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Irreversible processes: kinetic theory

In this chapter we shall discuss a microscopic theory of transport phenomena,
namely kinetic theory. The central idea of kinetic theory is to explain the behaviour
of out-of-equilibrium systems as the consequence of collisions among the particles
forming the system. These collisions are described using the concept of cross sec-
tion which will be introduced in Section 8.1 where we shall also demonstrate an
elementary, but not rigorous, first calculation of transport coefficients. Then, in the
following section, we introduce the Boltzmann–Lorentz model which describes
collisions of molecules with fixed randomly distributed scattering centres. This
model gives a good description of transport properties in several physically im-
portant systems such as the transport of electrons and holes in a semiconductor.
In Section 8.3 we shall give a general discussion of the Boltzmann equation, with
two important results: the derivation of hydrodynamics and that of the H-theorem,
which gives an explicit proof of irreversibility. Finally, in the last section, we shall
address the rigorous calculation of the transport coefficients, viscosity and thermal
conductivity, in a dilute mono-atomic gas.

8.1 Generalities, elementary theory of transport coefficients

8.1.1 Distribution function

We adopt straight away the classical description where a point in phase space is
given by its position, r⃗ , and momentum, p⃗. The basic tool of kinetic theory is the
distribution function f (r⃗ , p⃗, t), which is the density of particles in phase space:
the number of particles at time t in the volume d3rd3 p at the phase space point
(r⃗ , p⃗) is, by definition, given by f (r⃗ , p⃗, t)d3r d3 p. The goal of kinetic theory is
to calculate spatio-temporal dynamics of the distribution function. The particle
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Figure 8.1 (a) Incident particles moving towards target particles. (b) Multiple
collisions of an incident particle.

density in position space, n(r⃗ , t), is the momentum integral of f (r⃗ , p⃗, t)

n(r⃗ , t) =
∫

d3 p f (r⃗ , p⃗, t) (8.1)

Let A(r⃗ , p⃗) be a classical dynamical variable. We define its average value, A(r⃗ , t),
at point r⃗ by

A(r⃗ , t) = 1
n(r⃗ , t)

∫
d3 p A(r⃗ , p⃗) f (r⃗ , p⃗, t) (8.2)

Rather than using the momentum, it is clearly equivalent to use the velocity v⃗ =
p⃗/m, where m is the particle mass. The distribution function fv(r⃗ , p⃗, t) is related
to f by a simple proportionality

fv(r⃗ , v⃗, t) = m3 f (r⃗ , p⃗, t) (8.3)

8.1.2 Cross section, collision time, mean free path

The central concept in the description of collisions is that of cross section. We
start with a simple case. Consider a flux of particles of density n and momentum
p⃗, incident on a target of fixed scattering centres with density nd (Figure 8.1). The
target is thin enough to ignore multiple collisions.1 The momentum after a collision
is p⃗ ′, its direction given by !′ = (θ ′, ϕ′), where θ ′ and ϕ′ are respectively the
polar and azimuthal angles when the Oz axis is chosen parallel to p⃗. Let dN /dt dV

1 In other words we assume that the mean free path, defined in (8.10), is large compared to the thickness of the
target.
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be the number of collisions per unit time and unit target volume for collisions
where particles are scattered within the solid angle d!′ in the direction of p⃗ ′. This
number is proportional to

(i) the incident flux F = nv,
(ii) the solid angle d!′, which defines the cone into which the particles are scattered,

(iii) the density nd of target particles as long as we ignore multiple collisions.

We can then write

dN
dt dV

= Fnd σ (v, !′) d!′ (8.4)

The coefficient of proportionality σ (v, !′) in (8.4) is called the differential scat-
tering cross section.2 We often use (8.4) in the form

vσ (v, !′) d!′ is the number of collisions per unit time and unit target vol-
ume for unit densities of target and incident particles where the scattered
particle is in d!′ around p⃗ ′.

Dimensional analysis shows that σ has dimensions of area and is therefore mea-
sured in m2.

An important concept is that of collision time3 which is the elapsed time be-
tween two successive collisions of the same particle. Consider a particle in flight
between the target particles (Figure 8.1(b)): to obtain the collision time from (8.4),
we first divide by n and integrate over !′. This gives the average number of col-
lisions per second suffered by an incident particle which is just the inverse of the
collision time τ ∗(p)

1
τ ∗(p)

= ndv

∫
d!′ σ (v, !′) = ndvσtot(v) (8.5)

The total cross section σtot(v) is obtained by integrating the differential cross sec-
tion over !′.

We now consider the general case. The incident particles, characterized by their
density n2 and velocity v⃗2 = p⃗2/m2, are moving toward the target particles which
in turn are characterized by their density n1 and velocity v⃗1 = p⃗1/m1. Clearly,
in a gas containing only one kind of atom, the incident and target particles are
identical but it is convenient to distinguish them at least to begin with. We may
regain the previous situation by applying a Galilean transformation of velocity v⃗1

2 We assume that collisions are rotation invariant by not considering cases where the target or incident particles
are polarized.

3 The reader should not confuse ‘collision time’ with ‘duration of collision’. To avoid confusion, we may use
time of flight instead of collision time.
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Figure 8.2 Centre-of-mass reference frame.

to place ourselves in the rest frame of the target particles i.e. the target frame.4 In
this frame, the incident particles have a velocity (v⃗2 − v⃗1) and the incident particle
flux, F2, i.e. the number of incident particles crossing a unit area perpendicular to
(v⃗2 − v⃗1) per unit time, is given by

F2 = n2|v⃗2 − v⃗1| (8.6)

In place of the target frame, it is often convenient to use the centre-of-mass refer-
ence frame, where the total momentum is zero. In this frame, two colliding parti-
cles have equal and opposite momenta (Figure 8.2) p⃗ ′

1 = − p⃗ ′
2 and, if the masses

are the same, v⃗ ′
1 = −v⃗ ′

2 . After the collision, particles (1) and (2) propagate respec-
tively with momenta p⃗ ′

3 and p⃗ ′
4 = − p⃗ ′

3 (| p⃗ ′
1 | = | p⃗ ′

3 | if the collision is elastic) and
!′ = (θ ′, ϕ′) are the polar and azimuthal angles taken with respect to p⃗ ′

1 , which
defines the Oz axis. It is important to remember that by convention !′ will always
be measured in the centre-of-mass frame so that there is no limitation on the range
of the polar angle θ ′, 0 ≤ θ ′ < π . Let dN /dt dV be the number of collisions per
unit time and unit target volume when particle p⃗ ′

1 is scattered into the solid angle
d!′ around the direction p⃗ ′

3 . A straightforward generalization of (8.4) gives this
quantity as

dN
dt dV

= F2n1σ (v⃗2, v⃗1, !
′)d!′ (8.7)

The coefficient of proportionality σ (v⃗2, v⃗1, !
′) in (8.7) is the differential cross

section. Since all the terms in (8.7) are Galilean invariants, the differential cross
section itself is also a Galilean invariant and consequently depends on (v⃗2 − v⃗1),
not on v⃗1 or v⃗2 separately. In addition, due to rotation invariance, the cross section
depends only on the modulus of the velocity difference, (|v⃗2 − v⃗1|). Therefore, the
total cross section, obtained by integrating over the solid angle, also depends only

4 In the previous case where the target was at rest, the target frame was the same as the laboratory frame.
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on (|v⃗2 − v⃗1|)

σtot(|v⃗2 − v⃗1|) =
∫

d"′ σ (|v⃗2 − v⃗1|, "′) (8.8)

As before, (|v⃗2 − v⃗1|)σtot(|v⃗2 − v⃗1|) is the number of collisions per unit time and
unit target volume for unit densities of target and incident particles.

The concept of collision time, previously defined for fixed targets, extends to the
general case: in a gas, the collision time τ ∗ is the average time between two suc-
cessive collisions of the same particle. It is given by the generalization of Equation
(8.5)

τ ∗ ∼ 1
n⟨v⟩ σtot

(8.9)

where ⟨v⟩ is an average velocity of the particle whose definition is intentionally left
imprecise. The mean free path ℓ is the average distance between two successive
collisions: ℓ ∼ τ ∗⟨v⟩

ℓ ∼ 1
nσtot

(8.10)

A more precise determination of the collision time is given in Exercise 8.4.4, where
we find for the Maxwell velocity distribution and a cross section independent of
energy

τ ∗ = 1√
2 n⟨v⟩σtot

ℓ = 1√
2 nσtot

(8.11)

⟨v⟩ being the average velocity of the Maxwell distribution (3.54b)

⟨v⟩ =
√

8kT
πm

Let us illustrate the concept of cross section with the simple example of hard
spheres, radius a and velocity v⃗2, incident on a target of fixed point particles. Dur-
ing a time dt a sphere sweeps a volume πa2v2 dt , which contains n1πa2v2 dt
target particles. The total number of collisions per unit time and unit target volume
is therefore given by n1n2πa2v2, which, when combined with the definition (8.5),
yields σtot = πa2.

Now consider spheres of radius a1 incident on target spheres of radius a2 (Figure
8.3). A collision takes place if the two centres pass each other at a distance b ≤
(a1 + a2). The distance b is called the impact parameter of the collision. This
situation is equivalent to the case of a sphere of radius (a1 + a2) scattering off a
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Figure 8.3 Collision of two spheres.

point particle. The total cross section is then

σtot = π(a1 + a2)
2 (8.12)

We can show, in classical mechanics, that the differential cross section for a col-
lision of two hard spheres depends neither on #′ nor on the relative velocity and
is therefore given by σ (#′) = σtot/(4π). In general, the determination of the cross
section should be done within the framework of quantum mechanics and taking
into account the interaction potential U (r⃗) between the two particles. If we are
given an interaction potential U (r⃗), there are standard quantum mechanical meth-
ods to calculate the cross section. Quantum mechanics shows up only during the
calculation of the cross section; once this quantity is known, kinetic theory be-
comes a theory of classical particles.

Having defined the key ideas for describing collisions, we are now in a position
to state the assumptions behind kinetic theory:

(i) The collision time τ ∗ is very long compared to the duration of the collision δτ , which
is the time an incident particle spends in the field of influence of a target particle:
τ ∗ ≫ δτ . To leading approximation, we can assume that collisions take place instan-
taneously and that, for the most part, the particles are free and independent. The po-
tential energy and interactions are taken into account effectively by the collisions.

(ii) The probability of having three particles in close proximity is very small. Conse-
quently, the probability of three or more particles colliding is negligible: it is sufficient
to consider only binary collisions.
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(iii) The classical gas approximation holds, in other words the thermal wavelength is very
small compared to the average distance between particles, λ ≪ d . This assumption
may be relaxed and the theory extended to the quantum case, see Problems 8.6.2 and
8.6.7.

These conditions are satisfied by a dilute classical gas. Let us consider some or-
ders of magnitude: For a gas such as nitrogen, under standard temperature and
pressure, the density is about 2.7 × 1025 molecules/m3 and the distance between
molecules is d ∼ n−1/3 ∼ 3 × 10−9 m. Taking a cross section5 of 4 × 10−19 m2,
which corresponds to a hard sphere radius a ≃ 1.8 × 10−10 m, we find a colli-
sion time τ ∗ ≃ 2 × 10−10 s, and a mean free path ℓ ≃ 10−7 m. With a typical
value for the average velocity ⟨v⟩ ≃ 500 m/s, the duration of a collision is approx-
imately δτ ∼ a/⟨v⟩ = 3 × 10−13 s. We then see a clear separation of the three
length scales

a ≪ d ≪ ℓ (8.13)

and the two time scales δτ ≪ τ ∗. However, when a gas is so dilute that the mean
free path is of the order of the dimension of the system, we enter a regime, called
the Knudsen regime, where local equilibrium no longer exists.

8.1.3 Transport coefficients in the mean free path approximation

We shall calculate the transport coefficients in a dilute medium in the so called
mean free path approximation. This elementary calculation is physically very in-
structive but not rigorous; for example we shall keep vague the definition of the
average velocity that appears in the final equations. This calculation will allow us
to identify the dependence of the transport coefficients on the relevant physical pa-
rameters, although the numerical values will be off by a factor of 2 to 3. The value
of this calculation lies in the fact that a rigorous evaluation based on the Boltzmann
equation is considerably more complicated as will be seen in Section 8.4.

