxwell-Boltzmann
distribution for a gas with no average momentum (p, = 0), although average momentum
was not specified as a macroscopic condition in (4.35) and (4.36).

(b) Derive the Maxwell-Boltzmann distribution for a gas with average velocity v,, using
the method of the most probable distribution.

4.9 Let
H= fd3pf(p, t)log f(p, 1)

where f(v, 1) is arbitrary except for the conditions

[ dpf(pse) =n

lfaP p—zf( 1) =c¢
n p2m P,

Show that H is minimum when f is the Maxwell-Boltzmann distribution.



TRANSPORT PHENOMENA

5.1 THE MEAN FREE PATH

To begin our discussion on the approach to equilibrium of a gas initially not in
equilibrium, we introduce the qualitative concept of the mean free path and
related quantities.

A gas is not in equilibrium when the distribution function is different from
the Maxwell-Boltzmann distribution. The most common case of a nonequilibrium
situation is that in which the temperature, density, and average velocity are not
constant throughout the gas. To approach equilibrium, these nonuniformities
have to be ironed out through the transport of energy, mass, and momentum
from one part of the gas to another. The mechanism of transport is molecular
collision, and the average distance over which molecular properties can be
transported in one collision is the mean free path. It is the average distance
traveled by a molecule between successive collisions. We give an estimate of its
order of magnitude.

The number of collisions happening per second per unit volume at the point
rin a gas is given by

Z = fd3p1 d3p2 dspi d3p584(PfF Pi)ly}ilzf(r’pls t)f(rap2s t)

where f(r,p, ¢) is the distribution function. The integration over p; and pj can be
immediately effected to yield

Z = fdsplfd3p2 otot |v1 - vzlf(rapla t)f(raan t) (51)

A free path is defined as the distance traveled by a molecule between two
successive collisions. Since it takes two molecules to make a collision, every
collision terminates two free paths. The total number of free paths occurring per
second per unit volume is therefore 2Z. Since there are n molecules per unit
volume, the average number of free paths traveled by a molecule per second is

293
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2Z/n. The mean free path, which is the average length of a free path, is given by
n

A= ——b 2
577 (52)
where v = /2kT/m is the most probable speed of a molecule. The average

duration of a free path is called the collision time and is given by
T=— (5.3)

For a gas in equilibrium, f(r,p, 7) is the Maxwell-Boltzmann distribution.
Assume for an order-of-magnitude estimate that o, is insensitive to the energy
of the colliding molecules and may be replaced by a constant of the order of 7a?
where a is the molecular diameter. Then we have

0’0
Z= };‘ fd3p1fd3pzlp1 — pAf () f(py)
9 2 2
Oy N Pitp;
m(Z'lrka)B'[ pl'[ Palb T Rl e 2mkT
) 2 2
atotn 1 P p
= d°P | d’ Tl T o
m(27rka)3[ [ @7ip CXP[ kT \4m — m )]

where P = p, + p,, p = 3(p, — p,)- The integrations are elementary and give

Z = 2n% ‘/—]—C-Z=\/Enza v (5.4)
tot Tm 7 tot "

Therefore

V7/8

A= Y/
no,,

- (5.5)

V7/8

T = =
nao U

We see that the mean free path is independent of the temperature and is
inversely proportional to the density times the total cross section.
The following are some numerical estimates. For H, gas at its critical point,

A=10"c¢m
r=10"1g

For H, gas in interstellar space, where the density is about 1 molecule /cm’,
A = 10% ¢m

The diameter of H, has been taken to be about 1 A.
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From these qualitative estimates, it is expected that in H, gas under normal
conditions, for example, any nonuniformity in density or temperature over
distances of order 10~ 7 cm will be ironed out in the order of 107! s, Variations
in density or temperature over macroscopic distances may persist for a long time.

5.2 EFFUSION

An important quantity governing the behavior of a gas is the ratio of the mean
free path to some other characteristic length, such as

The size of the box containing the gas.
The diameter of a hole through which gas molecules may pass.
The wavelength of density fluctuations.

When the mean free path is large compared to any other length in the
problem, the gas is said to be in the collisionless regime. A practical example is
the process of effusion, whereby a gas leaks through a very small hole of diameter
much smaller than the mean free path—a phenomenon of great interest to all
experimentalists who maintain vacuum systems.

In effusion the gas molecules do not collide as they go through the hole.
Therefore the flux I through the hole, defined as the number of molecules
crossing the hole per second per unit area of the hole, is just the flux of molecules
impinging on the surface area of the hole. The contribution to the flux from
molecules of velocity v is given by

dl = d°pv, f(p)

where the x axis is chosen normal to the hole. The total flux is therefore
I=[ d%ofp)
v, >0

Assuming the Maxwell-Boltzmann distribution, we have

nm3

oo 2 oo 2 oc 2
] = 3 2[ de Uxe—mvx/2ka dvyehmvy/ﬂch dUz e—muz/2kT
(27mkT) 72 Jy Cw C

| kT no
- dom 2/

Eliminating » through P = nkT, we obtain

P
= —— 5.6
V2mmkT (5:6)
The inverse proportionality to vm makes the process useful as a means of
separating 1sotopes.
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The opposite of the collisionless regime is one in which the mean free path is
much smaller than the other characteristic lengths of the problem, exemplified by
the fiow of a gas through a very large hole. In this case the gas molecules will
undergo many collisions as they pass through the hole, and will “thermalize”
locally. The prevailing condition is known as the hydrodynamic regime, and will
be the subject of the rest of this chapter.

5.3 THE CONSERVATION LAWS

To investigate nonequilibrium phenomena, we must solve the Boltzmann trans-
port equation, with given initial conditions, to obtain the distribution function as
a function of time. Some rigorous properties of any solution to the Boltzmann
equation may be obtained from the fact that in any molecular collision there are
dynamical quantities that are rigorously conserved.

Let x(r,p) be any quantity associated with a molecule of velocity p located
at r, such that in any collision {p,,p,} — {p{,p;} taking place at r, we have

X1+ Xx2=xitx5 (5.7)

where x; = x(r;,p,), etc. We call x a conserved property. The following theorem
holds.

