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Irreversible processes: macroscopic theory

In the preceding chapters, we have limited our analysis to equilibrium situations.
This is rather restrictive since non-equilibrium phenomena, such as heat conduc-
tion or diffusion, are of great interest and cannot be ignored. To remedy this, we
focus in this chapter on an introduction to non-equilibrium phenomena. Further
developments of the subject will be found in Chapters 8 and 9.

We have seen that equilibrium statistical mechanics is built on a general and
systematic approach, namely the Boltzmann–Gibbs distribution. No such general
approach is available for non-equilibrium situations; instead, we find a large vari-
ety of methods suited to particular cases and situations. What we are able to control
well are cases close to equilibrium where we can rely on rather general methods
like linear response theory, which will be described in Sections 9.1 and 9.2. In the
present chapter, we shall consider a macroscopic approach, that of transport coeffi-
cients, which is the non-equilibrium analogue of equilibrium thermodynamics. At
this stage, we shall not attempt a calculation of these transport coefficients from
a microscopic theory. We shall only show that these coefficients satisfy a num-
ber of general properties, their actual values being taken from experiments. This
parallels equilibrium thermodynamics where we uncovered a number of general
relations between thermodynamic quantities while we did not attempt to calcu-
late, for example, the specific heat from a microscopic theory but took its value
from experiments. In Chapters 8 and 9 we shall demonstrate, for some simple
cases, how to calculate transport coefficients starting with a microscopic theory
(kinetic theory in Chapter 8 and linear response in Chapter 9) just as we cal-
culated the specific heats in some simple cases by using equilibrium statistical
mechanics.
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(b)(a)

Figure 6.1 Dividing a system into cells.

6.1 Flux, affinities, transport coefficients

6.1.1 Conservation laws

A physical system can be so far out of equilibrium that quantities like the tem-
perature or pressure cannot even be defined. We shall not consider such extreme
cases and concentrate, instead, on cases where we can define locally thermody-
namic variables. We start with an idealized case where we assume the system to be
composed of homogeneous cells, small on the macroscopic scale but large on the
microscopic one, and labelled (a, b, . . . ) (Figure 6.1).1 We also assume that cells
interact weakly with their neighbours so that each cell independently attains a local
equilibrium with a microscopic relaxation time, τmicro, which is very small com-
pared to the macroscopic relaxation time, τmacro, needed to achieve global equilib-
rium:2 τmicro ≪ τmacro. We say we have a situation of local equilibrium when

(i) each subsystem is at equilibrium independently of the other subsystems,
(ii) interactions between neighbouring subsystems are weak.

Let Ai (a, t) be an extensive quantity (e.g. energy, number of particles, momen-
tum etc.) labelled by the index i and contained in cell a at time t . We call flux
"i (a → b) the amount of Ai transferred from cell a to cell b per unit time. Note
that "i (a → b) is the net flux between a and b and therefore

"i (a → b) = −"i (b → a) (6.1)

1 In some cases (see Problem 6.5.4) these cells are not spatial.
2 Key to the existence of these two time scales are conservation laws that forbid certain physical quantities (called

slow variables) to return to global equilibrium on short time (and space) scales. As will be explained in Section
9.3, non-equilibrium statistical mechanics distinguishes fast variables, characterized by microscopic time and
space scales, from slow variables characterized by macroscopic time and space scales. In Section 9.3 and in
Section 2.6.3, τmicro is denoted by τ∗ and τmacro by τ .
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Cell a may have a source of quantity Ai . For example, if our system is a nuclear
reactor and Ai (a, t) the number of neutrons in cell a, neutrons are produced when
uranium or plutonium atoms fission and therefore act as sources. On the other
hand, the moderator absorbs neutrons, and therefore acts as a sink. The change per
unit time of Ai (a, t), dAi (a, t)/dt , is then the sum of the contributions of the other
cells and those of the sources. This leads to the equation

dAi (a, t)
dt

= −
∑

b ̸=a

!i (a → b) + !i (sources → a) (6.2)

This is a conservation equation for the quantity Ai .
Clearly, this decomposition of the system into independent cells is an idealiza-

tion. We can obtain a more realistic formulation if we express Equation (6.2) in
local form. We assume that in the neighbourhood of each point in space reigns
a local equilibrium, so that we can locally define thermodynamic quantities, for
example a local temperature T (r⃗ , t) or a local chemical potential µ(r⃗ , t). For such
a local equilibrium to be possible, we need, in addition to τmicro ≪ τmacro, a con-
dition on length scales. If lmicro is a characteristic length scale over which is es-
tablished a local equilibrium, and lmacro a length characteristic of the variations of
thermodynamic quantities like the temperature, then we must have lmicro ≪ lmacro.
A regime of local equilibrium is also called a hydrodynamic regime: the hydrody-
namic description of a fluid relies crucially on the condition of local equilibrium.
So, from this construction, we see that the hydrodynamic regime, i.e. local equi-
librium, describes the dynamics of a system subject to perturbations of long wave-
length λ (long compared to microscopic lengths, λ ≫ lmicro) and low frequencies
ω (low compared to microscopic frequencies ω ≪ 1/τmicro). A local equilibrium
regime will often be obtained by imposing external constraints on the system, for
example a temperature gradient. If these constraints are time-independent, the sys-
tem will reach a stationary (i.e. time independent) non-equilibrium regime.

Let ρi (r⃗ , t) be the density of quantity Ai , e.g. density of energy, of particles of
momentum etc. Ai (a, t) is then the integral of the density over the volume V (a)

of the cell3

Ai (a, t) =
∫

V (a)
d3r ρi (r⃗ , t) (6.3)

We can therefore define a corresponding current density, or more briefly a current,
j⃗i (r⃗ , t). If

→
&S is the small oriented surface separating cells a and b (Figure 6.2(a)),

3 The definition of densities supposes a process of ‘coarse graining’: the cell size needs to be large enough for
the concepts of local temperature etc. to have a meaning. We also note that we are using the so-called Eulerian
description: the cells are fixed in space and do not follow the movement of a given mass of fluid, which would
correspond to the Lagrangian description.
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Figure 6.2 (a) Current and flux, (b) momentum exchange between two cells.

the flux !i (a → b) may be written as

!i (a → b) ≃
→
"S · j⃗i

Now let S(a) be the surface surrounding cell (a): the total flux crossing S(a) is
given by the surface integral of the current

!S
i (t) =

∑

b

!i (a → b) =
∫

S(a)

→
dS · j⃗i (r⃗ , t) (6.4)

The current j⃗i characterizes the flow of quantity i across a surface. Let us con-
sider a simple example. If ρN (r⃗ , t) ≡ n(r⃗ , t) is the particle density and u⃗(r⃗ , t)
the average particle velocity, the current j⃗N is of course given by (a microscopic
demonstration is proposed in Exercise 6.4.1)

j⃗N (r⃗ , t) = n(r⃗ , t)u⃗(r⃗ , t) (6.5)

One should be careful, however, since currents are not always the product of a den-
sity and an average velocity. In fact, (6.5) implies that, in the absence of sources,
the number of particles in cell a can change only because particles enter and leave
this cell by crossing the surface S(a) and that the only contributions to the cur-
rent are of the form (6.5). In the case of energy or momentum, there can also
be exchanges between two cells even if no particles cross the surface separating
them. Figure 6.2(b) illustrates that two cells can exchange momentum due to the
principle of action and reaction. If we focus on the forces between the two parti-
cles, the momenta p⃗1 and p⃗2 of the two particles belonging to two different cells
satisfy

d p⃗1(t)
dt

+ d p⃗2(t)
dt

= 0
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In general, the momentum current cannot be put in the form (6.5) and the right
hand side of (6.2) will have three contributions from

(i) particles entering and leaving the volume V (a) of the cell surrounded by the surface
S(a),

(ii) forces applied by the other particles of the fluid outside the cell in question,4

(iii) external forces, such as gravity, which play in this case the rôle of sources.

The local version of the conservation equation (6.2) is obtained by using the Green
theorem. The flux !S

i is written as a volume integral

!S
i =

∫

S

→
dS · j⃗i =

∫

V
d3r ∇⃗ · j⃗i

whereas the source term becomes the integral of a density σi

!i (sources → a) =
∫

V
d3r σi

The conservation equation (6.2) becomes
∫

V
d3r

∂ρi

∂t
= −

∫

V
d3r ∇⃗ · j⃗i +

∫

V
d3r σi

Since this equation is valid for all volumes V , we obtain from it the local conser-
vation equation (or the continuity equation)

∂ρi

∂t
+ ∇⃗ · j⃗i = σi (6.6)

Physical quantities obeying Equation (6.6) are called conserved quantities and will
play a fundamental rôle in what follows.

6.1.2 Local equation of state

Returning to the cell picture, we can attribute an entropy S(a) to each of these
cells since each is at local equilibrium. Since the interactions among the cells are
assumed weak, the total entropy Stot is obtained as a simple sum of the individual
entropies5

Stot =
∑

a
S(a) (6.7)

4 We assume that all forces have short range. Ambiguities may appear for long range forces. A remark along
those lines has already been made in Chapter 1.