Thermal conductivity or energy transport

Consider a stationary fluid with a temperature gradient dT/dz in the Oz direc-
tion. Let Q be the heat flux, i.e. the amount of heat crossing the plane at z per
unit area and unit time. Recall the definition (6.18) of the coefficient of thermal
conductivity κ

Q = j E
z = −κ

dT
dz

(8.14)

5 The cross section is estimated from viscosity measurements and theoretical estimates based on the Boltzmann
equation.
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because Q is also the z component of the energy current j⃗E which, in this case,
is simply a heat current. Since we ignore interactions, the average energy ε of a
molecule6 is purely kinetic and therefore depends on the height z because of the
temperature dependence on z.

We shall define the average velocity ⟨v⟩ by the following approximation. For
an arbitrary function g(cos θ), where θ is the angle between the velocity v⃗ of a
molecule and the Oz axis, we have7

∫
d3 p vz f ( p⃗)g(cos θ) → n

2
⟨v⟩

∫
d(cos θ) cos θ g(cos θ) (8.15)

Now consider molecules whose velocity makes an angle θ with the Oz axis, 0 ≤
θ ≤ π . Such a molecule crossing the plane at z has travelled, on average, a distance
ℓ and therefore its last collision took place at an altitude z − ℓ cos θ . Its energy is
ε(z − ℓ cos θ). The heat flux crossing the plane at z and coming from molecules
whose velocities make an angle θ with the vertical is then

dQ(cos θ) = n
2

d(cos θ)⟨v⟩ cos θ ε(z − ℓ cos θ)

≃ n
2

d(cos θ)⟨v⟩ cos θ

[
ε(z) − ℓ cos θ

dε(z)
dz

]

We have made a Taylor expansion, to first order in ℓ, of the term ε(z − ℓ cos θ).
The integral over d(cos θ) from −1 to +1 in the first term of the bracket vanishes.
Using

+1∫

−1

d(cos θ) cos2 θ = 2
3

(8.16)

we obtain for the heat flux

Q =
1∫

−1

dQ(cos θ) = −1
3

n⟨v⟩ ℓ
dε(z)

dz

= −1
3

n⟨v⟩ ℓ
dε

dT
dT
dz

= −1
3

n⟨v⟩ ℓc
dT
dz

where c is the specific heat per molecule, which is equal to 3k/2 for mono-atomic
gases, 5k/2, etc. for poly-atomic gases (Section 3.2.4). Comparing with (8.14)

6 Since we are now discussing gases, we talk about molecules rather than particles.
7 The factor n/2 gives the correct normalization (8.2) since

∫ 1
−1d(cos θ) = 2. Put vz = g = 1 to find that both

integrals give n. We have suppressed the labels r⃗ and t in f .
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gives the coefficient of thermal conductivity

κ = 1
3

n⟨v⟩ ℓc (8.17)

Viscosity or momentum transport

Let us now consider the fluid flow described in Section 6.3.1, Figure 6.6, and recall
Equation (6.71) for the component Pxz of the pressure tensor for this situation

Pxz = −η
dux (z)

dz
(8.18)

The fluid flows in the Ox direction with horizontal velocity ux (z) (a function of
z), η is the shear viscosity and −Pxz is the x component of the force per unit area
at z applied by the fluid above z on the fluid below it. From the fundamental law of
dynamics, this is also the momentum transfer per second from the fluid above z to
the fluid below it. Therefore, Pxz is the momentum flux across the plane at height
z with the normal to the plane pointing upward. Since the fluid is assumed to be
dilute, we can ignore interactions among the molecules and the momentum flux is
therefore purely convective

Pxz =
∫

d3 p pxvz f ( p⃗) (8.19)

We repeat the above reasoning by considering molecules whose velocities make an
angle θ with the vertical, 0 ≤ θ ≤ π . As before, a molecule crossing the plane at z
has travelled, on average, a distance ℓ and therefore its last collision took place at
an altitude z − ℓ cos θ , and the x component of its momentum is mux (z − ℓ cos θ).
Clearly, in this calculation we only consider the flow velocity u⃗ of the fluid and
not the thermal velocity, also present, which averages to zero since its direction
is random. Using the approximation (8.15), the momentum flux due to these
molecules is

dPxz(cos θ) = n
2

d(cos θ)⟨v⟩ cos θ mux (z − ℓ cos θ)

≃ n
2

d(cos θ)⟨v⟩ cos θ m
[

ux (z) − ℓ cos θ
dux (z)

dz

]

We have performed a Taylor expansion of the term ux (z − ℓ cos θ) to first order
in ℓ. The integral from −1 to +1 over d(cos θ) of the first term in the bracket
vanishes, and using (8.16) we obtain

Pxz =
+1∫

−1

dPxz(cos θ) = −1
3

nm⟨v⟩ ℓ
dux (z)

dz
(8.20)
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which becomes, upon comparing with (8.18),

η = 1
3

nm⟨v⟩ ℓ = 1
3

m⟨v⟩
σtot

(8.21)

We remark that the product nℓ = 1/σtot is constant and that, at constant temper-
ature, the viscosity is independent of the density and the pressure. If the density
is doubled, the number of molecules participating in the transport is also doubled,
but the mean free path is halved and the two effects cancel out leaving the vis-
cosity constant. In fact, the second equation in (8.21) shows that the viscosity is a
function of T only through the dependence of ⟨v⟩ on the temperature, and that it
increases with T as ⟨v⟩ ∝ T 1/2.8 This should be contrasted with the case of liquids
where the viscosity decreases with increasing temperature.

By comparing (8.17) and (8.21), we predict that the ratio κ/η is equal to c/m.
Experimentally we have

1.3 <∼
κ

η

m
c

<∼ 2.5 (8.22)

which confirms the validity of our calculation to within a factor of 2 to 3. We
can understand qualitatively the origin of this factor. In the above calculation, all
the molecules have the same velocity and they all travel the same distance, the
mean free path, between successive collisions. However, faster molecules have a
higher flux across the horizontal plane and while they transport the same horizontal
momentum as the average, they transport more kinetic energy. Therefore, the ratio
κ/η is underestimated in our simple calculation.

Diffusion or particle transport

As a last example, we study diffusion. Let n(z) be the z dependent density of
solute in a solvent. The diffusion current j⃗N is governed by Fick’s law (6.26),
which becomes in the present case

j N
z = −D

dn
dz

(8.23)

By using, once again, the same reasoning as above, we have

d j N
z (cos θ) = 1

2
d(cos θ)⟨v⟩ cos θ n(z − ℓ cos θ)

The Taylor expansion and integration over θ yield

j N
z = −1

3
⟨v⟩ ℓ

dn
dz

8 In fact, the dependence of σtot on the velocity should be included. This leads to η ∝ T 0.7.
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which allows the identification of the diffusion coefficient

D = 1
3
⟨v⟩ ℓ (8.24)

8.2 Boltzmann–Lorentz model

8.2.1 Spatio-temporal evolution of the distribution function

The starting point will be a spatio-temporal evolution equation for the distribution
function f (r⃗ , p⃗, t) in phase space. Consider first a collection of non-interacting
particles moving under the influence of external forces. When t → t + dt , a parti-
cle which at time t was at point r⃗(t) and had a momentum p⃗(t) will at time t + dt
find itself at r⃗(t + dt) with momentum p⃗(t + dt). Since the number of particles in
a volume element in phase space is constant, we have

f [r⃗(t + dt), p⃗(t + dt), t + dt]d3r ′ d3 p′ = f [r⃗(t), p⃗(t), t]d3r d3 p (8.25)

where d3r ′ d3 p′ is the phase space volume at t + dt (Figure 8.4): motion in phase
space takes a point in d3r d3 p to a point in d3r ′d3 p′.

Liouville’s theorem (2.34) d3r ′ d3 p′ = d3r d3 p means that the two functions in
(8.25) are equal. Expanding to first order in dt gives

∂ f
∂t

+ dr⃗
dt

· ∇⃗r⃗ f + d p⃗
dt

· ∇⃗ p⃗ f = ∂ f
∂t

+ v⃗ · ∇⃗r⃗ f + F⃗ · ∇⃗ p⃗ f = 0 (8.26)

d3r′d3p′

d3r d3p

position

momentum

t

t + dt

Figure 8.4 Motion in phase space.
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In the presence of a magnetic field, the passage from the first to the second of
equations (8.26) is not obvious (see Problem 8.5.5).9 Comparing with (6.65), we
see that the operator D

D = ∂

∂t
+ dr⃗

dt
· ∇⃗r⃗ + d p⃗

dt
· ∇⃗ p⃗ = ∂

∂t
+

∑

α

vα ∂α +
∑

α

ṗα ∂pα (8.27)

is simply the material derivative in phase space (also see Exercise 2.7.3).10 Equa-
tion (8.26) expresses the fact that the distribution function is constant along a tra-
jectory in phase space.

Equation (8.26) is valid only in the absence of interactions. We now include
interactions in the form of collisions among the particles. Recall that one of the
assumptions of kinetic theory stipulates that the duration of collisions is very short
compared with the collision time. We shall, therefore, assume instantaneous col-
lisions. The effect of collisions is to replace the zero on the right hand side of
Equation (8.26) by a collision term, C[ f ], which is a functional of the distribution
function f . Equation (8.26) then becomes

∂ f
∂t

+ v⃗ · ∇⃗r⃗ f + F⃗ · ∇⃗ p⃗ f = C[ f ] (8.28)

The left hand side of Equation (8.28) is called the drift term. The collision term is
in fact a balance term, and to establish its form we need to keep track of the number
of particles which enter or exit the phase space volume d3r d3 p. We note that the
units of C[ f ] are inverse phase space volume per second. Equation (8.28) does not
in any way specify the form of the collision term. As a result, Equation (8.28) is
equally valid for the Boltzmann–Lorentz model with fixed scattering centres, as
well as for the Boltzmann model where both incident and target particles are in
motion. It is important to keep in mind that, strictly speaking, we cannot take time
and space intervals to zero in Equation (8.28). For example, the derivative ∂ f/∂t
should be understood as # f/#t with

δτ ≪ #t ≪ τ ∗ (8.29)

Similarly, the phase space volumes we consider should be small but not micro-
scopic; they should contain a sufficiently large number of particles. The fact that
#t has to remain finite shows that (8.28) cannot be considered an exact equation.11

9 In the presence of a magnetic field B⃗, the canonically conjugate momentum p⃗ is not the same as the momentum
mv⃗: p⃗ = mv⃗ + q A⃗ where q is the electric charge and A⃗ is the vector potential, B⃗ = ∇⃗ × A⃗.

10 We keep the notations of Chapter 6 for space derivatives (∇⃗r⃗ = (∂x , ∂y , ∂z)) and introduce the following
notation for derivatives in momentum space: ∇⃗ p⃗ = (∂px , ∂py , ∂pz ).

11 We do not follow the motion of each particle during infinitesimally small time intervals.
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The discretization of time (8.29) cannot guarantee the reversibility of the equations
of motion, and the observation of irreversible behaviour will not contradict micro-
reversibility.

8.2.2 Basic equations of the Boltzmann–Lorentz model

The Boltzmann–Lorentz model is a model of collisions between light incident
particles and randomly distributed fixed scattering centres. The gas of incident
particles is assumed to be dilute enough to ignore collisions among these incident
particles. For example, this model is used to describe

• electrons and holes in semiconductors,
• diffusion of impurities in a solid,
• diffusion of light solute molecules in a solvent whose molecules are heavy,
• neutron diffusion in a moderator.