THEOREM
[ x(r, p){ 2l f’ ) ]m“ =0 (5.8)
where (df/dt) ., 1s the right side of (3.36).*
Proof By definition of (df/d¢) ., we have
fd px( )Cou [ @1 d%, %1 d*i 84 (P~ P TP — L)X

(5.9)

Making use of the properties of T}; discussed in Section 3.2, and proceeding in a
manner similar to the proof of the H theorem, we make each of the following
interchanges of integration variables.

!

First: p,20p;-
Next: p,2p; and p, 2 p5
Next: p,2p;, and p, 2

For each case we obtain a different form for the same integral. Adding the three

*Note that it is not required that f be a solution of the Boltzmann transport equation.
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new formulas so obtained to (5.9) and dividing the result by 4 we get
f 1
= _ 3 3 3.7 73,/ {4 _ 12
fdPX(at)COH 4'[d15'1d}72d}71‘531172‘S (Pf P\ Ty
X(LH =LA+ x:—x{ —x3) =0 =

The conservation theorem relevant to the Boltzmann transport equation is
obtained by multiplying the Boltzmann transport equation on both sides by x
and then integrating over p. The collision term vanishes by virtue of (5.8), and we
have*

d d
fd3px(r P) —+—*:9;+Fla—) (r,p,2) =0 (5.10)

We may rewrite (5.10) in the form

fdpr+--—fdpxp’f [ >“D’f+fahr)aa (XF.f)

=0 (5.11)

The fourth term vanishes if f(r,p, ¢) is assumed to vanish when |p| — co. This
conservation theorem is most useful in hydrodynamics, where the velocity
v = p/m rather than the momentum p is a directly measurable quantity. Accord-
ingly, we shall reexpress p in terms of v, where convenient. We also define the
average value (A) by

[d&par
(Ay= ——— = — [ d?p Af (5.12)
[dps "
where
n(r,1) = [dpf(r,p, 1) (5.13)

We obtain finally the desired theorem:
CONSERVATION THEOREM

d d ax n ax n | dF, 0 (514
g, XD F (o) = v Fan ) " ml a0x) =0 G14)

I

where x is any conserved property. Note that (nd) = n{A) because n Is

*The summation convention, whereby a repeated vector index is understood to be summed
from 1 to 3, is used.
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independent of v. From now on we restrict our attention to velocity-independent
external forces so that the last term of (5.14) may be dropped.

For simple molecules the independent conserved properties are mass,
momentum, and energy. For charged molecules we also include the charge, but
this extension is trivial. Accordingly we set successively

X=m (mass)
x=mv; (i=1,2,3) (momentum)
x = im|v —u(r, 1) (thermal energy)
where
u(r, 7) = (v)
We should then have three independent conservation theorems.
For x = m we have immediately

d d 0
— 4 — N =
ry (mn) ox) {(mnv;)

or, introducing the mass density

p(r,t) =mn(r,t)
we obtain

=7+ v (o) =0 (5.15)

Next we put x = mv,, obtaining

ad d 1
—(pv)y + —(pv.w,y — —pF, = .
o, (pv) + 5 (pviv;) — —pF =0 (5.16)

J
To reduce this further let us write

(vv;) = <(Ui - “f)(”j - “J)> + (v)u; + “i<0j> Wiy
= <(vi —u)(v; — uj)) + uu,

Substituting this into (5.16) we obtain

du, ou ) _1 5’( 5.17
Pl T Wax, | T m™ T ax, Pl = u)y—w)) - (517)

J
Introducing the abbreviation
P, = P((Uf - “:‘)(Uj - ",))
which is called the pressure tensor, we finally have
) d ) 1 1 0

— 4+ u—|u,=—F—-——FP, (5.18)

J : L)
at dx; m p Ix;
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Finally we set x = im|v — u|% Then

1 0 1 4 1 d B
53—<p|V"‘“| >+ 2 o, ——(pu,lv —uj >—EP<U—|V“““|>—0 (5.19)

We define the temperature by
kT =0 = 1m{|v — u}?)
and the heat flux by
q=1p((v - u)lv — u|’)
We then have
Lodulv = ul?) = dme((v; = w)lv —ul®) + Sou(lv —ul?)

= q, + 3p0u,
and

p(vi(vj - uj)> = p<(v,- —u;)(v, - u),)) + pu (v, —u;y =P

Thus (5.19) can be written

36(0+3q'+3 Bu;) + o4, 0
3P0+ o T g g, (PO Py
Since P,, = P,
p du, du, du, b A
— =p ——2 4+ — | =P,
gal’ 0x, Y2\ ax,  Ox el
The final form is then obtained after a few straightforward steps
0 + ’ 6 2e 2 AP 5.20
Plar ™ Yiax, 39x, 0 3ty (5-20)
The three conservation theorems are summarized in (5.21), (5.22), and (5.23).
dp .
TR (pu) =0 (conservation of mass)  (5.21)
d p o _
p(EE +u-v )u =—F-v-P (conservation of momentum)
n
(5.22)
d o o _
p(@; +u-v )0 = -2y +.q—2P+-A (conservation of energy) (5.23)

where P is a dyadic whose components are P, v . P is a vector whose ith

component is dP,,/dx;, and P+ A is ascalar P, ;A ;- The auxiliary quantities are
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defined as follows.

p(r, 1) = mfd3vf(r,v, t) (mass density) (5.24)
u(r, 2) = (v) (average velocity) (5.25)
0(r,t) = im{|v — u|?) (temperature) (5.26)
q(r, 2) = imp{(v — u)|v — u|?) (heat flux vector) (5.27)
P, = p((v,- —u;)(v; — u,)) (pressure tensor) (5.28)
A= _m(au,. + %) (5.29)
Yoo ax,  ax,

Although the conservation theorems are exact, they have no practical value
unless we can actually solve the Boltzmann transport equation and use the
distribution function so obtained to evaluate the quantities (5.24)—(5.29). Despite
the fact that these quantities have been given rather suggestive names, their
physical meaning, if any, can only be ascertained after the distribution function is
known. We shall see that when it is known these conservation theorems become
the physically meaningful equations of hydrodynamics.