5 The reader should have noted the special rôle played by the entropy compared to the other extensive variables.
This special rôle will be confirmed throughout this chapter.
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Let γi (a) be the intensive conjugate variable of Ai (a) defined by

γi (a) = ∂Stot

∂ Ai (a)
= ∂S(a)

∂ Ai (a)
(6.8)

For the five extensive quantities we consider in this chapter, namely the particle
number N , the energy E , the three components of the momentum6 P⃗ (with com-
ponents Pα, α = (x, y, z)) the intensive conjugate variables are

Ai = N γN = −µ

T
(6.9)

Ai = E γE = 1
T

(6.10)

Ai = Pα γPα = −uα

T
(6.11)

The first two equations are the classic thermodynamic relations (1.9) and (1.11);
the third involves the average local velocity u⃗, or the flow velocity of the fluid in the
considered cell. To demonstrate the third equation, we note that collective motion
does not change the entropy of a fluid:7 a glass of water on a plane in uniform
motion has the same entropy as the same glass of water back on the ground. Let
E ′ be the energy of the fluid at rest and S0 its entropy,

S0(E ′) = S(E, P⃗ = 0)

To go from E ′ to E , we need to add the kinetic energy of the mass M of the fluid
which is in motion

E = E ′ + P⃗ 2

2M
and

S(E, P⃗) = S0

(

E − P⃗ 2

2M

)

This yields

γPα = ∂S
∂ Pα

= − Pα

M
∂S0

∂ E ′ = −uα

T

Let us consider all the extensive variables and use a reasoning based on the
extensivity of the entropy which we already encountered in Section 1.3.3:

6 To avoid all confusion between the momentum and the pressure, the pressure will be noted by P in Chapters
6 and 8. The lower case letter p⃗ will denote the momentum of a single particle while P⃗ that of a collection of
particles.

7 We can show this rigorously in statistical mechanics (Exercise 2.7.7).
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S(λAi ) = λS(Ai ), where λ is a scale factor. Differentiating this equation with re-
spect to λ and putting λ = 1, we find

∑

i

Ai (a)
∂S(a)

∂ Ai (a)
=

∑

i

γi (a)Ai (a) = S(a)

which gives
∑

i,a

γi (a)Ai (a) = Stot (6.12)

The local version of (6.12) is

∑

i

∫
d3r γi (r⃗ , t)ρi (r⃗ , t) = Stot(t) (6.13)

which we can also write in the form of functional derivatives (Section A.6)

γi (r⃗ , t) = δStot(t)
δρi (r⃗ , t)

(6.14)

6.1.3 Affinities and transport coefficients

When two neighbouring cells a and b have different intensive variables γi , an ex-
change of Ai will take place between them. For example, a difference in tempera-
ture engenders an exchange of heat. The difference γi (b) − γi (a), which measures
the deviation from equilibrium, is called the affinity &i (a, b)

&i (a, b) = γi (b) − γi (a) (6.15)

Let us consider the example of the temperature and suppose γE (a) < γE (b) or
T (a) > T (b). In order to re-establish equality of temperatures, i.e. thermal equi-
librium, a heat flux is established from a to b. In general, a system responds
to differences in affinities between cells by attempting to establish an equilib-
rium state via the exchange of Ai between them. For sufficiently small affini-
ties, we may use a linear approximation that expresses the flux in terms of the
affinities

'i (a → b) =
∑

j

Li j (a, b)& j (a, b) (6.16)

Note (i) the coupled character of these equations: an affinity & j can produce a
flux of the quantity Ai , and (ii) the equality Li j (a, b) = Li j (b, a). The propor-
tionality coefficients which relate the flux and the affinities are called response
coefficients.
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Let us now examine the local version of (6.16). If the centre of cell a is at point
r⃗ and that of cell b at point r⃗ + dr⃗ , the differences γi (b) − γi (a) can be written as
gradients

γi (b) − γi (a) ≃ dr⃗ · ∇⃗γi

However, care must be taken because, in general, currents also contain contribu-
tions from equilibrium currents which do not lead to any net exchange of Ai : only
the difference j⃗i − j⃗ eq

i is affected by the gradients of γi . For the current compo-
nents j i

α ,8 the local version of (6.16) then becomes,

j i
α(r⃗ , t) − j i,eq

α =
∑

j,β

Lαβ
i j ∂βγ j (r⃗ , t) (6.17)

Equation (6.17) is called a transport equation and the coefficients Lαβ
i j are called

transport coefficients.

6.1.4 Examples

We illustrate the preceding formal definition with a few simple examples of trans-
port equations.

Heat diffusion in an insulating solid (or a simple fluid)

Heat transport in an insulating solid is accomplished entirely by lattice vibrations,
there is no net transport of particles. We thus write a transport equation for the heat
(or energy) current j⃗E

9

j⃗E = −κ∇⃗T (6.18)

where κ is the coefficient of thermal conductivity. Since κ is positive, the heat
current flows in a direction opposite to that of the temperature gradient. To make
the connection between (6.18) and the general transport equation (6.17), we remark
that, with γE = 1/T , the latter becomes

j E
α =

∑

β

Lαβ
E E ∂β

(
1
T

)
=

∑

β

L E Eδαβ ∂β

(
1
T

)
= −L E E

1
T 2 ∂αT

8 There is no difference between upper and lower indexes. Our convention is to write j⃗i for the current and j i
α

for a component. Also, as in A.4, we write ∂x for the partial derivative ∂/∂x .
9 For a conductor, however, conduction electrons play the dominant rôle in heat transfer. For reasons to be

explained in Section 6.3.3, Equation (6.18) is also valid for a simple fluid at rest.
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Since the only available vector is the temperature gradient ∇⃗T , j⃗E is necessarily
parallel to it which results in the Kronecker δαβ .10 Comparing with (6.18) yields

Lαβ
E E = κT 2δαβ (6.19)

We now use the exact continuity equation (6.6). In the absence of heat sources, and
using ϵ = ρE for the energy density, we have

∂ϵ

∂t
= −∇⃗ · j⃗E = κ∇⃗ · (∇⃗T ) = κ∇2T

By assuming that the specific heat per unit volume,11 C , is independent of T , i.e.
ϵ = CT , we obtain the diffusion equation for T

∂T
∂t

= κ

C
∇2T (6.20)

Equation (6.20) is also called a heat equation. The general form of a diffusion
equation for a quantity A(r⃗ , t) is

∂ A
∂t

= D ∇2 A (6.21)

where D is the diffusion coefficient. From the heat equation (6.20) we therefore
have D = κ/C . This equation plays a very important rôle in physics and it is
worthwhile to discuss briefly its solution. By taking the spatial Fourier transform
of A(r⃗ , t)

Ã(k⃗, t) =
∫

d3r e−ik⃗·r⃗ A(r⃗ , t) (6.22)

we obtain
∂

∂t
Ã(k⃗, t) = −Dk2 Ã(k⃗, t)

whose solution is

Ã(k⃗, t) = e−Dk2t Ã(k⃗, 0)

We obtain A(r⃗ , t) by performing the inverse Fourier transform

A(r⃗ , t) =
∫

d3k
(2π)3 eik⃗·r⃗ e−Dk2t Ã(k⃗, 0) (6.23)

10 In general terms, the proportionality to the gradient is due to rotation invariance, see Section A.
11 For a solid, the specific heats at constant volume and pressure are almost the same. It is therefore not necessary

to specify which we are using.
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l

Ta Tb

Figure 6.3 A heat conductor of length l connecting two heat reservoirs.

If the initial condition is A(r⃗ , 0) = δ(r⃗), that is we introduce a certain amount of A
at time t = 0 at point r⃗ = 0, then Ã(k⃗, 0) = 1 and the Fourier transform in (6.23)
is that of a Gaussian

A(r⃗ , t) = 1

(4π Dt)3/2 exp
(

− r⃗ 2

4Dt

)
(6.24)

It is easy to obtain from (6.24) the solution of the diffusion equation for an arbi-
trary initial condition. This is done in Exercise 6.4.2, which also shows the remark-
able connection between a random walk and diffusion: Equation (6.24) shows that
⟨r⃗ 2⟩ = 6Dt . The property ⟨r⃗ 2⟩ ∝ t is a common characteristic of random walks
and diffusion.12

As another example illustrating a simple solution of the diffusion equation, we
take the case of a heat conducting bar of length l connecting two heat reservoirs
at temperatures Ta and Tb with Ta > Tb. The entire system is thermally insulated
from the outside world (Figure 6.3). We assume the heat flux to be small enough
for the reservoirs to remain at constant temperatures and we consider the station-
ary (but not equilibrium!) situation ∂T/∂t = 0. The heat equation (6.20) is thus
reduced to ∂2T/∂x2 = 0. Applying the correct boundary conditions, we obtain
the temperature of the bar as a function of position

T (x) = Ta + x
l
(Tb − Ta) (6.25)