This model may also be used to describe electrons in a metal if one makes the nec-
essary changes to accommodate Fermi–Dirac statistics (Problem 8.6.2). In what
follows we shall concentrate on a gas of classical particles. In order to justify the
approximation of fixed scattering centres, consider a gas made of a mixture of light
particles of mass m and heavy particles of mass µ. The two types of particles have
kinetic energies of the order of kT , but the ratio of their momenta is

√
m/µ with the

consequence that the contribution of the light particles to momentum conservation
is negligible. The heavy particles can, therefore, absorb and supply momentum
during collisions with the light ones, and thus they may be considered infinitely
heavy and stationary. Since we assume elastic collisions, the energy of the light
particles is conserved but not their momentum. As in Section 6.2.1, there will be
only two conservation laws: conservation of particle number and energy along
with the associated densities, n and ϵ, and their currents j⃗N and j⃗E (however, see
Footnote 12).

In the absence of external forces, we can write Equation (8.28) for the distribu-
tion function f (r⃗ , p⃗, t) of the light particles

∂ f
∂t

+ v⃗ · ∇⃗r⃗ f = C[ f ] (8.30)

To evaluate C[ f ], we shall account for the particles which enter and leave the phase
space element d3r d3 p. First consider particles leaving this element. We assume
this volume to be small enough so that any particle initially in it will be ejected after
a collision. Before the collision the particle has momentum p⃗, after the collision
its momentum is p⃗ ′, which is no longer in d3r d3 p around p⃗ (Figure 8.5).
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∆t
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pz
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py

d3p
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pz

p⃗ ′

d3p′

Figure 8.5 (a) A particle leaving d3r d3 p, p⃗ → p⃗ ′, and (b) a particle entering it,
p⃗ ′ → p⃗.

The collision term will be calculated in terms of the cross sections defined in
(8.4). However, rather than using the variable !′ of (8.4), it will be more conve-
nient, for the purpose of identifying the symmetries of the problem, to use the vari-
able p⃗ ′. This is possible because we may include in the cross section a δ-function
that ensures the conservation of energy, which is purely kinetic in the present case:
for a particle of momentum p⃗, the energy is ε( p⃗) = p⃗ 2/(2m). We note that

d3 p′ δ(ε − ε′) = p′2 dp′ d!′ m
p

δ(p − p′) → m2v d!′ (8.31)

and we introduce the quantity W (p, !′)

W (p, !′) d3 p′ = nd

m2 σ (v, !′) d3 p′ δ(ε − ε′) → ndv σ (v, !′) d!′ (8.32)

W (p, !′) d3 p′ is the number of particles scattered in d3 p′ per second and per
unit target volume for unit incident particle density. The number of collisions per
second in d3r d3 p with a final momentum in d3 p′ is then

dN
dt

= [d3r d3 p] f (r⃗ , p⃗, t)W (p, !′)d3 p′

By integrating over d3 p′, we obtain from the above equation the contribution to
C[ f ] of the particles leaving the volume element

C−[ f ] = f (r⃗ , p⃗, t)
∫

d3 p′ W (p, !′)

(
= 1

τ ∗(p)
f (r⃗ , p⃗, t)

)
(8.33)
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Conversely, collisions with p⃗ ′ → p⃗ will populate the volume element d3r d3 p
(Figure 8.5(b)). The number of these collisions is given by

[d3r d3 p]
∫

d3 p′ f (r⃗ , p⃗ ′, t)W (p′, !) = [d3r d3 p]C+[ f ]

The total collision term is the difference between entering and exiting contributions

C[ f ] = C+[ f ] − C−[ f ]

The expression for C[ f ] simplifies if we note that the collision angle is the same for
the collisions p⃗ → p⃗ ′ and p⃗ ′ → p⃗ and that p = p′ due to energy conservation

W (p, !′) = W (p′, !)

and therefore

C[ f ] =
∫

d3 p′ [
f (r⃗ , p⃗ ′, t) − f (r⃗ , p⃗, t)

]
W (p, !′) (8.34)

By using (8.32) and introducing the shorthand notation f = f (r⃗ , p⃗, t) and f ′ =
f (r⃗ , p⃗ ′, t), we write (8.34) as

C[ f ] =
∫

d3 p′ [
f ′ − f

]
W (p, !′) = vnd

∫
d!′ [

f ′ − f
]
σ (v, !′) (8.35)

8.2.3 Conservation laws and continuity equations

We should be able to show that the model satisfies number and energy conservation
equations. We shall obtain these equations from the following preliminary results.
Let χ( p⃗) (or χ(r⃗ , p⃗)) be an arbitrary function, and define the functional, I [χ ], of
χ by

I [χ ] =
∫

d3 p χ( p⃗)C[ f ] (8.36)

First we show that I [χ ] = 0 if χ depends only on the modulus p of p⃗. The demon-
stration is simple.12 From the definition of I [χ ] and using (8.35) we may write

I [χ ] =
∫

d3 p d3 p′ χ( p⃗)W (p, !′)[ f ′ − f ]

12 The physical interpretation of this result is as follows. The collision term is a balance term in the phase space
volume element d3r d3 p. Like all quantities dependent only on p, which are conserved in the collisions,
its integral over d3 p should vanish. Therefore, this model has an infinite number of conservation laws. A
realistic model should take into account the inelasticity of collisions that is necessary for reaching thermal
equilibrium.
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Exchanging the integration variables p and p′ gives

I [χ ] = −
∫

d3 p d3 p′ χ( p⃗ ′)W (p′, ")[ f ′ − f ]

Using W (p, "′) = W (p′, ") the above two equations yield

I [χ ] = 1
2

∫
d3 p d3 p′ [

χ( p⃗) − χ( p⃗ ′)
]

W (p, "′)[ f ′ − f ]

Therefore, I [χ] = 0 if χ depends only on the modulus of p⃗ since p = p′. In the
special cases χ = 1 and χ = ε( p⃗) = p2/(2m) we obtain

∫
d3 p C[ f ] = 0

∫
d3 p ε( p⃗)C[ f ] = 0 (8.37)

Integrating Equation (8.28) over d3 p and using (8.37) we have

∂n
∂t

+ ∇⃗r⃗ ·
∫

d3 p v⃗ f = 0 (8.38)

We thus identify the particle current and the corresponding continuity equation

j⃗N =
∫

d3 p v⃗ f
∂n
∂t

+ ∇⃗ · j⃗N = 0 (8.39)

Multiplying Equation (8.28) by ε( p⃗), integrating over d3 p and using (8.37) leads
to

∂ϵ

∂t
+ ∇⃗r⃗ ·

∫
d3 p ε( p⃗)v⃗ f = 0 (8.40)

where ϵ is the energy density,13 which is given by

ϵ =
∫

d3 p ε( p⃗) f =
∫

d3 p
p⃗ 2

2m
f (8.41)

We define, with the help of (8.40), the energy current j⃗E

j⃗E =
∫

d3 p ε( p⃗)v⃗ f =
∫

d3 p
p⃗ 2

2m
v⃗ f

∂ϵ

∂t
+ ∇⃗ · j⃗E = 0 (8.42)

8.2.4 Linearization: Chapman–Enskog approximation

The collision term C[ f ] vanishes for any distribution function which is isotropic
in p⃗, f (r⃗ , p, t), since in such a case f ′ = f . In particular, it vanishes for any local

13 The energy density ϵ should not be confused with the dispersion law ε( p⃗).
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equilibrium distribution f0, C[ f0] = 0, where (cf. (3.141))

f0(r⃗ , p⃗, t) = 1
h3 exp

(
α(r⃗ , t) − β(r⃗ , t)

p⃗ 2

2m

)
≡ f0(r⃗ , p, t) (8.43)

In this equation, β(r⃗ , t) and α(r⃗ , t) are related to the local temperature T (r⃗ , t) and
chemical potential µ(r⃗ , t) by

β(r⃗ , t) = 1
kT (r⃗ , t)

α(r⃗ , t) = µ(r⃗ , t)
kT (r⃗ , t)

(8.44)

If in Equation (8.35), the difference [ f ′ − f ] is not small, the collision term will
be of the order of f/τ ∗(p) where τ ∗(p) is a microscopic time of the order of
10−10 to 10−14 s. Then the collision term leads to a rapid exponential decrease,
exp(−t/τ ∗), in the distribution function. This rapid decrease evolves the distribu-
tion function toward an almost local equilibrium distribution in a time t ! τ ∗. The
collision term of the Boltzmann equation is solely responsible for this evolution,
which takes place spatially over a distance of the order of the mean free path.
Subsequently, the collision term becomes small since it vanishes for a local equi-
librium distribution. The subsequent evolution is hydrodynamic, and this is what
we shall now examine by linearizing Equation (8.35) near a local equilibrium dis-
tribution. We write the distribution function at t = 0 in the form f = f0 + f̄ . The
local equilibrium distribution f0 must obey

n(r⃗ , t = 0) =
∫

d3 p f0(r⃗ , p⃗, t = 0) (8.45)

ϵ(r⃗ , t = 0) =
∫

d3 p
p2

2m
f0(r⃗ , p⃗, t = 0) (8.46)

where n(r⃗ , t = 0) and ϵ(r⃗ , t = 0) are the initial particle and energy densities.
These densities determine the local temperature and chemical potential or, equiva-
lently, the local parameters α and β given by

n(r⃗) = 1
h3 eα(r⃗)

(
2πm
β(r⃗)

)3/2

ϵ(r⃗) = 3
2β(r⃗)

n(r⃗) (8.47)

where we have suppressed the time dependence. By construction, the deviation
from local equilibrium, f̄ , satisfies

∫
d3 p f̄ =

∫
d3 p

p2

2m
f̄ = 0 (8.48)
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Since the equilibrium distribution function f0 is isotropic, it does not contribute to
the currents which are given solely by f̄

j⃗N =
∫

d3 p v⃗ f̄ j⃗E =
∫

d3 p v⃗
p2

2m
f̄ (8.49)

The currents vanish to first order in f0 and, from the continuity equations, the time
derivatives of n and ϵ (or equivalently α and β) also vanish as does (∂ f0/∂t). We
also have C[ f0] = 0 but ∇⃗ f0 ̸= 0 (unless f0 is a global equilibrium solution in
which case the problem is not interesting) and so f0 is not a solution of (8.28).
Therefore, (8.28) becomes

(v⃗ · ∇⃗) f0 = C[ f̄ ] (8.50)

In orders of magnitude, we have C[ f̄ ] ∼ f̄ /τ ∗, and f̄ ∼ τ ∗(v⃗ · ∇⃗) f0. It is possi-
ble to iterate the solution by calculating the currents from f̄ , which allows us to
calculate the time derivatives of n and ϵ, which in turn yields ∂ f0/∂t , but instead
we stay with the approximation (8.50). We therefore work at an order of approxi-
mation where the drift (v⃗ · ∇⃗) f0 balances the collision term C[ f̄ ]. The expansion
parameter is τ ∗/τ ≪ 1 where τ is a characteristic time of macroscopic (or hydro-
dynamic) evolution.