5.4 THE ZERO-ORDER APPROXIMATION

From now on we shall work in the hydrodynamic regime, where the mean free
path is small compared to other characteristic lengths. This means that gas
molecules make a large number of collisions within a small space. Consequently
they come to local equilibrium rapidly. In the lowest-order approximation it is
natural to assume that the gas has a local Maxwell-Boltzmann distribution, with
slowly varying temperature, density, and average velocity:

f(x,p, 1) = fOr,p, 1) (5.30)
where
m

f(o)(r,p, f) = W exp [— ﬁ(v — u)z} (5.31)

where n, 8, u are all slowly varying functions of r and ¢. It is obvious that (5.30)
cannot be an exact solution of the Boltzmann transport equation. On the one

hand we have

9f O

( / ) o (5.32)
at coll h

because 7, §,u do not depend on v. On the other hand it 1s clear that in general

P F
e Eoafunass o
dat m
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We postpone the discussion of the accuracy of the approximation (5.30). For the
moment let us assume that it is a good approximation and discuss the physical
consequences.

If (5.30) 15 a good approximation, the left side of (5.33) must be approxi-
mately equal to zero. This in turn would mean that n, §,u are such that the
conservation theorems (5.21)-(5.23) are approximately satisfied. The conserva-
tion theorems then become the equations restricting the behaviour of n, 8,u. To
see what they are, we must calculate q and P,;; to the lowest order. The results are
denoted respectively by ¢© and P Let C(r ) =n(m/2m0)*/? and A(r,t) =
m/26. We easily obtain

1
q = ——fd v (v —u)|v — u’C(r, t)e A®0F-u’
= imC(r,1) [ U UV 40V = g (5.34)

P 2
Pij) = nC(r,t)fd U(U,- u‘.)(uj uj)e r, 1)|v—u|

= mC(r, 1) [ d*UUye 4@ = 5, P (5.35)
where
m \3/2
— 1 3 2,—A(r, HU? _
P 3p( 2710) fd UUZ% né (5.36)

which is the local hydrostatic pressure.
Substituting these into (5.21) and (5.23), and noting that

Voﬁ(0)=vp
3

PO-A=PY A,=mPv -u
i=1

We obtain the equations

dp
= + v +(pu) =0 (continuity equation) (5.37)
i ! P l Eul ' 5.38
— + . — —_ ’ )
(81‘ u V)u+ pv — (Euler’s equation) (5.38)
ad 1
(—+u-v)0+-—(v-u)0=0 (5.39)
at Cy

where ¢, = 3. These are the hydrodynamic equations for the nonviscous flow of
a gas. They possess solutions describing flow patterns that persist indefinitely.
Thus, in this approximation, the local Maxwell-Boltzmann distribution never
decays to the true Maxwell-Boltzmann distribution. This is in rough accord with
experience, for we know that a hydrodynamic flow, left to itself, takes a long time
to die out.
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Although derived for dilute gases, (5.37)-(5.39) are also used for liquids
because these equations can also be derived through heuristic arguments which
indicate that they are of a more general validity.

We shall now briefly point out some of the consequences of (5.37)—(5.39)
that are of practical interest.

The quantity (d/d¢ + u+ v) X 1s known as the “matenal derivative of X,”
because it is the time rate of change of X to an observer moving with the local
average velocity u. Such an observer is said to be moving along a streamline. We
now show that in the zero-order approximation a dilute gas undergoes only
adiabatic transformations to an observer moving along a streamline. Equations
(5.37) and (5.39) may be rewritten as

d
(E+u'v)p=—pv'u

or
(i +u-v)(p03/2) =0 (5.40)

Using the equation of state P = p8/m we can convert (5.40) to the condition

Pp~3/% = constant (along a streamline) (5.41)

This 1s the condition for adiabatic transformation for an ideal gas, since
cp/Cy =3

Next we derive the linear equation for a sound wave. Let us restrict ourselves
to the case in which u and all the space and time derivatives of u, p, and 8 are
small quantities of the first order. For F = 0, (5.37) and (5.38) may be replaced
by

dp
E+pV'll=0 (5.42)
du
pE +VvP=0 (543)
, 06 ap
Ep'(; - BE =0 (544)

where quantities smaller than first-order ones are neglected. Note that (5.44) is
none other than (5.40) or (5.41). Taking the divergence of (5.43) and the time
derivative of (5.42), and subtracting one resulting equation from the other, we
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obtain
d%
‘P— — =0 5.45
Vv ps t2 ( )
in which higher-order quantities are again neglected. Now P is a function of p
and @, but the latter are not independent quantities, being related to each other
through the condition of adiabatic transformation (5.44). Hence we may regard P

as a function of p alone, and write
JopP )
Ve|={5-| VP
s ap s

dP
where (0P /dp); 1s the adiabatic derivative, related to the adiabatic compressibil-

3
ity k¢ by

v2P=v-[

1/ dp 3 m
=~ = -— 5.46
s p(aP)s 5 b (3.46)
Thus (5.45) can be written in the form
%
Vzp - plcsw =0 (547)

which is a wave equation for p, describing a sound wave with a velocity of

propagation ¢ given by
1 580 5
c= =\ -— =\ -0 (5.48)
pK g 3m 6

It is hardly surprising that the adiabatic compressibility enters here, because in
the present approximation there can be no heat conduction in the gas, as (5.34)
indicates.

Finally consider the case of steady flow under the influence of a conservative
external force field, i1.e., under the conditions

F=-v¢

du 5.49
u_ (5.49)
at

Using the vector identity

(u-viu=1v(u?) —ux (v xXu) (5.50)
we can rewrite (5.38) as follows
0 vp

1 1
§u2+—P+—¢)=ux(v Xu)~ —— (5.51)
p m m p

\%

Two further specializations are of interest. First, in the case of uniform density
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and irrotational flow, namely, vp = 0 and v X u = 0, we have

v

1 1
L ¢) -0 (5.52)
i}

m

which is Bernoulli’s equation. Second, in the case of uniform temperature and
irrotational flow, namely, v8 = 0 and v X u = 0, we have

1 0
V(%uz + ;tﬁ) = ——v(logp)

which may be immediately integrated to yield

1 2
p=pyexp|— 5(%mu +¢) (5.53)

where p, i1s an arbitrary constant.