Particle diffusion

We now examine the non-equilibrium case of a solute with inhomogeneous con-
centration n(r⃗ , t) in a solvent, where the temperature of the whole system is uni-
form. To return to equilibrium, the system will homogenize the concentration by
establishing a particle current j⃗N , thus transporting particles from higher to lower

12 In the case of so-called anomalous diffusion, the exponent of t is different from unity.



6.1 Flux, affinities, transport coefficients 345

concentration regions. To leading approximation, the current is proportional to the
concentration gradient (Fick’s law)

j⃗N (r⃗ , t) = −D∇⃗n(r⃗ , t) (6.26)

The positive proportionality coefficient D is the diffusion constant. Equation (6.26)
shows that the current is in the opposite direction to the concentration gradient, as
is expected. Let us relate Fick’s law to the general formulation in (6.17). By using
(1.42) that relates (∂µ/∂n)T to the coefficient of isothermal compressibility, κT ,

(
∂µ

∂n

)

T
= 1

κT n2

we obtain

∇⃗γN = ∇⃗
(
−µ

T

)
= − 1

T

(
∂µ

∂n

)

T
∇⃗n = − 1

T
1

κT n2 ∇⃗n

Comparing the two expressions for the current

j⃗N = −D∇⃗n = L N N ∇⃗γN

allows us to identify the transport coefficients Lαβ
N N

Lαβ
N N = δαβ DT κT n2 (6.27)

6.1.5 Dissipation and entropy production

Let us examine the rate of change of the entropy S(a) in cell (a). In the absence of
sources, (6.2) gives together with (6.8)

dS(a)

dt
=

∑

i

∂S(a)

∂ Ai (a)

dAi (a)

dt
=

∑

i

γi (a)
dAi (a)

dt
= −

∑

i,b ̸=a

γi (a)'i (a → b)

(6.28)

We then have, using the definition (6.15) of the affinity (i (a, b),

γi (a) = 1
2
(γi (a) + γi (b)) + 1

2
(γi (a) − γi (b))

= 1
2
(γi (a) + γi (b)) − 1

2
(i (a, b)

The evolution equation of S(a) becomes

dS(a)

dt
+

∑

b ̸=a

'S(a → b) = 1
2

∑

i,b ̸=a

(i (a, b)'i (a → b) (6.29)
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with

!S(a → b) = 1
2

∑

i

(γi (a) + γi (b))!i (a → b) = −!S(b → a) (6.30)

If we calculate the evolution of the total entropy, (dStot/dt), the sum over a
will cause the !S to cancel in pairs due to their antisymmetry (6.30) under the
exchange of a and b. The !S part in (6.29) does not contribute to (dStot/dt)
and, therefore, corresponds to reversible exchanges. Only the right hand side of
(6.29), which vanishes for reversible processes, contributes to total entropy pro-
duction. This production takes place at the interfaces between cells and corre-
sponds to dissipation. In general, entropy production is called dissipation: all
physical phenomena which are accompanied by entropy production will be called
dissipative.

At this point, it is appropriate to mention two fundamental properties of the
response coefficients Li j defined in (6.16). If the system is isolated, we know that
the total entropy can only increase, and therefore

∑

i,a,b ̸=a

#i (a, b)!i (a → b) ≥ 0 (6.31)

Using techniques of advanced non-equilibrium statistical mechanics, one can
prove the more detailed property13

∑

i

#i (a, b)!i (a → b) ≥ 0 (6.32)

and from (6.16), this becomes
∑

i, j

#i (a, b)Li j (a, b)# j (a, b) ≥ 0 (6.33)

This equation shows that the symmetric matrix [Li j (a, b) + L ji (a, b)] is posi-
tive.14 The rate of change of total entropy is

dStot

dt
= 1

2

∑

i, j,a,b

#i (a, b)Li j (a, b)# j (a, b) ≥ 0 (6.34)

The second essential property of Li j is the Onsager symmetry relation

Li j (a, b) = L ji (b, a) (= L ji (a, b)) (6.35)

This symmetry property is the result of time reversal invariance, or micro-
reversibility. The proof of (6.35) is similar to that given in (9.67) for the dynamical

13 However, the principle of maximum entropy is, in a sense, stronger than (6.32) because it applies even if the
intermediate states, between the initial and final states, are not at local equilibrium.

14 See Section 1.4.2 for the definition and properties of positive matrices.
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susceptibility. The most precise form of (6.35) is as follows. Suppose that Ai has
definite parity, εi = ±1, under time reversal as discussed in Sections 2.6 and 9.2.4

Aθ
i (t) = εi Ai (−t) (6.36)

where Aθ
i (t) is the time reversed Ai (t). For example, position, particle number

and energy all have parity +1 while velocity and momentum have parity −1. If, in
addition, the system is in a magnetic field B⃗, the precise version of (6.35) is

Li j (a, b; {γk}; B⃗) = εiε j L ji (b, a; {εkγk}; −B⃗) (6.37)

because time reversal implies inversion of the electrical currents that create the
magnetic field. In the local formulation, the transport coefficients Lαβ

i j (6.17) will
therefore satisfy

Lαβ
i j ({γk}; B⃗) = εiε j Lβα

j i ({εkγk}; −B⃗) (6.38)

In this local formulation, we define the entropy density s as the entropy per unit
volume and, from (6.7) and (6.8) in the absence of external sources for Ai , we can
write dStot =

∑
i,a γi dAi (a) and thus ds =

∑
i γi dρi . The local version of (6.28)

is then

∂s
∂t

=
∑

i

γi
∂ρi

∂t
= −

∑

i

γi (∇⃗ · j⃗i ) (6.39)

where the sum runs over all conserved quantities of the system. To obtain the
analog of (6.29) we rewrite (6.39) in the form

∂s
∂t

+ ∇⃗ ·
(

∑

i

γi j⃗i

)

=
∑

i

j⃗i · ∇⃗γi (6.40)

If we integrate over the volume of the system to calculate dStot/dt , the second term
on the left hand side of (6.40) does not contribute. In fact, using the Green theorem

∫
d3r ∇⃗ ·

(
∑

i

γi j⃗i

)

=
∑

i

∫ ( →
dS · j⃗i

)
γi = 0

because the currents vanish at the surface of the system. Only the term
∑

i j⃗i · ∇⃗γi

contributes to the creation of total entropy: in other words, it acts as an entropy
source.

We have seen in (6.17) that we should distinguish between total currents and
equilibrium currents: equilibrium currents do not contribute to entropy production
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because at equilibrium the entropy remains constant. Then the quantity
∑

i

j⃗ eq
i · ∇⃗γi

must be written as a divergence. We can show (Problem 6.5.1) for a simple fluid,
i.e. a fluid with one type of molecule, that

5∑

i=1

j⃗ eq
i · ∇⃗γi = −∇⃗ ·

(
P
T

u⃗
)

(6.41)

where P is the pressure. The index i goes from 1 to 5: particle number, energy and
the three components of the momentum. Define the entropy current as

j⃗S =
∑

i

γi j⃗i + P
T

u⃗ (6.42)

Then, (6.40) gives

∂s
∂t

+ ∇⃗ · j⃗S =
∑

i

[
( j⃗i − j⃗ eq

i ) · ∇⃗γi

]

which, upon using (6.17), becomes

∂s
∂t

+ ∇⃗ · j⃗S =
∑

i, j,α,β

(∂αγi ) Lαβ
i j (∂βγ j ) (6.43)

The right hand side of this equation describes entropy production at point r⃗ .
We illustrate entropy production with the simple example of the heat conducting

bar (Figure 6.3) in a stationary regime. Let Q be the heat transferred per unit time
from a to b and S the cross-sectional area of the bar. The only current is the energy
current flowing along the x axis and which is equal to jE = Q/S. Therefore, (6.42)
gives the entropy current as

jS(x) = 1
T (x)

jE = 1
T (x)

Q
S

(6.44)

where the temperature, T (x), is given by (6.25). Now consider a section of the bar
[x, x + dx], and the entropy current entering and leaving it. The position depen-
dence of the entropy current leads to a negative entropy balance

jS(x) − jS(x + dx) = Q
S

(
1

T (x)
− 1

T (x + dx)

)
= 1

T 2

Q
S

dT
dx

dx < 0 (6.45)

In this stationary situation, the entropy of the slice must remain constant, which
cannot happen unless entropy is produced at every point of the bar. The entropy
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production is given by

− 1
T 2

Q
S

dT
dx

dx > 0 (6.46)

This term corresponds to the entropy source in the continuity equation (6.43). It is
instructive to obtain the above result using this equation. For the present case, the
right hand side of (6.43) is given by

L E E

(
∂γE

∂x

)2

= κT 2 1
T 4

(
dT
dx

)2

= − κ

T 2

dT
dx

Q
κS

= − 1
T 2

Q
S

dT
dx

where we have used (6.19) for L E E and (6.18) in the form Q/S = −κ dT/dx ,
which indeed gives (6.46). We also verify that the rate of total entropy production
per unit time corresponds to that obtained from the entropy change of the reservoirs

dStot

dt
= −Q

l∫

0

dx
1

T 2

dT
dx

= Q
(

1
Tb

− 1
Ta

)
(6.47)

This example illustrates clearly that entropy is produced at every point of the bar.