We now calculate the collision term C[ f̄ ]. At point r⃗ , ∇⃗ f0 is oriented in a di-
rection that we define as the Oz axis

∇⃗ f0 = ẑ
∂ f0

∂z

Let γ be the angle between v⃗ and Oz

(v⃗ · ∇⃗) f0 = v cos γ
∂ f0

∂z
(8.51)

Also, we take γ ′ as the angle between p⃗ ′ and Oz, θ ′ the angle between p⃗ and
p⃗ ′ and ϕ′ the azimuthal angle in the plane perpendicular to p⃗ (Figure 8.6). The
collision term is given by (8.35)

C[ f̄ ] = vnd

∫
d)′ σ (v, )′)[ f̄ (r⃗ , p⃗ ′) − f̄ (r⃗ , p⃗)] (8.52)

We assume the solution of (8.50) takes the form

f̄ (r⃗ , p⃗) = g(z, p) cos γ (8.53)

Then, using

cos γ ′ = cos θ ′ cos γ + sin θ ′ sin γ cos ϕ′ d)′ = d(cos θ ′) dϕ′
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ẑ
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ẑ1
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ẑ1

ẑ(r⃗)

x̂1
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Figure 8.6 Conventions for the angles.

and the fact that σ (v, "′) = σ (v, θ ′),14 Equation (8.52) becomes

C[ f̄ ] = vnd g(z, p)

×
∫

d(cos θ ′) dϕ′ [
cos θ ′ cos γ + sin θ ′ sin γ cos ϕ′ − cos γ

]
σ (v, "′)

= −vnd g(z, p) cos γ

∫
d"′ (1 − cos θ ′)σ (v, "′)

We define the transport cross section σtr by15

σtr(v) =
∫

d"′ (1 − cos θ ′)σ (v, "′) (8.54)

which when combined with (8.50) and (8.51) gives for the collision term

C[ f̄ ] = −vnd g(z, p) cos γ σtr(v) = v cos γ
∂ f0

∂z

14 By rotation invariance, σ cannot depend on ϕ′ unless the particles are polarized.
15 This definition is specific to the process we are studying here. In other cases, the term (1 − cos θ ′) may be

replaced by a function f (cos θ ′) satisfying f (±1) = 0, and σtr may be different from σtot even for an isotropic
differential cross section: see Section 8.4.3 where the transport cross section is defined with a (1 − cos2θ)
factor.
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This in turn leads to the following expression for the function g(z, p) defined in
(8.53)

g(z, p) = − 1
ndσtr(v)

∂ f0

∂z
(8.55)

and therefore

f̄ = − 1
ndσtr(v)

cos γ
∂ f0

∂z

which can be written as

f̄ = − 1
ndvσtr(v)

(v⃗ · ∇⃗) f0 = −τ ∗
tr(p)(v⃗ · ∇⃗) f0 (8.56)

We have defined the characteristic time τ ∗
tr(p) by

τ ∗
tr(p) = 1

ndvσtr
(8.57)

We see that the transport process is controlled by the cross section σtr and not
the total cross section and by τ ∗

tr(p) and not the collision time τ ∗(p). When
the cross section is isotropic (independent of %′) we have σtr(v) = σtot(v) and
τ ∗

tr(p) = τ ∗(p). Since we usually consider such isotropic cases, we will take
τ ∗

tr(p) = τ ∗(p) but keep in mind that these two time scales can be very differ-
ent when the cross section is strongly anisotropic as in the case of Coulomb
interactions.

8.2.5 Currents and transport coefficients

Equations (8.49) for the currents and (8.56) for f̄ allow us to express the currents
in the following form

j⃗N = −
∫

d3 p τ ∗(p) v⃗(v⃗ · ∇⃗) f0 (8.58)

j⃗E = −
∫

d3 p τ ∗(p) ε(p)v⃗(v⃗ · ∇⃗) f0 (8.59)

Using the result (A.34) for a function g(| p⃗|) (see also Exercise 8.4.2)
∫

d3 p vαvβg(p) = 4π

3
δαβ

∫
dp p2v2g(p) = 1

3
δαβ

∫
d3 p v2g(p) (8.60)
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the equations for the currents may be written as

j⃗N = −1
3

∫
d3 p v2τ ∗(p)∇⃗ f0 (8.61)

j⃗E = −1
3

∫
d3 p v2τ ∗(p)ε(p)∇⃗ f0 (8.62)

From the form of f0 (8.43) we have

∇⃗ f0 =
(
∇⃗α − ε(p)∇⃗β

)
f0

which leads to the final form for the currents

j⃗N = 1
3k

∫
d3 p v2τ ∗(p)

[
∇⃗

(
−µ

T

)
+ ε(p)∇⃗

(
1
T

)]
f0 (8.63)

j⃗E = 1
3k

∫
d3 p v2τ ∗(p)ε(p)

[
∇⃗

(
−µ

T

)
+ ε(p)∇⃗

(
1
T

)]
f0 (8.64)

By comparing with Equations (6.48) and (6.49) we deduce the transport coeffi-
cients

L N N = 1
3k

∫
d3 p v2τ ∗(p) f0 (8.65)

L E N = 1
3k

∫
d3 p v2τ ∗(p)ε(p) f0 = L N E (8.66)

L E E = 1
3k

∫
d3 p v2τ ∗(p)ε2(p) f0 (8.67)

The Onsager reciprocity relation L E N = L N E is explicitly satisfied. It is also easy
to verify the positivity condition (Exercise 8.4.3)

L E E L N N − L2
E N ≥ 0 (8.68)

In order to calculate explicitly these coefficients, we need τ ∗(p). In the simple case
where the mean free path ℓ is independent of p, we have τ ∗(p) = mℓ/p = ℓ/v and
by defining τ ∗ = (8/3π)ℓ/⟨v⟩ (Problem 8.6.2) we find

L N N = τ ∗

m
nT L E N = 2τ ∗

m
nkT 2 L E E = 6τ ∗

m
nk2T 3 (8.69)

Combining this with (6.27) (for a classical ideal gas), (6.50) and (6.57), we obtain
the diffusion coefficient D and the electric and thermal conductivities σel and κ

D = τ ∗

m
kT σel = q2 τ ∗

m
n κ = 2

τ ∗

m
nk2T (8.70)
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which give the Franz–Wiedeman law

κ

σel
= 2

k2

q2 T ≃ 1.5 × 10−8 T (8.71)

In this equation, q is the electron charge and the units are MKSA. The Franz–
Wiedeman law predicts that the ratio κ/σel is independent of the material and
depends linearly on the temperature. Experimentally, this is well satisfied by semi-
conductors, but for metals we need to take into account the Fermi–Dirac statistics.
The local equilibrium distribution f0 then becomes16

f0(r⃗ , p⃗, t) = 2
h3

1
exp

[
−α(r⃗ , t) + β(r⃗ , t)p2/2m

]
+ 1

(8.72)

where the factor 2 comes from the spin degree of freedom. Then the Franz–
Wiedeman law becomes (Problem 8.5.2)

κ

σel
= π2

3
k2

q2 T ≃ 2.5 × 10−8 T (8.73)

which is also very well satisfied experimentally.

8.3 Boltzmann equation

8.3.1 Collision term

The Boltzmann equation governs the spatio-temporal evolution of the distribu-
tion function for a dilute gas. To the general assumptions of kinetic theory, which
were discussed in Section 8.1.2, we must also add the condition of ‘molecular
chaos’, which is crucial for writing the collision term.17 This condition stipulates
that the two-particle distribution function f (2), which contains the correlations,
can be written as a product of one-particle distribution functions

f (2)(r⃗1, p⃗1; r⃗2, p⃗2; t) = f (r⃗1, p⃗1, t) f (r⃗2, p⃗2, t) (8.74)

In other words, the joint distribution is a product of the individual distributions: we
ignore two-particle correlations (and a fortiori those of higher order). However, it
is important to place this molecular chaos hypothesis in the general framework of

16 The reader will correctly object that, due to the uncertainty principle, we cannot give simultaneously sharp
values to the position and the momentum in a situation where quantum effects are important. However, it
can be shown that (8.172) is valid provided the typical scales on which r⃗ and t vary are large enough. See
Problem 8.6.7.

17 We must also assume that the dilute gas is mono-atomic, so that the collisions are always elastic. There cannot
be any transfer of kinetic energy toward the internal degrees of freedom.
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the approach of Chapter 2. Among all possible dynamic variables, we focus only
on the specific variable A(r⃗ , p⃗, t)

A(r⃗ , p⃗, t) =
N∑

j=1

δ(r⃗ − r⃗ j (t))δ( p⃗ − p⃗ j (t)) (8.75)

The sum is over the total number of particles N and r⃗ j (t) and p⃗ j (t) are respec-
tively the position and momentum of particle j . The average of A is, in fact, the
distribution function f , which is given by an ensemble average18 (Exercise 6.4.1)
which generalizes (3.75)

f (r⃗ , p⃗, t) = ⟨A(r⃗ , p⃗, t)⟩ =
〈 N∑

j=1

δ(r⃗ − r⃗ j (t))δ( p⃗ − p⃗ j (t))
〉

(8.76)

Knowing the distribution function is equivalent to knowing the average values of
a number of dynamic variables, in fact an infinite number. The index i used in
Chapter 2 to label these variables corresponds here to (r⃗ , p⃗). As in Chapter 2, the
ensemble average of the variable A(r⃗ , p⃗, t) will be constrained to take the value
f (r⃗ , p⃗, t) at every instant. The other dynamic variables, i.e. the correlations, are
not constrained.

We start with Equation (8.28) for the function f (r⃗ , p⃗1, t) ≡ f1

∂ f1

∂t
+ v⃗1 · ∇⃗r⃗ f1 + F⃗(r⃗) · ∇⃗ p⃗1 f1 = C[ f1] (8.77)

The collision term C[ f1] is evaluated from the collision cross section. Let us ex-
amine, in the centre-of-mass frame, an elastic collision between two particles of
equal mass, which in the laboratory frame is written as p⃗1 + p⃗2 → p⃗3 + p⃗4, and
let P⃗ be the total momentum. Momenta in the centre-of-mass frame will have a
‘prime’. We have

P⃗ = p⃗1 + p⃗2 = p⃗3 + p⃗4

p⃗ ′
3 = p⃗3 − 1

2
P⃗ = 1

2
( p⃗3 − p⃗4)

p⃗ ′
4 = p⃗4 − 1

2
P⃗ = −1

2
( p⃗3 − p⃗4) = − p⃗ ′

3

18 Ensemble averaging is effected by taking many copies of the same physical system with the same macro-
scopic characteristics (in this case the same distribution function) but with different microscopic configura-
tions. The ensemble average in (8.75) takes the place of the average with respect to the Boltzmann weight
in (3.75).
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and similar relations for p⃗ ′
1 and p⃗ ′

2 . The energies are given in terms of the momenta
by

ε3 =
p⃗2

3

2m
= 1

2m

(
p⃗ ′

3 + 1
2

P⃗
)2

= 1
2m

( p⃗ ′
3 )2 + 1

2m
p⃗ ′

3 · P⃗ + 1
8m

P⃗2

ε4 =
p⃗2

4

2m
= 1

2m

(
− p⃗ ′

3 + 1
2

P⃗
)2

= 1
2m

( p⃗ ′
3 )2 − 1

2m
p⃗ ′

3 · P⃗ + 1
8m

P⃗2

Energy conservation is ensured by the δ function

δ(ε1 + ε2 − ε3 − ε4) = δ

(
( p⃗ ′

1 )2

m
−

( p⃗ ′
3 )2

m

)

(8.78)

As in the Boltzmann–Lorentz model, it will be convenient to define a quantity W
that is related to the cross section by

W ( p⃗1, p⃗2; p⃗3, p⃗4) = 4
m2 σ (|v⃗1 − v⃗2|, $′) (8.79)

Let us calculate the integral

dN
dt

=
∫

d3 p3 d3 p4 Wδ( p⃗1 + p⃗2 − p⃗3 − p⃗4)δ(ε1 + ε2 − ε3 − ε4)

=
∫

d3 p′
3 W δ

(
( p⃗ ′

1 )2

m
−

( p⃗ ′
3 )2

m

)

=
∫

dp′
3 (p′

3)
2 d$′ W δ

(
( p⃗ ′

1 )2

m
−

( p⃗ ′
3 )2

m

)

= m
2

p′
1

∫
d$′ W =

2p′
1

m

∫
d$′ σ (|v⃗1 − v⃗2|, $′)

But 2p′
1/m is just the absolute value of the relative velocity

|v⃗1 − v⃗2| = | p⃗1 − p⃗2|
m

= 2
p′

1

m

Consequently we have

dN
dt

= |v⃗1 − v⃗2|
∫

d$′ σ (|v⃗1 − v⃗2|, $′) = |v⃗1 − v⃗2|σtot(|v⃗1 − v⃗2|) (8.80)

Recall that from (8.7) dN /dt is the number of collisions per second for unit den-
sities of target and incident particles. In other words the quantity W d3 p3 d3 p4,
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defined by

W ( p⃗1, p⃗2 → p⃗3, p⃗4) d3 p3 d3 p4 = W δ( p⃗1 + p⃗2 − p⃗3 − p⃗4)

δ(ε1 + ε2 − ε3 − ε4)d3 p3 d3 p4 (8.81)

is the number of collisions per second with final momenta in d3 p3 d3 p4 for
unit densities of target and incident particles. Under these conditions, the
term d3r d3 p1C−[ f1], which counts the number of particles leaving the volume
d3r d3 p1, is obtained by multiplying W d3 p3 d3 p4 by the number of particles in
d3r d3 p1, namely f (r⃗ , p⃗1, t)d3r d3 p1, and then integrating over the distribution
of incident particles and over all the final configurations of p⃗3 and p⃗4

C−[ f1] d3r d3 p1 = f (r⃗ , p⃗1, t)d3r d3 p1

×
∫

d3 p2 d3 p3 d3 p4 f (r⃗ , p⃗2, t)W ( p⃗1, p⃗2 → p⃗3, p⃗4) (8.82)

In the same way, the number of particles entering d3r d3 p1 is

C+[ f1] d3r d3 p1 = d3r d3 p1

∫
d3 p2 d3 p3 d3 p4 f (r⃗ , p⃗3, t)

× f (r⃗ , p⃗4, t)W ( p⃗3, p⃗4 → p⃗1, p⃗2) (8.83)

We note that the molecular chaos hypothesis (8.74) was used in the two cases to
decouple incident and target particles.