5.5 THE FIRST-ORDER APPROXIMATION

We now give an estimate of the error incurred in the zero-order approximation
(5.30). Let f(r,p, ¢) be the exact distribution function, and let

g(r,p,t) =f(r,p,1) — fO(r,p, 1) (5.54)

We are interested in the magnitude of g as compared to f©. First let us estimate
the order of magnitude of (df/3t). ;- We have, by definition,

af
(—a—t) 11 B fd3p2d3pi d3P£84(Pf - Pi)‘Tfi'z(fZ’fl’ _fol)
= fd3p2d3pi d3P534(Pf - Pi)tTﬁlz

X(fz(o)’g{ _f2(0)g1 + gﬁfl(o)' - 82f1(0)) (5-55)

where we have used (5.54), the fact that (df©/3¢),,, = 0, and the assumption
that g is a small quantity whose square can be neglected. An order-of-magnitude

estimate of (5.55) may be obtained by calculating the second term of the right
side of (5.55), which 1s

g(rapla t)
_g(rapla t)fd3P2 Oiot| V2 — V1|f2(0) = = —'r— (5-56)

where 7 is a number of the order of magnitude of the collision time. Thus if we

put
of f=79
(_a_t)coll - (557)

T
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we obtain results that are qualitatively correct.* With (5.57) the Boltzmann
transport equation becomes

d F

g
— 4y = — . @ 4 =~ — — 5.58
at ViV m Vs (f g) T ( )

Assuming g < @, we can neglect g on the left side of (5.58). Assume further
that f© varies by a significant amount (i.e., of the order of itself) only when |r|
varies by a distance L. Then (5.58) furnishes the estimate

_fO g
p— = — —
L T
or (5.59)
g A
R

where A is a length of the order of the mean free path. From these considerations
we conclude that @ is a good approximation if the local density, temperature,
and velocity have characteristic wavelengths L much larger than the mean free
path A. The corrections to /@ would be of the order of A/L.

A systematic expansion of f in powers of A/L is furnished by the
Chapman-Enskog expansion, which is somewhat complicated. In order not to
lose sight of the physical aspects of the problem, we give a qualitative discussion
of the first-order approximation based on the approximate equation (5.58). The
precise value of 7 cannot be ascertained. For the present we have to be content
with the knowledge that 7 is of the order of the collision time. Thus we put

f=19+g (5.60)
where, with (5.58), we take
ad

F
— +vVvev,+ — -vv)f("’ (5.61)
at m

To calculate g, note that /) depends on r and ¢ only through the functions
p, 8, and u. Thus we need the derivatives

g= -

IfO 5O
o p

0
af = _1_ EUZ_ _3_ f(O)

d0 g\28 2

= —U.f(o)

du, 6 '

)]

dv, 0

1

*Techniques useful for solving the Boltzmann transport equation, together with results for a few
simple intermolecular potentials, may be found in S. Chapman and T. G. Cowling, The Mathematical
Theory of Non-Uniform Gases, 2nd ed. (Cambridge University Press, Cambridge, 1952).



106 THERMODYNAMICS AND KINETIC THEORY

where
U=v—u(r,?) (5.63)

Hence

a a ;0
8= |5 Tug t ;a—vi)f“’)
= ——'rf(o)[lD(p) + 1( U? — E)D(ﬁ?) + —UD(u ) — —F U| (5.64)
p 0\20 2
where
J ad

D(X)=|— +v,—é—;)X (5.65)

Using the zero-order hydrodynamic equations (5.37)—(5.39), we can show that
D(p)=—p(Vv -uy+U-vp
D(8)=—-%v u+U-vl

1 0P F du;

D(u)=~——+ 2L + U—
(u’) pdx; m Uax

(5.66)

where P = pf/m. Substituting these into (5.64) we obtain

vp 1/ m 3 2
g=—-1fO-(v-uy+U: +—(——-—U2——)(—;8v-u+U-v9)

P g\28 2
m vP F 3u 1
+—|-U- -—+UU— - —=F-U
6 p m 7 9x, 6
which, after some rearrangement and cancellation of terms, becomes
1 06 m 5 1
g= - [0 ™ U( Ut - 5) + EA,-J-(U,-UJ.— gaijUz)]f(O) (5.67)

where A, is defined by (5.29).
It s now necessary to calculate q and P;; with the help of (5.60) to obtain
the equations of hydrodynamics to the first order We have

mp
q= 3;[613}7 (v—u)v—ul’g

Noting that the second term of (5.67) does not contribute to this integral, we
obtain
5\1 a8
q= ————~fd UUUZ( Ut - —)

]
20 f

or
q= —Kvé (5.68)
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where
m5'r
K=—|dvuu? U?— —|fO = 3,0 5.69
60 / (20 )f 270n (5.69)

It is clear from (5.68) that K is to be identified as the coefficient of thermal

conductivity. It is also clear that |q] is a small quantity of the first order, being of
the order of A/L.

For the pressure tensor P,;, only the second term of (5.67) contributes:

p
P, = ;fd3p (v, —u)(v,—u)(fO+g)=8,P+P (5.70)

where P = pf/m and

mom’ 3 1 2\ £(0)
Pl= - on Awld UUin(Uka_ 30U )f (5.71)
3
To evaluate this, note that P/, is a symmetric tensor of zero trace (i.e., Y P/ =0),

i=1
and it depends linearly on the symmetric tensor A, ;. Therefore P;; must have the

form

, 2p m
Pij= _;(AU_ ?BUV u (572)
where mv - u is none other than the trace of A, ;:
3 du,
Z —mz——mv'u (5.73)
j= i=1 axi

and p 1s a constant. It remains to calculate u. For this purpose it suffices to

calculate any component of P/, e.g., P{,. From (5.71) we have

rm*
P, =~ AkldeUUlUZ(Uk[]I - %Bkle)f(o)

- —2—A12fd UURUR©

Therefore
5
T
p=— [ QUGS = e (5.74)
With this we have
2u m
Pj=28,P - ;(AU — 3oV “) (5.75)

The second term is of the order of A/L. The coefficient p turns out to be the
coefficient of viscosity, as we show shortly.
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Fig. 5.1 Ratio of thermal conductivity to the product of viscosity and
specific heat for different dilute gases.

A comparison of (5.74) with (5.69) shows that
K

I

Since the unknown collision time 7 drops out in this relation, we might expect
(5.76) to be of quantitative significance. A plot of some experimental data for
different dilute gases in Fig. 5.1 shows that it is indeed so.