6.2 Examples

6.2.1 Coupling between thermal and particle diffusion

A simple but instructive model for transport is that of a gas of light particles in
motion, scattering elastically off randomly located scattering centres. This model,
which we will identify as the Boltzmann–Lorentz model in Chapter 8, applies, for
example, in the following situations:

• neutrons in a nuclear reactor,
• electrons in a semiconductor or conductor,
• light solute molecules in a solvent with very heavy molecules,
• impurities in a solid at high temperature.

In general, we also use the ideal gas approximation, classical or quantum, for the
light particles, which often have a very small density. In this model, energy is con-
served since the collisions are elastic, but momentum is not conserved because
it is absorbed in collisions with scattering centres. We therefore only consider
the conserved particle and energy densities, n and ϵ, as well as the associated
currents j⃗N and j⃗E . This gives equations which couple the diffusion of heat and
particles: a temperature gradient can produce a particle flux and, conversely, a den-
sity gradient can cause heat flow. Assuming the medium is isotropic, which means
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Lαβ
i j = δαβ Li j (see Section A.4.2), we can write Equation (6.17) as

j⃗E = L E E ∇⃗ 1
T

+ L E N ∇⃗
(−µ

T

)
(6.48)

j⃗N = L N E ∇⃗ 1
T

+ L N N ∇⃗
(−µ

T

)
(6.49)

The Onsager relations (6.35) imply L E N = L N E . The thermal conductivity is de-
fined in the absence of particle current: j⃗N = 0,

L N E ∇⃗ 1
T

+ L N N ∇⃗
(−µ

T

)
= 0

Expressing ∇⃗(−µ/T ) in terms of ∇⃗(1/T ), we find

j⃗E = L E E ∇⃗ 1
T

− L N E

L N N
L E N ∇⃗

(
1
T

)

Comparing with Equation (6.18) we obtain the coefficient of thermal conductiv-
ity κ

κ = 1
T 2L N N

(
L E E L N N − L2

E N

)
(6.50)

We note that the positivity of the 2 × 2 matrix of transport coefficients implies
that κ is positive. It is instructive to emphasize the differences between (6.50) and
(6.19). In an insulating solid, heat transport is effected by the vibrations of the
lattice and it is tempting to interpret it as the result of particle transport where the
particles are phonons. However, unlike for molecules, the phonon density does not
obey a continuity equation since phonons can be destroyed and created with no
constraints. Therefore, heat transport in an insulating solid cannot be interpreted
as being due to particle transport. The diffusion coefficient is defined at constant
temperature and results of Section 6.1.4 remain unchanged.

6.2.2 Electrodynamics

As another example, we examine the case where the gas of light particles is a gas of
charge carriers to which correspond an electric charge density, ρel, and an electric
current density, j⃗el,

ρel = qn j⃗el = q j⃗N (6.51)

where q is the charge of the carriers. We assume that these charges are placed in
an average electric potential &(r⃗), and thus an average electric field E⃗ = −∇⃗&.
We ignore magnetic and polarization effects of the medium. The electric current is



6.2 Examples 351

given by the local Ohm’s law

j⃗el = σel E⃗ = −σel∇⃗" (6.52)

The electrical conductivity σel is a transport coefficient, in fact one of the most
familiar transport coefficients, which gives rise to dissipation via the Joule effect.
We shall show that electrical conductivity and diffusion are intimately connected.
To this end, we study the effect of the potential " on the entropy. Placing the
system in a macroscopic force field that changes very slowly at the microscopic
scale does not change its entropy because each energy level of a particle is simply
shifted by q". The densities of charge carriers and energy in the absence of the
potential, n′ and ϵ′, are related to those in the presence of the potential, n and ϵ, by

n′ = n ϵ′ = ϵ − nq"

and the entropy density satisfies

s(ϵ, n; ") = s(ϵ − nq", n; " = 0) = s′(ϵ′, n′) (6.53)

where s′ is the entropy density in the absence of the potential. This yields the
chemical potential15

µ = −T
∂

∂n
s(ϵ, n; ") = −T

∂

∂n
s′(ϵ − nq", n) = µ′ + q" (6.54)

where µ′ is the chemical potential in the absence of the electric potential

µ′ = µ(ϵ − nq", n; " = 0) (6.55)

For uniform temperature, we deduce from (6.54) the particle current density

j⃗N = L N N ∇⃗
(
−µ

T

)
= − 1

T
L N N

∂µ′

∂n

∣∣∣∣
T

∇⃗n + q
T

L N N E⃗ (6.56)

The current density j⃗N has a component due to diffusion which tends to make
the system uniform, and an electric component produced by the externally applied
electric field. Both components are governed by the same microscopic mechanism
and controlled by the transport coefficient L N N . For a uniform density we have

j⃗el = σel E⃗ σel = q2

T
L N N (6.57)

Anticipating results in Chapter 8, we now follow a simple argument from kinetic
theory. If τ ∗ is the time between two successive collisions of a charge carrier,
which we call collision time, and if collisions are not correlated (no memory), a

15 The transformation rule for µ is obvious in the grand canonical ensemble where nothing changes if we shift
all energy levels and µ by q".
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particle of mass m will be accelerated while between collisions and its velocity
will increase by16

u⃗ = q E⃗
m

τ ∗ = µel(q E⃗) = µel F⃗ (6.58)

The quantity µel is called electric mobility. We see in Equation (6.58) that it is
the velocity, not the acceleration, that is proportional to the force! Of course this
is due to the fact that the particle has to restart its motion from zero after each
collision since it has no memory of its previous condition. The concept of mobility
also appears in problems involving viscous forces. For example, an object falling
in a viscous fluid will attain a limiting speed vL = g/γ , where g is the gravita-
tional acceleration, and the viscous force is given by −γ mv (Exercise 6.4.3). The
velocity vL is proportional to the force mg.

In general, the electric current is given as a function of the mobility by

j⃗el = qnu⃗ = q2nµel E⃗

Comparing this with (6.57) we find

σel = q2nµel L N N = T nµel (6.59)

For a classical ideal gas, we have κT = 1/P and P = nkT and, therefore, Equation
(6.27) becomes

D = µelkT (6.60)

This is an Einstein relation. Another Einstein relation, relating the diffusion
coefficient D of a spherical particle of radius R and the viscosity (defined in
Section 6.3.3), is the object of Exercise 6.4.3 where we show

D = kT
6πηR

(6.61)

It is instructive to obtain (6.60) using an argument from equilibrium statistical
mechanics. We suppose that the potential ' depends only on the position x .
Clearly, this position dependence of the potential creates an electric current

j⃗el = −σel∇⃗'

corresponding to a particle current

1
q

j⃗el = −qnµel
∂'

∂x
x̂

16 The velocity is written u⃗ because it is a collective velocity on top of the velocities due to thermal fluctuations.



6.3 Hydrodynamics of simple fluids 353

When the particles are at equilibrium in an external force field, q!(x), the density
n(x) follows a Boltzmann law

n(x) ∝ exp(−βq!(x))

The non-uniform density entails a diffusion current

j⃗D = −D
∂n
∂x

x̂ = Dβq
∂!

∂x
nx̂

However, at equilibrium the total particle current must vanish

j⃗N = 1
q

j⃗el + j⃗D = 0⃗

This condition of vanishing total current gives Equation (6.60). A similar argument
is applied in Exercise 6.4.3 to obtain (6.61).

6.3 Hydrodynamics of simple fluids

6.3.1 Conservation laws in a simple fluid

Our aim in this section is not to study hydrodynamic flow, for which the interested
reader is referred to the appropriate references. Instead, our goal is to illustrate
with an important example the concepts defined in Section 6.1. A simple fluid is
a fluid made of one type of structureless molecule, the archetypal example being
argon in liquid form (dense fluid) or gaseous form (dilute fluid). In such a case
there are only five conserved densities: particle density, energy density and the
three components of the momentum density. Instead of using the particle density,
we shall use the mass density, ρ = mn, where m is the mass of the molecule. The
momentum density is g⃗ and the energy density is ϵ as before. To these densities
correspond currents and conservation laws in the form of continuity equations like
(6.6). We shall see that the mass current, j⃗M , is nothing more than the momen-
tum density, g⃗. The momentum current is a tensor of components Tαβ since the
momentum density itself is a vector. The energy current is a vector j⃗E . We shall use
in this section the convention that repeated indexes are summed (see Section 10.4).
With this convention, the divergence of a vector A⃗ is written

∇⃗ · A⃗ = ∂α Aα (6.62)

We now examine the conservation of mass and momentum.17

17 We recommend that the reader who has no previous experience with hydrodynamics solves Problem 6.5.2
before continuing.
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Mass conservation