Before adding these two terms we are going to exploit some symmetry prop-
erties of the function W . The interactions which intervene in the collisions are
electromagnetic and are known to be invariant under rotation (R), space inversion
or parity (P) and time reversal (T ). These invariances lead to the following sym-
metries of W (see Figure 8.7):

(i) rotation: W (R p⃗1, R p⃗2 → R p⃗3, R p⃗4) = W ( p⃗1, p⃗2 → p⃗3, p⃗4),
(ii) parity: W (− p⃗1, − p⃗2 → − p⃗3, − p⃗4) = W ( p⃗1, p⃗2 → p⃗3, p⃗4),

(iii) time reversal: W (− p⃗3, − p⃗4 → − p⃗1, − p⃗2) = W ( p⃗1, p⃗2 → p⃗3, p⃗4).

In the above, R p⃗ is the result of rotating p⃗ by R and the effect of time reversal is
to change the sign of the momenta. Combining properties (ii) and (iii) yields

W ( p⃗3, p⃗4 → p⃗1, p⃗2) = W ( p⃗1, p⃗2 → p⃗3, p⃗4) (8.84)

The collision p⃗3 + p⃗4 → p⃗1 + p⃗2 is called the inverse collision of p⃗1 + p⃗2 →
p⃗3 + p⃗4. By using the symmetry relation (8.84), which relates a collision to its
inverse, we can combine C−[ f1] and C+[ f1] to obtain C[ f1] = C+[ f1] − C−[ f1] in
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Figure 8.7 The effects of rotation, space inversion and time reversal symmetries
on collisions.

the form

C[ f1] =
∫ 4∏

i=2

d3 pi W ( p⃗1, p⃗2 → p⃗3, p⃗4)[ f3 f4 − f1 f2] (8.85)

with the notation fi = f (r⃗ , p⃗i , t). The Boltzmann equation then takes on its final
form

∂ f1

∂t
+ v⃗1 · ∇⃗r⃗ f1 + F⃗(r⃗) · ∇⃗ p⃗1 f1 =

∫ 4∏

i=2

d3 pi W ( p⃗1, p⃗2 → p⃗3, p⃗4)[ f3 f4 − f1 f2]

=
∫

d"′
∫

d3 p2 σ (|v⃗1 − v⃗2|, "′)|v⃗1 − v⃗2|[ f3 f4 − f1 f2]

(8.86)

One should be careful to integrate over only half the phase space to take into
account the fact that the particles are identical. To make the connection with
the Boltzmann–Lorentz model, it is sufficient to take f2 = f4 = ndδ( p⃗). The
Boltzmann equation explicitly breaks time reversal invariance: f (r⃗ , − p⃗, −t) does
not obey the Boltzmann equation since the drift term changes sign while the
collision term does not.
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8.3.2 Conservation laws

We have a priori five conservation laws: particle number (or mass), energy and the
three components of momentum. These laws, in the form of continuity equations
for the densities and currents, are the result of the conservation of mass, energy
and momentum in each collision p⃗1 + p⃗2 → p⃗3 + p⃗4. The argument is a simple
generalization of the one given for the Boltzmann–Lorentz model. Let χ( p⃗) be a
conserved quantity in the collision p⃗1 + p⃗2 → p⃗3 + p⃗4

χ1 + χ2 = χ3 + χ4 (8.87)

where we use the notation χi = χ( p⃗i ). We shall demonstrate the following pre-
liminary result

I [χ ] =
∫

d3 p1 χ( p⃗1)C[ f1] = 0 (8.88)

Taking into account Equation (8.85) for the collision term,19 we have

I [χ ] =
∫ 4∏

i=1

d3 pi χ1W (12 → 34)[ f3 f4 − f1 f2]

Since the particles 1 and 2 are identical, we have W (12 → 34) = W (21 → 34),
and changing variables p⃗1 ! p⃗2, we obtain a second expression for I [χ ]

I [χ ] =
∫ 4∏

i=1

d3 pi χ2W (12 → 34)[ f3 f4 − f1 f2]

A third expression is obtained by exchanging (12) and (34) and by using the prop-
erty of the inverse collision W (34 → 12) = W (12 → 34)

I [χ ] = −
∫ 4∏

i=1

d3 pi χ3W (12 → 34)[ f3 f4 − f1 f2]

and a fourth by exchanging particles 3 and 4. Finally we obtain

I [χ ] = 1
4

∫ 4∏

i=1

d3 pi [χ1 + χ2 − χ3 − χ4]W (12 → 34)[ f3 f4 − f1 f2] (8.89)

Consequently, from (8.87), I [χ ] = 0 if the quantity χ is conserved in the collision
(see Footnote 12 for the physical interpretation of this result). This demonstration
is unchanged if χ also depends on r⃗ . We multiply the Boltzmann equation (8.86)
by the conserved quantity χ(r⃗ , p⃗1), change notation p⃗1 → p⃗ and integrate over p⃗.

19 We use the notation W (12 → 34) = W ( p⃗1, p⃗2 → p⃗3, p⃗4).
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We obtain
∫

d3 p χ(r⃗ , p⃗)

(
∂ f
∂t

+ v⃗ · ∇⃗r⃗ f + F⃗(r⃗) · ∇⃗ p⃗ f
)

= 0 (8.90)

This may be explicitly expressed in terms of physical quantities. To do this we
use20

∫
d3 p χvα ∂α f = ∂α

∫
d3 p (χvα f ) −

∫
d3 p f vα ∂αχ (8.91)

and
∫

d3 p χ Fα ∂pα f =
∫

d3 p ∂pα (χ Fα f )−
∫

d3 p
(
∂pα χ

)
Fα f −

∫
d3 p χ

(
∂pα Fα

)
f

= −
∫

d3 p
(
∂pαχ

)
Fα f (8.92)

The second line in (8.92) is obtained by noting that the first term in the first line
is the integral of a divergence that can be written as a surface integral which vani-
shes since f → 0 rapidly for | p⃗| → ∞. In addition we assume, for simplicity, that
the force does not depend on the velocity, which eliminates the third term.

From (8.2) the average value of χ is

n⟨χ⟩ =
∫

d3 p χ f (8.93)

and the current is given by a simple convection term since we neglect interactions

j⃗χ =
∫

d3 p v⃗ χ f = n⟨v⃗χ⟩ (8.94)

The above results allow us to put (8.90) in the final form

∂

∂t
(n⟨χ⟩) + ∂α(n⟨vαχ⟩) = n ⟨vα ∂αχ⟩ + n

〈
Fα ∂pαχ

〉
(8.95)

In the absence of an external source, Equation (8.95) has the form of a continuity
equation ∂tρχ + ∇⃗ · j⃗χ = 0.

The velocity v⃗ may be decomposed into two components v⃗ = u⃗ + w⃗. The first
component is an average velocity u⃗ = ⟨v⃗⟩, which is nothing more than the flow
velocity of the fluid introduced in Section 6.3.1. The second component, w⃗, which
has zero average, ⟨w⃗⟩ = 0, is the velocity measured in the fluid rest frame and is,
therefore, the velocity due to thermal fluctuations. By taking χ = m, we obtain a

20 Repeated indexes are summed.
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continuity equation for the mass (see Table 6.1)

∂ρ

∂t
+ ∇⃗ · g⃗ = 0 (8.96)

with ρ = nm and g⃗ = ρ⟨v⃗⟩ = ρu⃗. The momentum continuity equation is obtained
by taking χ = mvβ , ∂pαχ = δαβ

∂

∂t
(ρ⟨vβ⟩) + ∂α(ρ⟨vαvβ⟩) = nFβ (8.97)

where nFβ = fβ is the force density. This equation allows us to obtain the mo-
mentum current Tαβ (compare with (6.69) and (6.74))

Tαβ = ρ⟨vαvβ⟩ (8.98)

By writing v⃗ = u⃗ + w⃗, we obtain

Tαβ = ρuαuβ + ρ⟨wαwβ⟩

and thus the pressure tensor Pαβ (see Table 6.1) is

Pαβ = ρ⟨wαwβ⟩ (8.99)

We note that the trace of the pressure tensor has the remarkable value

Pαα = nm⟨w⃗ 2⟩ = ρ⟨w⃗ 2⟩ (8.100)

Finally, let us take χ as the energy in the absence of external forces: χ = mv⃗ 2/2.
The energy density is

ϵ = 1
2

ρ⟨v⃗ 2⟩ (8.101)

and the associated current is

j⃗E = 1
2

ρ⟨v⃗ 2v⃗⟩ (8.102)

Equation (8.95) ensures the conservation of energy in the absence of external
forces

∂ϵ

∂t
+ ∇⃗ · j⃗E = 0 (8.103)

It is possible to relate the energy current to the heat current j⃗ ′E = j⃗Q , which is the
current measured in the fluid rest frame. Using v⃗ = u⃗ + w⃗, it is easy to show that
(Exercise 8.4.5)

j E
α = ϵuα +

∑

β

uβPαβ + j E
α

′
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which is just Equation (6.83). The local temperature is defined in the fluid rest
frame by

1
2

m⟨w⃗ 2⟩ = 3
2

kT (r⃗ , t) (8.104)

which gives

ρ⟨w⃗2⟩ = 3nkT = 3P

and by comparing with (8.100) we have
∑

α

Pαα − 3P = 0 (8.105)

This property of the trace of the pressure tensor allows us to show, when used in
(6.88), that the bulk viscosity ζ vanishes for an ideal mono-atomic gas.

8.3.3 H-theorem

We end our discussion of this section with a demonstration of the increase of the
Boltzmann entropy. We adopt the framework defined in Chapter 2 by considering
a set of dynamic variables Ai whose average values Ai are fixed.21 This allows
us to construct the corresponding Boltzmann (or relevant) entropy. In the present
case, the dynamic variables are the one-particle distributions (8.75) whose aver-
age values are the distribution functions f (r⃗ , p⃗, t). The index i in Chapter 2 here
represents the variables (r⃗ , p⃗) which label the dynamic variables. The Lagrange
multipliers λi become λ(r⃗ , p⃗) with the corresponding notation22

i → (r⃗ , p⃗) λi → λ(r⃗ , p⃗)
∑

i

→
∫

d3r d3 p

∑

i

λi Ai →
∫

d3r d3 p λ(r⃗ , p⃗)
N∑

j=1

δ(r⃗ − r⃗ j ) δ( p⃗ − p⃗ j ) =
N∑

j=1

λ(r⃗ j , p⃗ j )

Recall the semi-classical expression (3.42) for the trace, which we generalize to
the grand canonical ensemble

Tr =
∑

N

1
N !

∫ N∏

j=1

d3r j d3 p j

h3 (8.106)

21 Since our discussion is classical, we use the notation A for a dynamic variable and not A.
22 We have taken in (8.75) t = 0 and r⃗i (t = 0) = r⃗i , p⃗i (t = 0) = p⃗i .