Let us put, with (5.6),
v m 2 5.77
"V kT na? (5.77)

where a is the molecular diameter. Then we find that

vmkT

a

b un
W |Ln

cy (5.76)

(5.78)

5.6 VISCOSITY

To show that (5.74) is the coefficient of viscosity, we independently calculate the
coefficient of viscosity using its experimental definition. Consider a gas of

uniform and constant density and temperature, with an average velocity given by
u,=A+ By 5 7
u,=u,= 0 (5.79)

where A and B are constants. The gas may be thought of as being composed of
different layers sliding over each other, as shown in Fig. 5.2. Draw any plane
perpendicular to the y axis, as shown by the dotted line in Fig. 5.2. Let F’ be
the frictional force experienced by the gas above this plane, per unit area of the
plane. Then the coefficient of viscosity p is experimentally defined by the relation

du,
s

The gas above the plane experiences a frictional force by virtue of the fact that it

F'= (5.80)
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* Fig. 5.2 Horizontal flow of a gas with average
velocity increasing linearly with height.

suffers a net loss of “x component of momentum” to the gas below. Thus

F’ = net amount of “x component of momentum”
transported per sec across unit area in the (5.81)
y direction

The quantity being transported is m(v, — u,), whereas the flux effective in the
transport is n(v, — u,). Hence we have

F' = mn((v, = u)(v, = u,)) = m* [ d% (0, = u)(0, = u,)(f© + g)
(5.82)

We easily see that the term f© does not contribute to the integral in (5.82). The
first correction g may be obtained directly from the approximate Boltzmann
transport equation

.
™ o ™ du, o (5.83)
§= — —B_Uy(vxw ux)Bf = = g lJyUx ay f
where U = v — u. Thus
du, vm’
F'=—-—"= dPUUUH©® 5.84
5, ¢ ] LUV (5.84)
A comparison between this and (5.80) yields
5
T™m
b= [@uuzui© (5.85)

which is identical with (5.74).

From the nature of this derivation it is possible to understand physically
why p has the order of magnitude given by (5.78). Across the imaginary plane
mentioned previously, a net transport of momentum exists, because molecules
constantly cross this plane in both directions. The flux is the same in both
directions, being of the order of nykT/m. On the average, however, those that
cross from above to below carry more “x component of momentum” than the
opposite ones, because the average velocity u, is greater above than below. Since
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most molecules that cross the plane from above originated within a mean free
path A above the plane, their u, is in excess of the local u, below the plane by
the amount A(Jdu, /dy). Hence the net amount of “x component of momentum”
transported per second from above to below, per umt area of the plane, is

kT du, VmkT du,

A = 5.86
e dy a’ dy (3.86)
Therefore
vmkT
p = e, (5.87)

It is interesting to note that according to (5.87) u 1s independent of the
density for a given temperature. When Maxwell first derived this fact, he was so
surprised that he put it to experimental test by observing the rate of damping of a
pendulum suspended in gases of different densities. To his satisfaction, it was
verified.

According to (5.87) the coefficient of viscosity increases as the molecular
diameter decreases, everything else being constant. This is physically easy to
understand because the mean free path A increases with decreasing molecular
diameter. For a given gradient du_/dy, the momentum transported across any
plane normal to the y axis obviously increases as A increases. When A becomes
so large that it is comparable to the size of the container of the gas, the whole
method adopted here breaks down, and the coefficient of viscosity ceases to be a
meaningful concept.

As a topic related to the concept of viscosity we consider the boundary
condition for a gas flowing past a wall. A gas, unlike a hquid, does not stick to
the wall of its container. Rather, it slips by with an average velocity u,. To
determine u,, it is necessary to know how the gas molecules interact with the
wall. We make the simplifying assumption that a fraction 1 — « of the molecules
striking the wall is reflected elastically while the remaining fraction a is absorbed
by the wall, only to return to the gas later with thermal velocity. The number « is
called the coefficient of accommodation. Suppose the wall is the xy plane, as
shown in Fig. 5.3. Then the downward flux of particles is given by

m3f_oo dv, foo dv, j:o dv,no, f©® = n/f %’;’— (5.88)

The particles that reach the wall came from a mean free path A above the wall.

xy plane

Fig. 5.3 A gas slipping past a wall.
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Thus the gas loses to a unit area of the wall an amount of momentum per second
equal to

]
F'= —anm|| ——
Tm

uy + A(%)J (5.89)

where (du/dz), is the normal gradient of u at the wall. This is the force of
friction per unit area that the wall exerts on the gas, and must equal —u(du/dz),.
Hence the boundary condition at the wall is

¢ du du
) [N ol
[ 27 du

m™Tm
Using u = tnf and A = B+\/2#60/m, where B is a constant of the order of unity,
we obtain the boundary condition

or

du
uO =SA(_) (591)
dz 0

where
1—af
af

1s an empirical constant which may be called the “slipping coefficient.” When
s = 0 there is no slipping at the wall. In general the velocity of slip is equal to the
velocity in the gas at a distance of s mean free paths from the wall. Usually sA is
a few mean free paths.

SI

5.7 VISCOUS HYDRODYNAMICS

The equations of hydrodynamics in the first-order approximation can be ob-
tained by substituting q and P,;, given respectively in (5.68) and (5.75), into the
conservation theorems (5.21)-(5.23). We first evaluate a few relevant quantities.

Veq=-V(Kvl)=-Kv¥ - K- v (5.92)
P, 3P 19 2om(, _m 503
= —_ + —_—— . —_— —— = — . . .
dx;  dx, BV T 3 axi(v ! m E)xj( v oY u) (5:93)
P A, = 2 : ?
N = mP(v *u) — —A A+ um(V e u) (5.94)

m
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The quantity A, A;; can be further reduced:

A A m? [ du, . du,\ [ du, s du, m* Ju, [ du,  Ju,
YU 4\ dx,  dx; J\dx;  dx 2 9x;\ dx;  dx,

i i

Now we reduce the two terms above separately:

du; du, d du, d%u,
i i ' i . i — 1g?2 2\ . 2
dx; dx; axj(u’axj) “‘axjaxj. ;v *(u?) —ueviu
du; du, du, du;\{du, Jdu, . du; du, . du; du;  Jdu; du,
dx; dx, B dx; dx; ]\ dx; dx; dx; dx;  9x; Ix;  dx; dx;
5 2+28ui3u,. du; du,
= — » —_—
(v xu) dx; dx,  dx; 9x;
Hence
du; du, , du; du,
— = —(v xu)’+
dx; dx; (v > dx; dx;
and finally
>
A A, = T[Vz(uz) —2u-viu-|v xu? (5.95)
Substituting (5.92)-(5.94) into (5.21)—(5.23) we obtain
dp
-+ v - (pu) = 0 (5.96)
d F 1
pl— +tu-v u=——V(P——V'u)+uV2u+R (5.97)
dt m 3

d K 1 1
p(—+u-v)9=—v20+—vK-v0——
dt cy cy c,

x| mp(v +u) + 2um(v < u)’ — pm{v(u?) — - v7u - |v x u*}]