Let the flow velocity u⃗(r⃗ , t) be the velocity of a fluid element (also called ‘fluid
particle’ in hydrodynamics) at point r⃗ and time t . Recall that the hydrodynamic ap-
proximation assumes that at each point reigns a local equilibrium corresponding to
a local temperature T (r⃗ , t), a local entropy density s(r⃗ , t) etc. According to (6.6),
the mass current is given by (Exercise 6.4.1 provides a microscopic demonstration)

∂ρ

∂t
+ ∇⃗ · (ρu⃗) = 0 (6.63)

With our convention on repeated indexes, we write this as

∂ρ

∂t
+ ∂β(ρuβ) = 0 (6.64)

We can rewrite this mass conservation equation by expanding the second term

∂ρ

∂t
+ uβ ∂βρ + ρ ∂βuβ = Dρ

Dt
+ ρ(∇⃗ · u⃗) = 0

where we have introduced the material (or convective) derivative D/Dt

D
Dt

= ∂

∂t
+ uβ ∂β = ∂

∂t
+ u⃗ · ∇⃗ (6.65)

The physical interpretation of this material derivative is very important. Suppose
we follow the motion of a fluid element between t and t + dt and where r⃗ is a
fixed point in space. During the time interval dt , the fluid element moves a distance
dr⃗ = u⃗ dt , and the change in the α component of its velocity is (see Figure 6.4)

uα(r⃗ + dr⃗ , t + dt) − uα(r⃗ , t) = ∂uα

∂t
dt + dr⃗ · ∇⃗uα

=
(

∂uα

∂t
+ (u⃗ · ∇⃗)uα

)
dt = Duα

Dt
dt

Du⃗/Dt is then the acceleration of the element of fluid. The term (u⃗ · ∇⃗) is called
the advection or convection term.

Conservation of momentum

We assume that the fluid element is in the form a parallelepiped whose faces are
parallel to the coordinate axes. Consider the face with the normal vector (pointing
toward the outside of the parallelepiped) parallel to the β axis, and let Sβ be the
oriented surface labelled by its normal vector. Let us introduce the stress tensor
Pαβ where −Pαβ is the α component of the force per unit area applied by the fluid
outside the parallelepiped on the surface Sβ (see Figure 6.5). Clearly we may have
α = β. To obtain the total force applied by the rest of the fluid on the fluid enclosed
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u⃗(r⃗ + dr⃗, t + dt)

dr⃗

u⃗(r⃗, t)

Figure 6.4 Motion of an element of fluid.

γ̂

β̂

Sβ

α̂ Pβα

Pγα

Pαα

Pγβ

PββPαβ

Sα

Figure 6.5 Definition of Pαβ .

in the parallelepiped, we need to integrate over all the faces. Since the mass of the
enclosed fluid is ρV , where V is the volume of the parallelepiped, Newton’s law
is given by

ρV
Duα

Dt
= −

∫

S
d2SβPαβ = −

∫

V
d3r ∂βPαβ (6.66)

Green’s theorem allows us to express the surface integral giving the flux of Pαβ

across the parallelepiped as a volume integral. The above equation becomes

ρ
Duα

Dt
= −∂βPαβ (6.67)

The α component of the force exerted by the rest of the fluid on a unit volume
element is given by −∂βPαβ . This result leads to the momentum conservation
law. If at time t we use a Galilean reference frame moving at a constant uniform
velocity u⃗ with respect to the laboratory frame, the fluid element is instantaneously
at rest in this frame. We say ‘instantaneously’ because, whereas the velocity of the
reference frame does not change, the velocity of the fluid element itself will, in
general, change. Furthermore, while this frame was chosen such that at time t the
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fluid element under consideration is at rest, its neighbours will not be at rest, unless
the fluid flow velocity is uniform. This Galilean frame will be called the rest frame
of the fluid, at point r⃗ and time t . In this frame the advection term vanishes, and by
using (6.65), the fundamental dynamic equation (6.67) at r⃗ and t becomes

ρ
∂uα

∂t
= −∂βPαβ (6.68)

Recalling that g⃗ is the momentum density, let us calculate ∂gα/∂t in this same
frame where u⃗ = 0

∂gα

∂t
= ∂(ρuα)

∂t
= ρ

∂uα

∂t
= −∂βPαβ

Since the above equation may be written as a continuity equation

∂gα

∂t
+ ∂βPαβ = 0 (6.69)

we conclude that Pαβ is the current associated with gα in the frame where the
fluid is instantaneously at rest. If we use primes for quantities measured in the rest
frame, this equation allows the identification of the tensor Tαβ in this frame: T ′

αβ =
Pαβ . When the fluid is incompressible and the tensor Pαβ = δαβP (i.e. diagonal),
the equation of motion (6.67) takes a familiar form (see Problem 6.5.2). In fact, it
is reduced to the Euler equation for perfect fluids

ρ
Du⃗
Dt

= −∇⃗P (6.70)

which confirms that P should be interpreted as the pressure.
Viscous effects, which are ignored in the Euler equations, make the tensor Pαβ

non-diagonal. This can be illustrated by the following simple example. A hori-
zontal plate moves at a height z = L with a velocity u⃗ = u0 x̂ in the x direction
(see Figure 6.6). The fluid between z = 0 and z = L acquires a horizontal velocity
ux (z), which depends on the height z. In the laminar regime, the relative velocity
of the fluid with respect to the walls vanishes at the walls, ux (0) = 0, ux (L) = u0,
and varies linearly in between. The fluid above a plane of constant z applies on

z

x

L
z

ux(0) = 0

ux(L) = u0

dz

Figure 6.6 A fluid in simple shear motion.
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dl

Pyx

Pxy

x

y

Figure 6.7 Symmetry of Pαβ : if Pyx ̸= Pxy , the cube will start rotating. The
curved arrow shows the rotation direction when Pyx > Pxy .

the fluid below it a force per unit area equal to −Pxz where, from (6.66), x is the
direction of the force and z that of the normal to the surface of separation. The
shear viscosity η is defined by the transport equation

−Pxz = η
dux (z)

dz
(6.71)

We easily show an important symmetry property of Pαβ . Consider the z component
of the torque $⃗ applied on an infinitesimal cube of fluid of side dl (Figure 6.7)

$z ∝ (dl)3(Pyx − Pxy)

The z component of the angular velocity ω⃗ satisfies

I
dωz

dt
= $z (6.72)

where I is the moment of inertia. Writing I as a function of dl and the mass M of
the cube, we obtain

I ∝ M(dl)2 = ρ(dl)3(dl)2

We see from (6.72) that if dl → 0, we have

dωz/dt = $z/I ∝ (dl)−2 → ∞

unless Pyx = Pxy , in other words Pαβ is a symmetric tensor

Pαβ = Pβα (6.73)

Finally, we may introduce external sources to the continuity equation. If the fluid
is subjected to external forces, like gravity, with the external force density f⃗ (=
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−ρgẑ in the case of gravity), we have to add this force density to the equation of
motion (6.67), which becomes

ρ
Duα

Dt
= −∂βPαβ + fα (6.74)

The new term acts as a source of momentum in the continuity equation (6.69).

6.3.2 Derivation of current densities

We now use Galilean invariance to express the currents in terms of their values in
the reference frame where the fluid is locally at rest. In the reference frame of the
laboratory, a fluid element moves with a velocity u⃗. Equivalently, in the rest frame
of the fluid element, the laboratory moves with a velocity −u⃗. More generally, we
use a Galilean frame R(−v⃗) moving at some velocity −v⃗ relative to the rest frame
of the fluid. In the frame R(−v⃗), the densities are given in terms of the (primed)
densities in the rest frame by

mass density ρ = ρ′ (6.75)

momentum density g⃗ = ρv⃗ (6.76)

energy density ϵ = ϵ′ + 1
2

ρv⃗ 2 (6.77)

To derive the current conservation law, consider a density χ and its associated
current j⃗χ . Going from a frame at velocity −v⃗ to one at −(v⃗ + dv⃗) has two effects
on the current.

(i) A first effect comes from the change dχ in the density χ when we go from −v⃗ to
−(v⃗ + dv⃗)

dχ = χ(v⃗ + dv⃗) − χ(v⃗) = ζα(v⃗) dvα (6.78)

which defines ζα(v⃗). If j⃗ζα is the current associated with ζα , the change in the density
(6.78) causes a change in the β component of the current

d(1) jχβ = jζα
β dvα (6.79)

(ii) The second effect comes from the fact that a flux is calculated relative to a fixed surface
S in a given reference frame. But a fixed surface in the frame R(−(v⃗ + dv⃗)) moves
with a velocity −dv⃗ in the frame R(−v⃗), which induces an additional flux

d(χ = χ(v⃗)S⃗ · dv⃗ = χ(v⃗)Sβ dvβ

and a contribution to the current

d(2) jχβ = χ(v⃗) dvβ (6.80)
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In the case of mass current, only the second effect is present since the mass is a
Galilean invariant: d j⃗M = ρ dv⃗, or j⃗M = ρv⃗ = g⃗ as expected. We now choose χ

as the α component of the momentum density, χ = gα = ρvα . For an infinitesimal
Galilean transformation we have dgα = ρ dvα . The β component of the mass den-
sity current is ρvβ , and if Tαβ is the β component of the current associated with
gα , we have

d(1)Tαβ = ρvβ dvα

whereas the second contribution is

d(2)Tαβ = ρvα dvβ

Adding the two effects we obtain

dTαβ = ρvβ dvα + ρvα dvβ

This can be integrated from v⃗ = 0 to v⃗ = u⃗

Tαβ = Pαβ + ρuαuβ (6.81)

subject to the boundary conditions

Tαβ(v⃗ = 0) = T ′
αβ = Pαβ

The term ρuαuβ = gαuβ is a convection term: all currents j⃗χ include a convection
term χ u⃗ due to the transport of the density χ with a velocity u⃗.