8.3 Boltzmann equation 473

The grand partition function is

Q =
∑

N

1
N !

∫ N∏

j=1

(
d3r j d3 p j

h3 exp[λ(r⃗ j , p⃗ j )]

)

=
∑

N

1
N !

[∫
d3r ′ d3 p′

h3 exp[λ(r⃗ ′, p⃗ ′)]
]N

= exp
(

1
h3

∫
d3r ′ d3 p′ exp[λ(r⃗ ′, p⃗ ′)]

)

which yields

lnQ = 1
h3

∫
d3r ′ d3 p′ eλ(r⃗ ′, p⃗ ′) (8.107)

The distribution function is given by the functional derivative of lnQ (see
Appendix A.6)

f (r⃗ , p⃗) = δ lnQ
δλ(r⃗ , p⃗)

= 1
h3 exp [λ(r⃗ , p⃗)] (8.108)

which allows us to identify the Lagrange multiplier λ(r⃗ , p⃗)

λ(r⃗ , p⃗) = ln(h3 f (r⃗ , p⃗)) (8.109)

We finally arrive at the Boltzmann entropy by using (2.65)

SB = k
(

lnQ −
∑

i

λi Ai

)

which gives in the present case

SB = k
∫

d3r d3 p f (r⃗ , p⃗)
[
1 − ln(h3 f (r⃗ , p⃗))

]
(8.110)

Equation (8.110) permits the determination of the entropy density, sB, and current,
j⃗S , by using once more the fact that this current is purely convective within kinetic
theory

sB = k
∫

d3 p f (r⃗ , p⃗)
[
1 − ln(h3 f (r⃗ , p⃗))

]
(8.111)

j⃗S = k
∫

d3 p v⃗ f (r⃗ , p⃗)
[
1 − ln(h3 f (r⃗ , p⃗))

]
(8.112)

We note that we are working with the classical approximation where h3 f ≪ 1.
Therefore, the 1 in the brackets in (8.111) and (8.112) may be dropped.

This form of the Boltzmann entropy (8.110) may be obtained with a more intu-
itive argument by writing the density in phase space (see Section 2.2.2) as a product
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of one-particle distribution functions

DN (r⃗1, p⃗1; . . . ; r⃗N , p⃗N ) ∝
N∏

i=1

f (r⃗i , p⃗i )

which is equivalent to ignoring correlations. We thus obtain Equation (8.110) for
the entropy up to factors of 1 and h. Boltzmann called this expression −H

H(t) = k
∫

d3r d3 p f (r⃗ , p⃗, t) ln f (r⃗ , p⃗, t)

hence the name ‘H-theorem’ for Equation (8.113) below.
Having expressed the entropy in terms of f , we use the Boltzmann equation

(8.86) to write the entropy continuity equation. To this end, we multiply the two
sides of (8.86) by −k ln(h3 f1) and integrate over p⃗1. Using

d
(

f
[
1 − ln(h3 f (r⃗ , p⃗))

])
= − ln[h3 f (r⃗ , p⃗)]d f

we obtain

∂sB

∂t
+ ∇⃗ · j⃗S = −k

∫ 4∏

i=1

d3 pi ln(h3 f1)[ f3 f4 − f1 f2]W ( p⃗1, p⃗2 → p⃗3, p⃗4)

= k
4

∫ 4∏

i=1

d3 pi ln
f1 f2

f3 f4
[ f1 f2 − f3 f4]W ( p⃗1, p⃗2 → p⃗3, p⃗4)

= k
4

∫ 4∏

i=1

d3 pi ln
f1 f2

f3 f4

[
f1 f2

f3 f4
− 1

]
f3 f4 W ( p⃗1, p⃗2 → p⃗3, p⃗4)≥ 0

(8.113)

To obtain the second line of (8.113) we have used the same symmetry properties
used to obtain (8.89). The last inequality comes from the fact that (x − 1) ln x ≥ 0
for all x . Therefore, there is an entropy source on the right hand side of this con-
tinuity equation. This means that the total entropy increases:23 dSB/dt ≥ 0. The
above calculation shows that the origin of the source term in the continuity equa-
tion is the collisions suffered by the particles. It is, therefore, these collisions that
lead to the entropy increase.

That entropy increases becomes clear if we reason in terms of the relevant en-
tropy. The available information is contained in the one-particle distribution func-
tions. Collisions create correlations, but information about these correlations is lost
in the picture using one-particle functions: there is a leak of information toward
correlations.

23 This statement is valid on the average. One may observe fluctuations during which SB(t) decreases for a short
period of time. Such fluctuations are found in molecular dynamics simulations.
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Let f0 be a local equilibrium distribution corresponding to local temperature
T (r⃗ , t), local chemical potential µ(r⃗ , t) and local fluid velocity u⃗(r⃗ , t),

f0(r⃗ , p⃗, t) = 1
h3 exp

(
α(r⃗ , t) − β(r⃗ , t)

( p⃗ − mu⃗(r⃗ , t))2

2m

)
(8.114)

with α = µ/kT and β = 1/kT . As implied by Equation (8.118), the collision term
vanishes, C[ f0] = 0, and dStot/dt = 0. Conversely, one can show (Exercise 8.5.6)
that f (r⃗ , p⃗, t) may be written in the form (8.114) if the collision term vanishes. A
fortiori the entropy is constant for a global equilibrium distribution.

In order to avoid confusion, we revisit some key points in the preceding
discussion. The first observation is that the increase in the Boltzmann entropy
dSB/dt ≥ 0 rests on the assumption that there are no correlations between
molecules prior to collision. Of course, two molecules are correlated after suffering
a collision. It is for this reason that there is an asymmetry in the temporal evolution:
times ‘before’ and ‘after’ a collision are not equivalent. However, because the gas
is dilute, two such molecules have negligible probability of colliding again, rather,
they will collide with other molecules with which they are not correlated and the
molecular chaos hypothesis continues to hold beyond the initial time. However,
by waiting long enough, one would observe ‘long time tails’, namely a power law,
and not exponential, dependence of the time-correlation functions, which behave
as t−3/2 for t ≫ τ ∗. These long time tails are due to the long lived hydrodynamic
modes of the fluid (see [108], Chapter 11). The second remark concerns the com-
parison between the Boltzmann and thermodynamic entropies. The quantity SB

is indeed the Boltzmann (or relevant) entropy in the sense of the construction in
Chapter 2, but the density sB in (8.111) should not be identified with a thermody-
namic entropy density at local equilibrium. In fact, the distribution f (r⃗ , p⃗) is a pri-
ori not a Maxwell distribution and does not allow the definition of a temperature:
the kinetic description is more detailed than the thermodynamic one and cannot,
in general, be reduced to it. After a time of the order of the collision time, a local
equilibrium of the type (8.114) is established. A straightforward calculation allows
one to check that the density of Boltzmann entropy defined in (8.111) coincides
with the local thermodynamic entropy (3.17). Under these conditions the collision
term vanishes. Thus, the entropy increases following the mechanisms described
in Chapter 6, which are governed by the viscosity and thermal conductivity trans-
port coefficients. The ‘H-theorem’ is then not related to the increase of thermo-
dynamic entropy, which is defined only at local equilibrium. Finally, the assump-
tion of dilute gas is crucial: the Boltzmann equation breaks down if the potential
energy becomes important. In such a case, the equation satisfied by f (r⃗ , p⃗, t) ex-
hibits memory effects and is no longer an autonomous equation like the Boltzmann
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equation. The entropy (8.110) is still defined but it loses its utility since the prop-
erty of entropy increase (8.113) is no longer automatically valid except at t = 0.

8.4 Transport coefficients from the Boltzmann equation

In this last section, we show how the transport coefficients may be computed from
the Boltzmann equation. We shall limit ourselves to the computation of the shear
viscosity, which is slightly simpler than that of the thermal conductivity, for which
we refer to Problem 8.6.8.

8.4.1 Linearization of the Boltzmann equation

As in the case of the Boltzmann–Lorentz model, we follow the Chapman–Enskog
method by linearizing the Boltzmann equation in the vicinity of a local equilibrium
distribution of the form (8.114), which we rewrite by introducing the local density
n(r⃗ , t)

f0(r⃗ , p⃗, t) = n(r⃗ , t)
(

β(r⃗ , t)
2πm

)3/2

exp
[
−1

2
mβ(r⃗ , t)(v⃗ − u⃗(r⃗ , t))2

]
(8.115)

The local density, the local inverse temperature β(r⃗ , t) and the local fluid velocity
u⃗(r⃗ , t) are defined from f0 following (8.45)–(8.46) and (8.104)

n(r⃗ , t) =
∫

d3 p f0(r⃗ , p⃗, t)

u⃗(r⃗ , t) = 1
n(r⃗ , t)

∫
d3 p v⃗ f0(r⃗ , p⃗, t) (8.116)

kT (r⃗ , t) = 1
β(r⃗ , t)

= m
3n(r⃗ , t)

∫
d3 p f0(r⃗ , p⃗, t)(v⃗ − u⃗(r⃗ , t))2

The collision term vanishes if computed with the local equilibrium distribution
(8.115): C[ f0] = 0. Indeed, because of the conservation laws in the two-body elas-
tic collisions

p⃗1 + p⃗2 = p⃗3 + p⃗4 and p⃗ 2
1 + p⃗ 2

2 = p⃗ 2
3 + p⃗ 2

4 (8.117)

one verifies at once the identity

ln f01 + ln f02 = ln f03 + ln f04

so that

f01 f02 = f03 f04 (8.118)
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However f0 is not a solution of the Boltzmann equation, as the drift term does not
vanish, except in the trivial case where the local equilibrium reduces to a global
one

D f0 =
(

∂

∂t
+ v⃗ · ∇⃗

)
f0 ̸= 0 (8.119)

In the previous equation, and in all that follows, we have assumed that there are no
external forces. As in the Boltzmann–Lorentz model we write the distribution f in
terms of a small deviation f from the local equilibrium distribution f0

f = f0 + f

Because of (8.116), f must obey the following three conditions, which are the
analogues of (8.48) in the Boltzmann–Lorentz model

∫
d3 p f =

∫
d3 p p⃗ f =

∫
d3 p ε f = 0 (8.120)

We now follow the reasoning of Section 8.2.4: collisions bring the gas to local
equilibrium after a time of the order of the collision time τ ∗, and one observes
afterwards a slow relaxation toward global equilibrium during which a time-
independent drift term D f = v⃗ · ∇⃗ f is balanced by the collision term as in (8.50).
It will be convenient to write f as

f = f0
(
1 − $

)
f = − f0$, |$| ≪ 1 (8.121)

so that, with the notation $i = $( p⃗i ) and keeping only terms linear in $i

fi f j ≃ f0i f0 j (1 − $i − $ j )

Taking into account (8.118), the collision term becomes

C[ f ] =
∫ 4∏

i=2

d3 pi W f01 f02
[
$1 + $2 − $3 − $4

]

and the linearized Boltzmann equation reads

D f01 = β

m
f01L

[
$

]

L
[
$

]
= m

β

∫ 4∏

i=2

d3 pi W f02&$

&$ = $1 + $2 − $3 − $4

(8.122)

where the factor m/β has been introduced for later purposes. The functional L
[
$

]

may be considered as a linear operator acting on a space of functions $( p⃗). Let
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!( p⃗) be an arbitrary function, let us multiply both sides of (8.122) by !( p⃗) and
integrate over p⃗1

∫
d3 p1 !1 D f01 = β

m

∫
d3 p1 !1 f01L

[
#

]

= 1
4

∫ 4∏

i=1

d3 pi $! W f01 f02$# (8.123)

where we have used the symmetry properties of the collision term, as in the deriva-
tion of (8.89). The right hand side of (8.123) defines a scalar product (!, #),
which will turn out to be most useful in the derivation of a variational method, as
explained in Section 8.4.2

(
!, #

)
= 1

4

∫ 4∏

i=1

d3 pi $! W f01 f02$# (8.124)

which is positive semi-definite

||#||2 =
(
#, #

)
= 1

4

∫ 4∏

i=1

d3 pi W f01 f02($#)2 ≥ 0

because W and f0 are positive functions. More precisely, the left hand side of the
previous equation will be strictly positive unless #( p⃗) is one of the five conserved
densities, also called ‘zero modes’ of the linearized Boltzmann equation, which
obey L

[
#

]
= 0

#
(1)

( p⃗) = 1 #
(2)

( p⃗) = px #
(3)

( p⃗) = py #
(4)

( p⃗) = pz #
(5)

( p⃗) = p2

Otherwise we shall have ||#||2 = 0 ⇔ # = 0.