(5.98)

where ¢, = 2 and R is a vector whose components are given by
R =2 (A i 5.99
i_maxj ij 3ijV“ (5.99)

In these equations the quantities of first-order smallness are u, K, u, and the
derivatives of p, 6, and u. Keeping only quantities of first-order smallness, we can
neglect all terms involving derivatives of p and K and the last four terms on the
right side of (5.98). We then have the equations of hydrodynamics to the first



TRANSPORT PHENOMENA i13

order:
dp L :
EP + v *(pu) =0  (continuity equation) (5.100)
d F 1
37 +ue v i - o[-ty a4 Lo
at m P 3 i
(Navier-Stokes equation) (5.101)
9 1 K _ |
(— +tu-vy ) §=——(v-uf+ —v? (heat conduction equation)
dt cy pcy,
(5.102)

where ¢, = 2. The boundary condition to be used when a wall is present is the
slip boundary condition (5.91).
If u = 0, (5.102) reduces to

20
peyo- = Kv?i=0 (5.103)

which is the familiar diffusion equation governing heat conduction. This equation
can be derived intuitively from the fact that ¢ = — K v#. Although we have
proved this fact only for a dilute gas, it is experimentally correct for liquids and
solids as well. For this reason (5.103) is often applied to systems other than a
dilute gas.

The Navier-Stokes equation can also be derived on an intuitive basis
provided we take the meaning of viscosity from experiments. We discuss this
derivation in the next section.

5.8 THE NAVIER-STOKES EQUATION

We give a phenomenological derivation of the Navier-Stokes equation to show
why it is expected to be valid even for liquids. Some examples of its use are then
discussed.

Consider a small element of fluid whose volume is dx; dx, dx; and whose
velocity is u(r, ¢). According to Newton’s second law the equation of motion of
this element of fluid is

m— =%
dt
where m is the mass of the fluid element and # is the total force acting on the
fluid element. Let the mass density of the fluid be p and let there be two forces
acting on any element of fluid: A force due to agents external to the fluid, and a
force due to neighboring fluid elements. These forces per unit volume will be
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I
| SEWEAN
e I / Ti+ dxq dxy
Tl\-‘- /
|
dxg < /Il_
// -
-~
N dx3 > X1
N . _/
dx1

x3

Fig. 5.4 Forces acting on an element of fluid.

respectively denoted by F, and G. Thus we can write
m = p dx; dx, dx,

Therefore Newton’s second law for a fluid element takes the form

d
p(é—t-+u-v)u=F1+G (5.104)

Thus the derivation of the Navier-Stokes equation reduces to the derivation of a
definite expression for G.

Let us choose a coordinate system such that the fluid element under
consideration is a cube with edges along the three coordinate axes, as shown in
Fig. 5.4. The six faces of this cube are subjected to forces exerted by neighboring
fluid elements. The force on each face is such that its direction is determined by
the direction of the normal vector to the face. That is, its direction depends on
which side of the face is considered the “outside.” This is physically obvious if we
remind ourselves that this force arises from hydrostatic pressure and viscous
drag. Let T, be the force per unit area acting on the face whose normal lies along
the x; axis. Then the forces per unit area acting on the two faces normal to the x,
axis are, respectively (see Fig. 5.4),

aT,
T,, —('E + a—dx,-) (i=1,2,3) (5.105)
X

The total force acting on the cube by neighboring fluid elements 1s then given by

Gdx,dx,dx,= — . + 7z + o, dx, dx, dx, (5.106)
1 2
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We denote the components of the vectors T,, T,, T; as follows:
T, = (P11= Py, P13)
T, = (le’Pzz,st) (5‘107)
T, = (Py, Py, Py3)

Then
oP,.
=1 5.108
= (5.108)
or
G=-v:P (5.109)
With this, (5.104) becomes
a o
p(EJru'V)u:Fl—v'P (5.110)

which is of the same form as (5.22) if we set F, = pF/m, where F is the external
force per molecule and m is the mass of a molecule. To derive the Navier-Stokes
equation, we only have to deduce a more explicit form for P,;. We postulate that
(5.110) is valid, whatever the coordinate system we choose. It follows that P, is a
tensor.

We assume the fluid under consideration to be isotropic, so that there can be
no Intrinsic distinction among the axes x;, x,, x5. Accordingly we must have

Py =Py, =Py =P (5-111)

where P is by definition the hydrostatic pressure. Thus P,; can be written in the
form
P,=86,P+ P (5.112)

where P;; is a traceless tensor, namely,
3
Y Pr=0 (5.113)
i=1

This follows from the fact that (5.113) is true in one coordinate system and that
the trace of a tensor is independent of the coordinate system.

Next we make the physically reasonable assumption that the fluid element
under consideration, which is really a point in the fluid, has no intrinsic angular
momentum. This assumption implies that P;;, and hence P, is a symmetric
tensor:

P/ =P (5.114)

To see this we need only remind ourselves of the meaning of, for example, P/,. A
glance at Fig. 5.5a makes (5.114) obvious.

Finally we incorporate into P;; the empirical connection between the shear
force applied to a fluid element and the rate of deformation of the same fluid
element. A shear force F’ per unit area acting parallel to a face of a cube of fluid
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> X . ) .
—> Py’ ' Fig. 5.5a Nonrotation of fluid element implies P/, = Pj,.
X2
A
H’F’
i -1
ey !
S /
— > /
¢// /
7 /
/ / Fig. 5.5b Deformation of fluid element due to shear
>x1  force.

tends to stretch the cube into a parallelopiped at a rate given by R’ = p(d¢/dt),

where p is the coefficient of viscosity and ¢ is the angle shown in Fig. 5.55.
Consider now the effect of P/, on one fluid element. It can be seen from Fig.