We now consider the energy density χ = ϵ. The infinitesimal transformation
law for ϵ is

dϵ = ρvα dvα = gα dvα

The β component of the current associated with gα is Tαβ . This gives

d(1) j E
β = Tαβ dvα

whereas

d(2) j E
β = ϵ dvβ =

(
ϵ′ + 1

2
ρv⃗ 2

)
dvβ

Adding the two effects and using (6.81) we obtain

d j E
β = (ρvαvβ + Pαβ)dvα +

(
ϵ′ + 1

2
ρv⃗ 2

)
dvβ
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which we can write in the form of a differential equation

∂ j E
β

∂vα
=

[
Pαβ + ϵ′δαβ

]
+

[
ρvαvβ + 1

2
ρv⃗ 2δαβ

]
(6.82)

The term in the first bracket in (6.82) is measured in the rest frame and is indepen-
dent of v⃗. The integration of (6.82) in the general case is left for Exercise 6.4.4.
Here we consider only the one-dimensional case

∂ j E

∂v
= (P + ϵ′) + 3

2
ρv2

which, when integrated from v = 0 to v = u, gives

j E = j E ′ + (P + ϵ′)u + 1
2
ρu3 = j E ′ + Pu + ϵu

In the general case (Exercise 6.4.4) we obtain

j E
β = j E

β
′ + Pαβuα + ϵuβ (6.83)

The term ϵuβ is a convection term whereas Pαβuα is the work done by the pres-
sure. The current j⃗ ′E in the rest frame is the heat current. In addition to the mass
conservation equation (6.64), we have, in the absence of external sources, the mo-
mentum conservation equations

∂gα

∂t
+ ∂βTαβ = 0 (6.84)

as well as energy conservation

∂ϵ

∂t
+ ∂β j E

β = 0 (6.85)

The expressions for the momentum current Tαβ and energy current j⃗E are given
in (6.81) and (6.83) respectively. Adding to these equations the transport equa-
tions, (6.87) and (6.88), and the local equations of state one obtains a closed set of
equations as shown in Table 6.1.

6.3.3 Transport coefficients and the Navier–Stokes equation

We conclude this brief discussion of hydrodynamics by writing down the corre-
sponding transport equations (6.17). In principle, we expect a 5 × 5 matrix of
transport coefficients, in other words a total of 15 coefficients after taking into
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Table 6.1 Densities and currents for a simple fluid.

Density Current Equilibrium current Continuity equation

ρ j⃗M = m j⃗N = g⃗ = ρu⃗ j⃗ eq
M = j⃗M

∂ρ

∂t
+ ∇⃗ · g⃗ = 0

gα Tαβ = Pαβ + ρuαuβ T eq
αβ = Pδαβ + ρuαuβ

∂gα

∂t
+ ∂β Tαβ = 0

ϵ j E
β = j E

β
′ + Pαβuα + ϵuβ j⃗ eq

E = (ϵ + P)u⃗
∂ϵ

∂t
+ ∂β j E

β = 0

account the Onsager symmetry relations (6.38). Fortunately, there are further sim-
plifications that reduce this number to only three transport coefficients. A first
crucial simplification comes from the fact that the mass current j⃗M is always
equal to the equilibrium current ρu⃗ regardless of whether or not the system is
at equilibrium. Consequently, L Mi = Li M = 0 for all i ; a spatial variation of the
chemical potential does not cause a particle flux (nor an energy one), at least not
directly. There is no diffusion coefficient in a simple fluid; return to equilibrium
is accomplished by a complex mechanism. The number of possible affinities re-
mains twelve: ∂β(1/T ) and ∂β(uα/T ). However, we can always choose to write
the transport equations in a frame where the fluid is locally at rest and use the
Galilean transformations (6.81) and (6.83) to obtain the currents in an arbitrary
frame. Since in the rest frame we have u⃗ = 0, ∂β(uα/T ) reduces to (1/T )∂βuα .18

It remains to exploit rotation and parity invariance. The energy current j⃗ ′E must
be proportional to a vector and the only candidate at hand is the affinity ∇⃗(1/T ).
In fact another possible candidate would be the other affinity ∇⃗ × u⃗, but this is a
pseudo-vector and parity invariance does not allow a vector to be proportional
to a pseudo-vector. The difference Pαβ − δαβP is a two-dimensional symmet-
ric tensor. The two possible constructions, using the affinities, that give such a
quantity are

∂αuβ + ∂βuα and δαβ(∂γ uγ ) = δαβ(∇⃗ · u⃗)

Instead of these combinations, it is convenient to introduce the traceless symmetric
tensor (αβ ((αα = 0)

(αβ = 1
2

(
∂αuβ + ∂βuα

)
− 1

3
δαβ(∂γ uγ ) (6.86)

18 It is important to keep in mind the local nature of the rest frame: u⃗ = 0 only at one point and ∂βuα ̸= 0 at this
point.



362 Irreversible processes: macroscopic theory

Then, the transport equations can be written in terms of the three independent
coefficients L E E , η and ζ

j⃗ ′
E = L E E ∇⃗ 1

T
(6.87)

Pαβ − δαβP = −ζ δαβ(∂γ uγ ) − 2η (αβ (6.88)

The coefficient of thermal conductivity κ is defined for a fluid uniformly at rest
(u⃗ = 0 ∀r⃗ ) where there is a temperature gradient. In a fluid (uniformly) at rest,
there are no shear forces and Pαβ = δαβP . The equation of motion (6.68) then
gives ∂βPαβ = ∂αP = 0; thus the pressure is uniform. This implies that the density
variations are such that the pressure gradient remains zero. For example, for a
dilute gas we have P ≃ nkT and so the product nT must remain constant. As
we have seen above, a density gradient does not cause a particle current: in a
simple fluid, it is the pressure gradient that produces fluid motion. According to
(6.19), the coefficient L E E is related to the coefficient of thermal conductivity by
L E E = κT 2.

In order to identify the coefficient η, consider the definition of shear viscosity
and Figure 6.6. Since only the velocity component ux is non-zero and since it
depends only on z, we have ∇⃗ · u⃗ = 0. Consequently, the tensor (αβ simplifies to

(xz = 1
2

(
∂uz

∂x
+ ∂ux

∂z

)
= 1

2
dux

dz
(6.89)

and Equation (6.88) becomes

Pxz = −η
dux

dz
(6.90)

The transport coefficient ζ is called bulk viscosity and in general plays a rather
minor rôle. In fact it is absent for an incompressible fluid (∇⃗ · u⃗ = 0) and we will
see in Section 8.3.2 that it vanishes for a dilute mono-atomic gas.

The combination of the equations of motion with the transport equations allows
us to write the fundamental equation for the dynamics of a simple fluid, the Navier–
Stokes equation. The pressure tensor is written in terms of the viscosities η and
ζ as

Pαβ = δαβP − ζ δαβ(∇⃗ · u⃗) − η(∂αuβ + ∂βuα) + 2
3

η δαβ(∇⃗ · u⃗)

and its divergence is

∂βPαβ = ∂αP − ζ∂α(∇⃗ · u⃗) − η(∂2
βuα) − η∂α(∇⃗ · u⃗) + 2

3
η∂α(∇⃗ · u⃗)
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The right hand side is the α component of the vector

∇⃗P − ζ ∇⃗(∇⃗ · u⃗) − η∇2u⃗ − 1
3

η∇⃗(∇⃗ · u⃗)

which then leads to the Navier–Stokes equation19

∂ u⃗
∂t

+ (u⃗ · ∇⃗)u⃗ + 1
ρ

∇⃗P = η

ρ
∇2u⃗ + 1

ρ

(η

3
+ ζ

)
∇⃗(∇⃗ · u⃗) (6.91)

In the absence of dissipation, when the transport coefficients vanish, we regain the
Euler equation

∂ u⃗
∂t

+ (u⃗ · ∇⃗)u⃗ + 1
ρ

∇⃗P = 0 (6.92)

To achieve the construction of Section 6.1 in this particular case, we need to estab-
lish the form of the entropy current. We start in the rest frame where, according to
the general construction (6.42), we have

j⃗ ′
S =

∑

i

γ ′
i j⃗ ′

i = 1
T

j⃗ ′
E (6.93)

Since the entropy density is a Galilean invariant, the entropy current is given in
general by (Problem 6.5.1)

j⃗S = j⃗ ′
S + su⃗ = 1

T
j⃗ ′
E + su⃗ (6.94)

According to (6.43), we have

∂s
∂t

+ ∇⃗ · j⃗S = ∇⃗
(

1
T

)
· j⃗ ′

E +
∑

α,β

(
− 1

T
∂αuβ

) (
Pαβ − δαβP

)

= κT 2
(

∇⃗ 1
T

)2

+ ζ

T

(
∇⃗ · u⃗

)2
+ 2η

T

∑

α,β

(
*αβ

)2 ≥ 0 (6.95)

which implies the positivity of the coefficients κ , η and ζ .