8.4.2 Variational method

We now specialize our analysis to the calculation of the shear viscosity coef-
ficient η, by using a particular form of the local equilibrium distribution f0 in
(8.115). We assume the temperature to be uniform, while the fluid velocity is di-
rected along the x-axis and depends on the z coordinate (see Figure 6.6)

u⃗ = (ux (z), 0, 0) (8.125)
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The time-independent drift term becomes

D f ≃ D f0 = n
(

β

2πm

)3/2

vz
∂

∂z
exp

(
−1

2
βm

[
(vx − ux (z))2 + v2

y + v2
z )

])

= βm f0(r⃗ , p⃗)vz(vx − ux )
∂ux (z)

∂z

= βm f0(r⃗ , p⃗)wzwx
∂ux (z)

∂z
(8.126)

with w⃗ = v⃗ − u⃗. The linearized Boltzmann equation (8.122) becomes

βmw1xw1z
∂ux (z)

∂z
=

∫ 4∏

i=2

d3 pi W f02$%

We consider a fixed point r⃗ in ordinary space and use the Galilean frame where the
fluid is locally at rest, ux (z) = 0 (but ∂ux/∂z ̸= 0!) so that f0(r⃗ , p⃗) → f0(p) and
w⃗ = v⃗. Instead of % in (8.121), it is more convenient to use % defined by

f ( p⃗) = f0(p)
(
1 − %( p⃗)

)
= f0

(
1 − %( p⃗)

∂ux

∂z

)
(8.127)

which corresponds to an expansion to first order in ∂ux/∂z. With this definition
the linearized Boltzmann equation now reads

p1x p1z = m
β

∫ 4∏

i=2

d3 pi W f02$% = L[%] (8.128)

The left hand side of (8.128) is a second rank tensor Txz , and since p⃗ is the only
vector at our disposal, % must be proportional to px pz and its most general form
is

%( p⃗) = A(p)px pz (8.129)

so that $% reads

$% = A(p1)p1x p1z + A(p2)p2x p2z − A(p3)p3x p3z − A(p4)p4x p4z

It is important to remark that the three conditions (8.120) are verified by our choice
(8.129) for %. The pressure tensor Pxz is given from (8.19) by

Pxz =
∫

d3 p pxvz f = −
∫

d3 p pxvz f0%
∂ux

∂z

= − 1
m

∂ux

∂z

∫
d3 p A(p) f0(p)p2

x p2
z = −η

∂ux

∂z
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and we get the following expression for η

η = 1
m

∫
d3 p A(p) f0(p)p2

x p2
z (8.130)

We now rewrite the linearized Boltzmann equation (8.128) by using a Dirac nota-
tion in a (real) Hilbert space where a function F( p⃗) is represented by a vector |F⟩
and the scalar product of two functions F( p⃗) and G( p⃗) is defined by

⟨F |G⟩ = 1
m

∫
d3 p F( p⃗) f0(p)G( p⃗) (8.131)

This scalar product is obviously positive definite: ⟨F |F⟩ ≥ 0 and ⟨F |F⟩ = 0 ⇔
F = 0. We represent the function px pz in (8.128) by a vector |X⟩. Note that be-
cause f0(p) decreases exponentially with p2 at infinity, the norm ⟨X |X⟩ is fi-
nite and |X⟩ belongs to our Hilbert space. With these notations, the linearized
Boltzmann equation reads in operator form

p1x p1z = |X⟩ = L|"⟩ (8.132)

and the viscosity is given from (8.16) by

η = ⟨"|X⟩ = ⟨"|L|"⟩ = |⟨"|X⟩|2

⟨"|L|"⟩
(8.133)

This formula will serve as the starting point for a variational method. Indeed, " is
an unknown function of p⃗, or, in other words, we do not know the functional form
of A(p), and an exact solution for A(p) would require rather complicated methods.
An efficient way to proceed is to use a variational method by introducing a trial
function #( p⃗), where we must restrict our choice to functions orthogonal to the
zero modes. We define a #-dependent viscosity coefficient η[#] as a functional of
# by

η[#]=̂ |⟨X |#⟩|2

⟨#|L|#⟩
= |⟨#|L|"⟩|2

⟨#|L|#⟩
(8.134)

The choice # = " gives the exact value of the viscosity: η ≡ η["]. The quantity
⟨#|L|"⟩ can be rewritten by using the (positive definite) scalar product already
introduced in (8.124)24

⟨#|L|"⟩ = (#, ") = 1
4β

∫ 4∏

i=1

d3 pi %#W f01 f02%" (8.135)

24 Within a 1/β multiplicative factor.
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The Schwartz inequality leads to an inequality on η["]

η["] = |(", #)|2

(", ")
≤ (", ")(#, #)

(", ")
= ⟨#|L|#⟩ = η[#]

We have thus derived an inequality typical of a variational method

η["] ≤ ηexact = η[#] (8.136)

8.4.3 Calculation of the viscosity

One possible choice for a trial function would be

"α = Apα px pz

and the best choice for α would be obtained by minimizing η["α] with respect to
the parameter α. We shall limit ourselves to the simple case α = 0, which already
gives results that do not differ from those of an exact calculation by more than a
few percent. The computation of ⟨X |"⟩ is then straightforward, with f0(p) given
by

f0(p) = n
(

β

2πm

)3/2

exp
(

−βp2

2m

)
(8.137)

One obtains

⟨X |"⟩ = 1
m

∫
d3 p px pz f0(p)Apx pz

= 4π

15
A
m

∞∫

0

dp p6 f0(p)

where we have computed the angular average from (A.36)25

⟨px pz px pz⟩ang = 1
15

p4

The p-integration is completed thanks to the Gaussian integration (A.37) in the
form

∞∫

0

dp pn e−αp2 = 1
2

'

(
n + 1

2

)
α−(n+1)/2

25 In this elementary case, one can also use
∫

d(

4π
p2

x p2
z = p4

4π

∫ 1

−1
d(cos α) sin2 α cos2 α

∫ 2π

0
dφ cos2 φ = 1

15
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with the result

⟨X |!⟩ = n Am
β2 (8.138)

The calculation of ⟨!|L|!⟩ is slightly more involved

⟨!|L|!⟩ = 1
4β

∫ 4∏

i=1

d3 pi f01 f02W (#!)2 (8.139)

Using the centre-of-mass kinematics we get

p⃗1 = p⃗ + 1
2

P⃗ p⃗2 = − p⃗ + 1
2

P⃗

p⃗3 = p⃗ ′ + 1
2

P⃗ p⃗ ′
4 = − p⃗ ′ + 1

2
P⃗

where P⃗ is the centre-of-mass momentum; we recall the expression of the relative
velocity, vrel = 2p/m. These equations give

p1x p1z + p2x p2z = 2px pz + 1
4

Px Pz

p3x p3z + p4x p4z = 2p′
x p′

z + 1
4

Px Pz

so that

#! = 2A(px pz − p′
x p′

z)

The differential cross section σ (%, p) in the Boltzmann equation depends on the
angle θ between p⃗ and p⃗ ′. The integration in (8.139) leads to an angular average
at fixed (%, p), which is again computed thanks to (A.36)

⟨(#!)2⟩ang = 4A2
〈
p2

x p2
z + p′

x
2 p′

z
2 − 2px p′

x pz p′
z

〉

ang

= 4A2 p4
[

2
15

− 1
15

(−1 + 3 cos2 θ)

]

= 4
5

A2 p4(1 − cos2 θ)

Inserting this result in (8.138) and using the relation between W and σ (%, p)

(see (8.86))
∫

d3 p3 d3 p4 W → 2p
m

∫
d% σ (%, p)
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yields

⟨!|L|!⟩ = 2A2

5βm

∫
d3 p1 d3 p2 d# f01 f02 p5(1 − cos2 θ)σ (#, p) (8.140)

The result features the transport cross section σtr(p), and not the total cross section
σtot(p)

σtr(p) =
∫

d#(1 − cos2 θ)σ (#, p) (8.141)

The physical reason behind the occurrence of the transport cross section is that
forward scattering is very inefficient in transferring momentum, hence the sup-
pression factor (1 − cos θ) (and (1 + cos θ) for the backward scattering). We
also need to write the product f01 f02 in terms of the centre-of-mass variables p
and P

f01 f02 = n2
(

β

2πm

)3

exp
(

−βp2

m

)
exp

(
−β P2

4m

)

It remains to use the change of variables with unit Jacobian

d3 p1 d3 p2 = d3 P d3 p

and the Gaussian integration (A.37) to compute
∫

d3 p1 d3 p2 f01 f02 p5σtr(p)

= 4πn2 23/2
(

β

2πm

)3/2 ∫ ∞

0
dp p7 exp

(
−βp2

m

)
σtr(p) = 12√

π
n2

(
m
β

)5/2

σtr

where, in the last line of the previous equation, we have assumed σtr to be inde-
pendent of p. If this is not the case, the integral in the first line may be used to
define an effective T -dependent transport cross section σ eff

tr (T ) which should be
used instead of a T -independent σtr. We thus get

⟨!|L|!⟩ = 24A2

5
√

π
n2m3/2β−7/2σtr (8.142)

Gathering (8.134), (8.138) and (8.142) we obtain the following result for η

η = 5
√

π

24

√
mkT
σtr

(8.143)
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In the case of a hard sphere gas, the transport cross section is 2/3 of the total cross
section σtot

σtot = 4π R2 σtr = 8π

3
R2 = 2

3
σtot

where R is the radius of the spheres, and one may rewrite (8.143)

η = 5
√

π

16

√
mkT
σtot

≃ 0.553

√
mkT
σtot

(8.144)

This result is to be compared with the qualitative estimate (8.21), which may be
written

η = 0.377

√
mkT
σtot

(8.145)

where we have used the mean free path (8.11) of the Maxwell distribution and the
corresponding mean value of the velocity

ℓ = 1√
2 nσtot

v =
√

8kT
πm

An analogous calculation (Problem 8.6.8) gives for the coefficient of thermal con-
ductivity, assuming a p-independent transport cross section

κ = 25
√

π

32σtr
k

√
kT
m

(8.146)

and the ratio κ/η is

κ

η
= 15

4
k
m

= 5
2

c
m

(8.147)

instead of the qualitative estimate κ/η = c/m derived in Section 8.1.3. The factor
5/2 in (8.147) is in excellent quantitative agreement with the experimental results
on mono-atomic gases.

8.5 Exercises

8.5.1 Time distribution of collisions

We consider the collisions of a labelled molecule starting at the initial time t = 0.
An excellent approximation consists of considering the collisions as independent:
the collision process is without memory. Let λ be the average number of colli-
sions per unit time suffered by a molecule. What is the probability P(n, t) that
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the molecule undergoes n collisions in the time interval [0, t]? What is the sur-
vival probability P(t), i.e. the probability that the molecule has not suffered any
collisions in the interval [0, t]? What is the probability P(t) dt that the molecule
will suffer its first collision in the interval [t, t + dt]? Use these results to find an
expression for the collision time τ ∗ defined as the average time from t = 0 for
the molecule to undergo its first collision. Since the process is Markovian (without
memory), τ ∗ is also the average time between collisions as well as the time elapsed
since the last collision.

8.5.2 Symmetries of an integral

Show that if a⃗ is a fixed vector and g(p) a function of | p⃗| = p, then

I⃗ =
∫

d3 p ( p⃗ · a⃗) p⃗ g(p) = 1
3

a⃗
∫

d3 p p2g(p) (8.148)

or that equivalently

Iαβ =
∫

d3 p pα pβg(p) = 1
3

δαβ

∫
d3 p p2g(p) (8.149)

Use this to obtain relation (8.60).