5.5¢, where P/, is indicated in its positive sense in accordance with (5.105), that

PS = —p(% + d—;:-%) = —u(ng + z::) (5.115)
In general we have
) du, du, o
P/ = —p(-éx-—j + a_x,,) (i # j) (5.116)

To make P/, traceless we must take

du;  du; 2
Pi=—pl|l—+ |- 28y -u (5.117)

X2

dxz /

x1

dxy Flg. 5.5¢ P/, as shear force.
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Therefore

Pij=6:'jP"1u

ATIAT B 5.118
ox, | 9x,| 3" (5.118)

which is identical in form to (5.75). This completes the phenomenological
derivation, which makes it plausible that the Navier-Stokes equation is valid for
dilute gas and dense liquid alike.

5.9 EXAMPLES IN HYDRODYNAMICS

To illustrate the mathematical techniques of dealing with the equations of
hydrodynamics (5.110)—(5.102), we consider two examples of the application of
the Navier-Stokes equation to a liquid.

Iincompressibie Flow

We consider the following problem: A sphere of radius r is moving with
instantaneous velocity u, in an infinite, nonviscous, incompressible fluid of
constant density in the absence of external force. The Navier-Stokes equation
reduces to Euler’s equation:

p(% +u-V)u= P (5.119)
where u is the velocity field of the liquid and P the pressure as given by the
equation of state of the fluid. Let us choose the center of the sphere to be the
origin of the coordinate system and label any point in space by either
the rectangular coordinates (x, y, z) or the spherical coordinates (r, 8, ¢). The
boundary conditions shall be such that the normal component of u vanishes on
the surface of the sphere and that the liquid is at rest at infinity:

rew(r)|,_,—(r-u,),_, =0
£+ 0] =~ (- w,) (5,120
u(ry - 0
Note that incompressibility means dV/dP = 0, or that the density is indepen-
dent of P. Therefore VP is arbitrary, and adjusts itself to whatever the boundary
condition demands. Since there is no source for the fluid, we must have
everywhere

Veu=0 (5.121)
Taking the curl of both sides of (5.119), remembering that p is a constant, and
neglecting terms of the form (du/dx,)(du/dx,), we find that
d
E+u-v)(v Xu)=0 (5.122)
i.e., that V X u is constant along a streamline. Note that P drops out because
vV X (V X P)=0. Since very far from the sphere we have v X u = 0, it follows
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that everywhere

vV Xu=0 (5.123)
This means that u is the gradient of some function:
u=v?o (5.124)

where ® is called the velocity potential. By (5.120) and (5.121) the equation and
boundary conditions for ® are
vi0() =0
o2 ¢ 5.125
( Py ) = u, COs (5.125)
®(r) - 0
r— 00
where @ is the angle between u, and r, as shown in Fig. 5.6.
The most general solution to v *® = 0 is a superposition of solid harmonics.*
Since the boundary condition involves cos ¢, we try the solution

cosd

®(r) =4 (r=a) (5.126)
which is a solid harmonic of order 1 and is the potential that would be set up if a
dipole source were placed at the center of the sphere. Choosing 4 = — luya’

satisfies the boundary conditions. Therefore

cos 8
O(r) = —luga*—5— (r=>a) (5.127)
r

This is the only solution of (5.125), by the well-known uniqueness theorem of the
Laplace equation. The velocity field of the fluid is then given by

cos @
u(r) = —luya’v — (r=a) (5.128)
r

The streamlines can be sketched immediately, and they look like the electric field
due to a dipole, as shown in Fig. 5.6.
Let us calculate the kinetic energy of the fluid. It is given by the integral

342

uoga cos 6 cos @

K.E.=fd3 Loju|? = ( ; )f dry —5+v—
cosf cosé
= f drV 2 v 2

uya cosf cosd

ds .
2 )-{:a [ r? v rt ]
3

5 .
u,a 7 cosf J cosé
° ) a2f2 d(f)fﬂd(oosﬁ)( T ) = im'u;
0 -1 r=a

2 r< dr r
(5.129)

R N

*A solid harmonic is r'Y,,, or r /=Y, where Y,,, is a spherical harmonic.
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Fig. 5.6 Streamlines in a nonviscous liquid in the presence of a
moving sphere.

where m’ is half the mass of the displaced fluid:
m’ = L(2ma’) (5.130)
If the sphere has a mechanical mass m, the total kinetic energy of the system of
liquid plus sphere is
E=1(my+ m)uj (5.131)
The mass m, + m’ may be interpreted to be the effective mass of the sphere,

since (5.131) is the total energy that has to be supplied for the sphere to move
with velocity u,,.

Stokes’ Law

We proceed to solve the same problem when the fluid has a nonvanishing
coefficient of viscosity p. The Navier-Stokes equation will be taken to be

0= —V(P— %V-u)+,uvzu (5.132)

on the assumption that the material derivative of u, which gives rise to the
effective mass, is small compared to the viscous terms. We return to examine the
validity of this approximation later. Since there is no source for the fluid, we still
require ¥V * u = 0, and (5.132) becomes the simultaneous equations

1
= —
viu= v (5.133)

vVeru=20
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with the boundary condition that the fluid sticks to the sphere. Let us translate
the coordinate system so that the sphere is at rest at the origin while the fluid at
infinity flows with uniform constant velocity u,. The equations (5.133) remain
invariant under the translation, whereas the boundary conditions become

[u()] .. =0
u(r) - u, (5.134)

Taking the divergence of both sides of the first equation of (5.133), we
obtain

viP =0 (5.135)

Thus the pressure, whatever it is, must be a linear superposition of solid
harmonics. A systematic way to proceed would be to write P as the most general
superposition of solid harmonics and to determine the coefficient by requiring
that (5.133) be satisfied. We take a short cut, however, and guess that P is, apart
from an additive constant, a pure solid harmonic of order 1:

cos 8
P = PO + ,u.Pl-r"i“— (5.136)

where P, and P, are constants to be determined later. With this, the problem
reduces to solving the inhomogeneous Laplace equation

cos 8
Via=PV — (5.137)
subject to the conditions
vVeou=0

lu(r)],..=0 (5.138)

u(r) - u,

rF— oo
A particular solution of (5.137) is
Py, cost P (2 z

u, = —?r \v e = —-6—(: - 3l';'3-) (5.139)

where £ denotes the unit vector along the z axis, which lies along u,. It is easily
verified that (5.139) solves (5.137), if we note that 1/r and z/r® are both solid
harmonics. Thus,

) P, ,( 12 z cos 8
The complete solution is obtained by adding an appropriate homogeneous
solution to (5.139) to satisfy (5.138). By inspection we see that the complete
solution is

a 1 5 ,,_ cos?
u= uo(l - —) + Zuoa(r — a’)v p; (5.141)

r
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where we have set
to have ¥ - u = 0.