19 The reader will remark that (η/ρ) ∇2u⃗ in Equation (6.91) is a diffusion term. In the absence of advection,
and if ∇⃗P = 0 and ∇⃗ ·u⃗ = 0, the Navier–Stokes equation becomes a diffusion equation for the velocity. This
equation allows us to justify the linear dependence of ux (z) on z in Figure 6.6.
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6.4 Exercises

6.4.1 Continuity equation for the density of particles

The distribution function f (r⃗ , p⃗, t) of a collection of particles is the ensemble
average

f (r⃗ , p⃗, t) =
〈 N∑

j=1

δ(r⃗ − r⃗ j (t))δ( p⃗ − p⃗ j (t))
〉

(6.96)

f (r⃗ , p⃗, t)d3r d3 p is the number of particles in the phase space volume element
d3r d3 p. Show that the density n and the current j⃗N are given by

n(r⃗ , t) =
∫

d3 p f (r⃗ , p⃗, t) j⃗N (r⃗ , t) =
∫

d3 p v⃗ f (r⃗ , p⃗, t) (6.97)

Use this result to obtain Equation (6.6). Also demonstrate the continuity equation.

6.4.2 Diffusion equation and random walk

1. Let A(r⃗ , t) be a quantity obeying the diffusion equation (6.21) with the initial
condition

A(r⃗ , t = 0) = A0(r⃗) (6.98)

Give the expression for A(r⃗ , t) ∀t > 0.

2. During a random walk (in one dimension for simplicity), a walker takes a step
at regular time intervals of ε. With a 50% probability, the walker jumps a distance
a left or right on the x axis. Each step is independent of preceding steps and one
says the random walk is a Markovian process. The walker leaves point x = 0 at
time t = 0. Calculate the average distance ⟨x⟩ travelled in N steps as well as ⟨x2⟩.
Show that ⟨x2⟩ is proportional to N , or in other words to t = Nε. Show that for
N → ∞, the probability P(x, t) of finding the walker at point x at time t is a
Gaussian.20 Identify the diffusion coefficient.

6.4.3 Relation between viscosity and diffusion

Consider very small particles (but macroscopic compared to atomic scales) sus-
pended in a fluid in thermal equilibrium at temperature T . The particle density as
a function of height z is n(z), m is the particle mass, k the Boltzmann constant and
g the gravitational acceleration.

20 P(x, t) is in fact the conditional probability of finding the walker at x at time t knowing that at t = 0 it was at
x = 0.
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1. Show that n(z) has the form

n(z) = n0e−λz

Determine λ as a function of m, g, k and T . If we want to have observable effects
over distances of the order of a centimetre, what should be the order of magnitude
of the mass m at T = 300 K?

2. The particles are now under the influence both of gravity and a viscous force
proportional to velocity

F⃗ = −αv⃗

where α = 6πηR, η is the fluid viscosity and R is the radius of the particles,
which are assumed spherical.21 What is the limiting velocity vL of the particles in
the gravitational field?

3. The particles are subjected to two mutually opposing influences: on the one
hand, they move down with a velocity vL and on the other hand, diffusion tries to
re-establish a uniform density. Let D be the coefficient of diffusion of the particles
in the fluid. What is the diffusion current j N

z ? Why is it directed toward z > 0?

4. By considering that at equilibrium the gravitational and diffusion effects bal-
ance each other, establish the Einstein relation (6.61) between the viscosity and the
diffusion coefficient.

6.4.4 Derivation of the energy current

Derive Equation (6.83) for the energy current. Hint: Treat the cases α = β and
α ̸= β separately.

6.4.5 Lord Kelvin’s model of Earth cooling

Lord Kelvin’s assumptions to compute the age of the Earth were the following.

(i) Earth was formed initially with a uniform temperature equal to the fusion temperature
θ0. In this exercise, temperatures will be measured in degrees Celsius and denoted by
θ .

(ii) Cooling is due to diffusion, heat being transported by thermal diffusion to the Earth
surface at a temperature θ = 0 ◦C, and then dissipated in the atmosphere and in outer
space. Being unaware of radioactivity, Lord Kelvin could not include in his assump-
tions the heat generated by radioactivity in the centre of the Earth.

21 This law was demonstrated by Stokes. Its proof can be found in many volumes on fluid mechanics. See for
example [37] or [53].
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(iii) He also approximated Earth by a semi-infinite medium limited by the plane x = 0,
the interior of the Earth corresponding to x ≤ 0. Thus one is led to a one-dimensional
model with a single coordinate, x .

1. Show that the following form of the temperature for x ≤ 0

θ(x, t) = θ0√
π Dt

∫ 0

−∞
dx ′ exp

(
−(x − x ′)2

4Dt

)

obeys the heat equation (6.20) with the correct boundary conditions. D = κ/C is
the thermal diffusitivity.

2. Compute the temperature gradient at point x inside the Earth, and at the Earth
surface x = 0

∂θ

∂x

∣∣∣
x=0

= − θ0√
π Dt

Hint: Use the change of variables u = x − x ′.

3. From the following value of the temperature gradient at the Earth surface as
measured today

∂θ

∂x

∣∣∣
x=0

= −3 × 10−2 ◦C m−1

and the values 4D = 1.2 × 106 m2 s−1, θ0 = 3800 ◦C, estimate the age of the
Earth. Given your numerical result and the estimate of 4.5 billion years for the
age of the Earth, what do you think is wrong with Lord Kelvin’s assumptions?
Hint: The answer is not in radioactivity!

4. Write an expression for θ(r, t) assuming spherical symmetry in terms of the
Earth radius R. The integral that you will obtain cannot be computed analytically,
but you should be able to show that the previous one-dimensional approximation
is valid provided R ≫

√
Dt .

6.5 Problems

6.5.1 Entropy current in hydrodynamics

Consider a simple fluid characterized by the following five densities and conjugate
intensive variables

ρ1 = ϵ ρ2 = n ρ3 = gx ρ4 = gy ρ5 = gz

γ1 = 1
T

γ2 = −µ

T
γ3 = −ux

T
γ4 = −

uy

T
γ5 = −uz

T
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where g⃗ = mnu⃗ = ρu⃗ is the momentum density. Each fluid element has a flow
velocity u⃗(r⃗) measured in the laboratory reference frame R. We define a local
Galilean frame, R′(u⃗(r⃗)), in which the element d3r is at rest. All quantities in this
frame are primed.

1. Starting with the Galilean invariance of the entropy density,

s(ϵ, n, g⃗) = s′(ϵ − g⃗ 2/2mn, n, 0)

which you should justify briefly, show that the transformation law for the chemical
potential is

µ = µ′ − 1
2

mu⃗ 2

2. Derive the following relation
∑

i

γiρi =
∑

i

γ ′
i ρ

′
i = s − P

T
(6.99)

3. We recall that the rate of entropy dissipation is given by (6.40) and that
Table 6.1 gives the definitions of the currents and equilibrium currents. At equi-
librium, the total entropy of the system remains constant. This implies that the
contribution of the equilibrium currents to the local entropy balance

∑

i

j⃗ eq
i · ∇⃗γi

may be written in the form of a divergence of a vector. Show that
∑

i

j⃗ eq
i · ∇⃗γi = (u⃗ · ∇⃗)

∑

i

γiρi −
∑

i

γi (u⃗ · ∇⃗)ρi − P
T

∇⃗ · u⃗ (6.100)

Justify the following expression for the gradient of the entropy density

∇⃗s =
∑

i

γi ∇⃗ρi

and use this result as well as (6.99) to show that (6.100) can be written as
∑

i

j⃗ eq
i · ∇⃗γi = −∇⃗ ·

(
P
T

u⃗
)

(6.101)

4. The contributions of equilibrium currents are taken into account in the defini-
tion of the entropy current

j⃗S =
∑

i

γi j⃗i + P
T

u⃗
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Show that
∑

i

γi ( j⃗i − ρi u⃗) =
∑

i

γ ′
i j⃗ ′

i =
j⃗ ′
E

T
(6.102)

and establish the transformation law of the entropy density current

j⃗S = j⃗ ′
S + su⃗ =

j⃗ ′
E

T
+ su⃗

Interpret these two expressions.

6.5.2 Hydrodynamics of the perfect fluid

Consider a fluid where the only internal force is the pressure; the tensor Pαβ has
the form Pδαβ . We also assume that there is no thermal conduction. In such a fluid,
dissipation is absent and the fluid is called a ‘perfect fluid’: the right hand side of
the transport equations (6.87) and (6.88) vanishes.