We now calculate the force acting on the sphere by the fluid. By definition
the force per unit area acting on a surface whose normal point along the x; axis is

—T; of (5.107). 1t follows that the force per unit area acting on a surface element
of the sphere is

x y z .
r r r
where 7 is the unit vector in the radial direction and P is given by (5.118). The

total force experienced by the sphere 1s
F/ ==.[¢iSf (5.144)

where dS is a surface element of the sphere and the integral extends over the
entire surface of the sphere. Thus it is sufficient to calculate f for r = a.
The vector 7 + P has the components

p—
~
Mot
e
Il
| -
=
~
i
| pe
e
| p—— |
="}
NU
|
=

Hence
f=—FP+ %[V(r'u)—u+ (r+v)uj (5.145)

where P is given by (5.136) and (5.142), and u is given by (5.141). Since u = 0
when r = a, we only need to consider the first and the last terms in the bracket.
The first term is zero at r = a by a straightforward calculation. At r = a the
second term 1s found to be

ar 24 2

R e

When this is substituted into (5.145), the second term exactly cancels the dipole
part of 7P, and we obtain

du 3u;, 3 cosé
-—) (5.146)

iy, S B
(f)r=a = —I’PO + — —uo
2a
The constant P, is unknown, but it does not contribute to the force on the
sphere. From (5.144) we obtain

F’ = 67uau, (5.147)
which is Stokes’ law.
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The validity of (5.141) depends on the smallness of the material derivative of
u as compared to pv *u. Both these quantities can be computed from (5.141). It
1s then clear that we must require

puya

B

<1 (5.148)

Thus Stokes’ law holds only for small velocities and small radii of the sphere. A
more elaborate treatment shows that a more accurate formula for F’ is

puya

i

3
F’' = 6mpau,|l + 3 + - (5.149)

The pure number puya/p is called the Reynolds number. When the Reynolds
number becomes large, turbulence sets in and streamline motion completely
breaks down.

PROBLEMS

5.1 Make order-of-magnitude estimates for the mean free path and the collision time for
(a) H, molecules in a hydrogen gas in standard condition (diameter of H, = 2.9 A);
(b) protons in a plasma (gas of totally ionized H,) at T=13 x 10° K, n = 10"
protons/cn’, ¢ = 7r? ‘where r = 2 /kT;

(¢) protons in a plasma at the same density as (b) but at 7 = 107 K, where thermo-
nuclear reactions occur;

(d) protons in the sun’s corona, which is a plasma at 7= 10 K, n = 10° protons/cc;
(e) slow neutrons of energy 0.5 MeV in **U (¢ = 7%, r = 10 13 cm).

5.2 A box made of perfectly reflecting walls is divided by a perfectly reflecting partition
into compartments 1 and 2. Initially a gas at temperature 7; was confined in compartment
1, and compartment 2 was empty. A small hole of dimension much less than the mean free
path of the gas is opened in the partition for a short time to allow a small fraction of the
gas to escape into compartment 2. The hole is then sealed off and the new gas in
compartment 2 comes to equilibrium.

(a) During the time when the hole was open, what was the flux 47 of molecules crossing
into compartment 2 with speed between v and v + duv?

(b) During the same time, what was the average energy per particle ¢ of the molecules
crossing into compartment 27

(¢) After final equilibrium has been established, what is the temperature 7, in compart-
ment 27?

Answer. T, = iT,.

5.3 (a) Explain why it is meaningless to speak of a sound wave in a gas of strictly
noninteracting molecules.

() In view of (a), explain the meaning of a sound wave in an ideal gas.
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5.4 Show that the velocity of sound in a real substance is to a good approximation given
by ¢ = 1//pxg, where p is the mass density and kg the adiabatic compressibility, by the
following steps.

(a) Show that in a sound wave the density oscillates adiabatically if
K < cApcy,

where K = coefficient of thermal conductivity
A = wavelength of sound wave
p = mass density
¢, = specific heat
¢ = velocity of sound

(b) Show by numerical examples, that the criterion stated in (a) is well satisfied in most
practical situations.

5.5 A flat disk of unit area is placed in a dilute gas at rest with initial temperature T.
Face A of the disk is at temperature 7, and face B is at temperature 7, > T (see sketch).
Molecules striking face A reflect elastically. Molecules striking face B are absorbed by the
disk, only to re-emerge from the same face with a Maxwellian distribution of temperature
7).

(@) Assume that the mean free path in the gas is much smaller than the dimension of the
disk. Present an argument to show that after a few collision times the gas can be described
by the hydrodynamic equations, with face B replaced by a boundary condition for the
temperature.

(b) Write down the first-order hydrodynamic equations for (), neglecting the flow of the
gas. Show that there is no net force acting on the disk.

(¢) Assume that the mean free path is much larger than the dimensions of the disk. Find
the net force acting on the disk.

5.6 A square vane, of area 1 ¢cm?, painted white on one side, black on the other, is
attached to a vertical axis and can rotate freely about it (see the sketch). Suppose the
arrangement is placed in He gas at room temperature and sunlight is allowed to shine on
the vane. Explain qualitatively why

(a) at high density of the gas the vane does not move;
(b) at extremely small densities the vane rotates;

(¢) at some intermediate density the vane rotates in a sense opposite to that in (b).
Estimate this intermediate density and the corresponding pressure.

T—— [<—T]

bl

Gas at temp. T Fig. P5.5
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5.7 A dilute gas, infinite in extension and composed of charged molecules, each of charge
e and mass m, comes to equilibrium in an infinite lattice of fixed ions. In the absence of
an external electric field the equilibrium distribution function is

() = n(2wka)73/2e*p2/2ka

where n and T are constants. A weak uniform electric field E is then turned on, leading to
a new equilibrium distribution function. Assume that a collision term of the form

%)=
coll

at
where 7 15 a collision time, adequately takes into account the effect of collisions among
molecules and between molecules and lattice. Calculate
(a) the new equilibrium distribution function f, to the first order;
(b) the electrical conductivity o, defined by the relation
ne{v) = oE

T