1. Show that the force acting on a fluid volume element dV is −∇⃗P dV . Hint:
Study first the case of pressure changing only along the z axis, and take the volume
element to be a parallelepiped with faces parallel to the axes. Obtain the Euler
equation (6.92).

2. For what is to follow, we need a thermodynamic identity. We will derive this
by considering a volume V that follows the current locally and is thus at rest in the
fluid’s frame. Let s = S/V and h′ = H/V be the entropy and enthalpy per unit
volume in this reference frame (since the entropy is a Galilean invariant, there is
no need to distinguish between s and s′). The entropy and enthalpy per particle are
given by š = S/N and ȟ′ = H/N (see Section 3.5.1). Using (3.95), show that

dϵ′ = T ds +
(

h′ − T s
ρ

)
dρ (6.103)

3. Define the kinetic energy density k = 1
2 ρu⃗ 2 and the corresponding current

j⃗K = 1
2 ρu⃗ 2u⃗. By using (6.92) and the equation for mass conservation, (6.64),

show that
∂k
∂t

+ ∂β

[
j K
β + Puβ

]
= P(∂βuβ) (6.104)

4. The absence of dissipation in an ideal fluid is expressed by the entropy conser-
vation law

∂s
∂t

+ ∂β(suβ) = 0 (6.105)
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Use this equation and (6.103) to put the time derivative of the total energy density

ϵ = k + ϵ′ = 1
2
ρu⃗ 2 + ϵ′

in the form

∂ϵ

∂t
+ ∂β

[
j K
β + Puβ

]
= P(∂βuβ) − T ∂β(suβ) −

(
h′ − T s

ρ

)
∂β(ρuβ) (6.106)

Again use (6.103) to obtain the final result

∂ϵ

∂t
+ ∂β

([
1
2
ρu⃗ 2 + h′

]
uβ

)
= 0 (6.107)

Give the physical interpretation of this result.

6.5.3 Thermoelectric effects

A metal is a binary system made of a lattice of fixed positive ions and mobile elec-
trons. We can observe a charge current in response to a temperature gradient and,
conversely, heat is produced when current is flowing. The metal is put at a uniform
potential % (cf. Section 6.2.2). Primed quantities correspond to the case % = 0 and
the unprimed quantities to the case % ̸= 0. We recall that in this situation T ′ = T ,
n′ = n and (6.54) µ = µ′ + q%.

1. Transformation laws of Li j . We consider a non-equilibrium situation where the
linear response model is relevant. We know, for the isolated system, the coefficients
of linear response

j⃗ ′
E = L ′

E E ∇⃗
(

1
T

)
+ L ′

E N ∇⃗
(

−µ′

T

)
(6.108a)

j⃗ ′
N = L ′

N E ∇⃗
(

1
T

)
+ L ′

N N ∇⃗
(

−µ′

T

)
(6.108b)

The metal is now put at the potential %(r⃗), which depends on space but varies
very slowly at the microscopic scale. The transformation laws established for the
uniform case are still valid locally. Establish the following transformation laws for
the particle and energy current densities

j⃗N = j⃗ ′
N j⃗E = j⃗ ′

E + q% j⃗N
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Use this result to show that in the presence of the potential !(r), the linear re-
sponse coefficients transform as

L N N = L ′
N N (6.109a)

L E E = L ′
E E + 2q! L ′

N E + q2!2 L ′
N N (6.109b)

L N E = L E N = L ′
N E + q! L ′

N N (6.109c)

Verify, with the help of these results, that the thermal conductivity coefficient of
the metal κ (6.50) is the same in the presence or absence of the external potential.

2. Seebeck effect. The first thermoelectric effect to be studied was the Seebeck
effect: in an open circuit, a temperature gradient produces an electromotive force
(i.e. a gradient of the electrochemical potential µ/q). We define the ‘Seebeck coef-
ficient’ (or coefficient of thermoelectric power) ε̄ of a material as the electromotive
force created in an open circuit by a unit temperature gradient

∇⃗
(

µ

q

)
= −ε̄∇⃗T j⃗N = 0⃗

Express the Seebeck coefficient in terms of the linear response coefficients.

We construct a thermocouple with two metallic wires A and B of different See-
beck coefficients (Figure 6.8). The junctions are maintained at two different tem-
peratures T1 and T2. A capacitor is introduced in the metal B and maintained at
temperature T . Calculate the potential difference across the capacitor in terms of
T1, T2 and the Seebeck coefficients ε̄A and ε̄B of metals A and B respectively.

3. Joule effect. In an electrically neutral metal where the temperature, electric
field, density of charge carriers and current densities are uniform, an electric cur-
rent produces the well-known thermoelectric phenomenon, the Joule effect. Verify

4

T1 T2

B

T

A

3

Figure 6.8 Schematic representation of a thermocouple.
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I

BA

(T )

Figure 6.9 A junction between two different metals.

that the particle (charge carriers) flux is accompanied by an energy flux

j⃗E = − q
T

L E N ∇⃗! = L E N

q L N N
j⃗el (6.110)

where j⃗el = −σel∇⃗!. Find expression (6.57) for the coefficient of electrical con-
ductivity σel.

Calculate the electric power density ∂ϵ/∂t and the entropy current density j⃗S .
What is the value of ∇⃗ · j⃗S? Verify that the rate of entropy dissipation is given by

∂s
∂t

= 1
T

j⃗ 2
el

σel
(6.111)

The above equation shows that the ‘Joule power’, j⃗ 2
el/σel, is directly related to the

rate of entropy dissipation. In the model considered here, the charge carriers do
not exchange energy with the medium, which, therefore, in turn cannot exchange
heat with the outside world. In a realistic situation, what is the mechanism that
permits energy to be transferred to the outside thus allowing the Joule effect to be
observed?

4. Peltier effect. Consider a junction between two different metals A and B
through which flows a uniform current of intensity I (Figure 6.9).

The system is maintained at temperature T . Show that at the junction a thermo-
electric effect, heating or cooling depending on the direction of the current, will be
observed. What power W must we supply to the junction to keep its temperature
at T ?

If the current I flows from A to B, we define the ‘Peltier coefficient’, %AB ,
as the power per unit current absorbed by the circuit, %AB = W/I . Relate this
coefficient to the Seebeck coefficients of the two materials.

6.5.4 Isomerization reactions

A chemical exists in three isomeric forms A, B and C related by the triangle of
isomerization reactions schematically shown in Figure 6.10.
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CB

A

Figure 6.10 Possible exchange directions between three isomeric forms.

Designate by NA(t), NB(t) and NC(t) the numbers of A, B, and C molecules
present at time t .

1. If ki j is the spontaneous transformation rate between isomers i and j , write
the three equations which govern the kinetics of the reactions. We assume that a
stationary situation can be established, i.e. that equilibrium currents ensure that the
numbers of molecules N 0

A, N 0
B and N 0

C remain constant. Verify that for any isomer
i we have

∑

j ̸=i

(ki j N 0
j − k ji N 0

i ) = 0

Applying detailed balance (see Section 7.1), which is based on time reversal invari-
ance of microscopic processes, we can demonstrate the sufficient but not necessary
relation

ki j N 0
j = k ji N 0

i

2. We now move a little away from the stationary situation and designate the
deviations by xi = Ni − N 0

i (|xi | ≪ N 0
i ). The isomers are assumed to be ideal

solutions (or ideal gases). Show that the mixing entropy may be written as

S − S0 = −k
∑

i

(
Ni ln Ni − N 0

i ln N 0
i

)
(6.112)

where S0 is the entropy at equilibrium. It is sufficient to calculate the mixing en-
tropy of two ideal gases at fixed pressure.

3. This problem cannot be analyzed using weakly coupled spatial cells (Sec-
tion 6.1) and we therefore have to define the affinities (6.15) differently. Since the
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affinities are a measure of departure from equilibrium, it is natural to write

!i = ∂(S − S0)

∂xi

We want to re-express the kinetic equations of the first question in the form of
linear relations between the fluxes ji = ẋi and the affinities !i . Express the entropy
change in terms of the deviations from equilibrium by expanding S − S0 to leading
order in xi . Verify that the entropy is indeed maximum at equilibrium. Calculate
the affinities and show that the kinetic equations can be written in the form

ji = Lii!i +
∑

j ̸=i

Li j! j

Identify the phenomenological coefficients Li j and verify that detailed balance
implies the Onsager symmetry relations Li j = L ji .

6.6 Further reading

Sections 6.1 and 6.2 follow closely (including notation) Chapter 14 in Balian [5],
which the reader should consult for further reading. Other useful references are
Reif [109] (Chapter 15), Landau and Lifshitz [70] (Chapter XII), Kubo [68] (Chap-
ter 6) and Kreuzer [67] (Chapters 1 to 3). At a more advanced level, the book by
Foerster [43] is indispensable: in particular, one finds there an extensive discus-
sion of the relation between time scales and conservation laws. A discussion of
hydrodynamics geared for physicists can be found in Guyon et al. [53] and Faber
[37].