8.5.3 Positivity conditions

Demonstrate the positivity condition (8.68) for the transport coefficients.

L E E L N N − L2
E N ≥ 0

8.5.4 Calculation of the collision time

1. Show that the collision time τ ∗ of a molecule in a gas is given by

1
τ ∗ = 1

n

∫
d3 p1 d3 p2 f ( p⃗1) f ( p⃗2)|v⃗2 − v⃗1|σtot(|v⃗2 − v⃗1|) (8.150)

Hint: First calculate the collision time of a particle with momentum p⃗1.

2. A simple calculation of the collision time is obtained in the case where all the
molecules have the same absolute value v0 for the velocity and therefore momen-
tum p0. The distribution function then is

f ( p⃗) = n

4πp2
0

δ(p − p0) (8.151)
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Verify that the distribution is correctly normalized. Assuming that the total cross
section is independent of the velocity, show that the collision time is

τ ∗ = 3
4nv0σtot

(8.152)

and calculate the mean free path ℓ.

3. We now assume we have a Maxwell distribution for the momenta

f ( p⃗) = n
(

1
2πmkT

)3/2

exp
(

− p⃗ 2

2mkT

)
(8.153)

Again assuming that the total cross section is independent of velocity, show that
the collision time is given by (8.11).

8.5.5 Derivation of the energy current

Demonstrate the expression (6.83) for the energy current starting with the
Boltzmann equation.

8.5.6 Equilibrium distribution from the Boltzmann equation

1. We first assume a situation with no external forces. Show that the Boltzmann
entropy SB(t) (8.110) must tend to a constant when t → ∞

lim
t→∞

SB(t) = const

In this limit, show that one must have

ln f1 + ln f2 = ln f3 + ln f4

2. From this condition, deduce that ln f must be of the form

ln f = χ (1)( p⃗) + χ (2)( p⃗) + · · ·

where the χ (i)s are conserved quantities in the collisions

χ (i)( p⃗1) + χ (i)( p⃗2) = χ (i)( p⃗3) + χ (i)( p⃗4)

From this, deduce that f ( p⃗) can be written as

f ( p⃗) = −A( p⃗ − p⃗0)
2 + B

where A, B and p⃗0 are constants. Compute the density, the flow velocity and the
temperature as functions of A, B and p⃗0 and show that f ( p⃗) must be a Maxwell
distribution centred at p⃗0.
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3. In the presence of external forces

F⃗(r⃗) = −∇⃗!(r⃗)

show that the previous result is multiplied by

exp
(

−!(r⃗)

kT

)

8.6 Problems

8.6.1 Thermal diffusion in the Boltzmann–Lorentz model

The Boltzmann–Lorentz model is particularly well suited to describe the scattering
of light solute molecules (density n) on the heavy molecules of a solvent (density
nd ). We consider a stationary situation, and we assume that the solution is not
subject to any external force (F⃗ = 0⃗). The equilibrium distribution of the solute is
that of a non-relativistic classical ideal gas

f0(r⃗ , p⃗) = 1
h3 exp

[
β(r⃗)µ(r⃗) − β(r⃗)

p⃗ 2

2m

]
= n(r⃗)

[
2πmkT (r⃗)

]3/2 exp
[
−β(r⃗)

p⃗ 2

2m

]

(8.154)

1. The density and temperature vary with space but the solution is maintained at
constant and uniform pressure

P = n̄(r⃗)kT (r⃗)

where n̄ = n + nd is the total particle density. In this situation, we define two
response coefficients: the diffusion coefficient D and the thermodiffusion coef-
ficient λ. These coefficients appear in the phenomenological expression for the
particle current

j⃗N = −n̄D∇⃗c − n̄c
T

λ∇⃗T (8.155)

where c is the concentration of light particles c = n/n̄. Calculate the particle cur-
rent j⃗N in the framework of the Chapman–Enskog approximation and establish the
microscopic expressions for D and λ

D = 1
3

1
nd

〈
v

σtot(v)

〉
= 1

3
⟨v2τ ⟩

λ = 1
3

T 2

nd

∂

∂T

[
1
T

〈
v

σtot(v)

〉] (8.156)
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where ⟨(•)⟩ is the average value defined in (8.2)

⟨(•)⟩ = 1
n(r⃗)

∫
d3 p (•) f0(r⃗ , p⃗) = 1

[
2πmkT (r⃗)

]3/2

∫
d3 p (•) exp

[
−β(r⃗)

p⃗ 2

2m

]

2. We now take the solute molecules to be spheres of diameter a, which have only
elastic collisions with the solvent molecules assumed to be point particles. This is
the hard sphere model with σtot = πa2. Verify that in this framework we have

D = 1
3πa2 nd

√
8kT
πm

λ = − 1
6πa2 nd

√
8kT
πm

(8.157)

When the diffusion and thermodiffusion currents equilibrate, i.e. when the particle
current vanishes, what region of the gas will contain the highest concentration of
solute molecules?

3. We are now interested in the energy current. We introduce the two phenomeno-
logical coefficients, κ , coefficient of thermal conductivity, and γ , the Dufour coef-
ficient

j⃗E = −n̄γ ∇⃗c − κ∇⃗T (8.158)

Establish the microscopic expression for j⃗E and show that

κ = 1
6

mcT
∂

∂T

[
1
T

〈
v3

σtot(v)

〉]

γ = 1
6

mkT
P

〈
v3

σtot(v)

〉 (8.159)

where it should be recalled that in the Boltzmann–Lorentz model we have n ≪ nd .

4. Do the response coefficients in (8.155) and (8.158) obey an Onsager relation?
If not, why?

8.6.2 Electron gas in the Boltzmann–Lorentz model

A Introduction

We consider a non-relativistic ideal gas of electrons, mass m and charge q (q <

0), obeying the Boltzmann–Lorentz equation (8.28). When the differential cross
section σ (v, () is independent of (, σ (v, () = σ (v)/(4π) where σ (v) is the
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total cross section and v = p/m, we can solve this equation using the Chapman–
Enskog method by following a simpler procedure than that in Section 8.2.4. We
write f = f0 + f̄ where f0 is a local equilibrium distribution and we seek a solu-
tion in the stationary regime satisfying

∫
d!′ f̄ (r⃗ , p⃗ ′) = 0

Show that the collision term (8.35) becomes

C[ f̄ ] = − 1
τ ∗(p)

f̄

Use this to obtain f0. In what follows we will assume that the differential cross
section σ (v, !) is independent of velocity

σ (v, !) = σ

4π

Show that in the absence of external forces, we can write the particle and energy
densities in the form

j⃗N = −ℓ

3

∫
d3 p v∇⃗ f0 j⃗E = −ℓ

3

∫
d3 p εv∇⃗ f0

where ε = p2/(2m). What is the physical interpretation of ℓ?

B Classical ideal gas

We assume that the electrons form a classical ideal gas, which is a good approxi-
mation for semiconductors. The local equilibrium distribution is then

f0(r⃗ , p⃗) = 2
h3 exp

(
α(r⃗) − β(r⃗)

p2

2m

)
α(r⃗) = µ(r⃗)

kT (r⃗)
β(r⃗) = 1

kT (r⃗)

where µ(r⃗) and T (r⃗) are the local chemical potential and temperature and k the
Boltzmann constant.

1. Express the four transport coefficients Li j: (i, j) = (E, N ) in the form

Li j = 8π

3
ℓm
k

∞∫

0

dε εν f0
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ν is an integer whose value, which depends on the transport coefficient, is to be
determined for the four cases. We give the integral

I = 8π

3
ℓm
k

∞∫

0

dε εν f0 = τ ∗ ν!
m

nkν−1T ν

where the collision time τ ∗ is defined in terms of the average electron velocity

⟨v⟩ =
√

8kT
πm

by τ ∗ = 8
3π

ℓ

⟨v⟩ . Express the Li j in terms of n, T, m and τ ∗.

2. Show that the diffusion coefficient D and the thermal conductivity coefficient
κ defined by

j⃗N = −D ∇⃗n (T constant) j⃗E = −κ∇⃗T ( j⃗N = 0)

can be expressed in terms of the Li j . Give their explicit expressions in terms of
n, T, m and τ ∗.

3. We now subject the electrons to an electric potential '(z) which is time inde-
pendent but varies slowly with space along the z direction. We assume the system
is still at equilibrium: the total particle current vanishes and T is uniform. How
does the density n vary with z? Establish a relation between the diffusion coef-
ficient and the electrical conductivity σel defined in terms of the electric current
by

j⃗el = σel E⃗ = −σel ∇⃗'

and show that

σel = q2nτ ∗

m

Obtain this expression using an elementary argument and calculate κ/σel.

4. We now introduce an external force F⃗ = −∇⃗r⃗ V (r⃗). The Boltzmann–Lorentz
equation then becomes

∂ f
∂t

+ v⃗ · ∇⃗r⃗ f − ∇⃗r⃗ V ·∇⃗ p⃗ f = C[ f ]

The local equilibrium distribution takes the form

f0(r⃗ , p⃗) = 2
h3 exp

(
α(r⃗) − β(r⃗)

[
p2

2m
+ V (r⃗)

])

Give the expression for f̄ in terms of f0, α, V and their gradients. Indicating the
response coefficients in the absence of an external force with primes, demonstrate
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the following transformation laws

L N N = L ′
N N

L N E = L ′
E E + V L ′

N N

L E E = L ′
E E + 2V L ′

N E + V 2L ′
N N

5. We can calculate the electric conductivity without using L N N . Consider a sta-
tionary situation with uniform density where the electrons are subjected to a con-
stant uniform electric field E⃗ . With the results of Part A and the Chapman–Enskog
approximation, the Boltzmann–Lorentz equation then becomes

q E⃗ · ∇⃗ p⃗ f0 = −v

ℓ
f̄

Show that the electric current may be written as

j⃗el = −q2ℓ

3m
E⃗

∫
d3 p p

d f0

dε

and find σel.

C Ideal Fermi gas

We now assume that the electrons form an ideal Fermi gas whose temperature is
low compared to the Fermi temperature (T ≪ TF), which is an excellent approxi-
mation for electrons in a metal.

1. Derive the relation between n and µ for T = 0.

2. Show that, due to the Pauli principle, the distribution function f (r⃗ , p⃗) in the
collision term needs to be replaced by

f (r⃗ , p⃗)
(

1 − h3

2
f (r⃗ , p⃗ ′)

)

Hint: What is the number of microscopic states in the phase space volume element
d3r d3 p′? What is the occupation probability of such a state? How should we mod-
ify the term f (r⃗ , p⃗ ′) in C[ f ]? Show that the two modifications cancel out and we
regain the initial C[ f ]. What would be the corresponding reasoning for a boson
gas?

3. The local equilibrium distribution now is

f0 = 2
h3

1
exp[−α(r⃗) + β(r⃗)p2/(2m)] + 1
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We assume that the local temperature T (r⃗) is small enough compared to TF to
justify the use of the Sommerfeld approximation (5.29). Show that

∇⃗ f0 = −c1

[
∇⃗

(
−µ

T

)
+ ε ∇⃗

( 1
T

)][
δ(ε − µ) + c2δ

′′(ε − µ)
]

and determine the coefficients c1 and c2. Show that the coefficients Li j may be put
in the form

Li j = 16π

3
mℓT

h3

∞∫

0

dε εν
(
δ(ε − µ) + c2δ

′′(ε − µ)
)

and determine the integer ν for all values of (i, j).

4. Show that the term δ′′ does not contribute to L N N and that

L N N = τF

m
nT τF = ℓ

vF

Why are the electrons with velocities v ≃ vF = pF/m the only ones that contribute
to the transport coefficients?

5. The expressions for the diffusion coefficient D and electrical conductivity σel

established in Part B for a classical ideal gas are a priori no longer valid for a
Fermi ideal gas. Give the new expression for D in terms of the Li j and show
that the expression for σel does not change. Express D and σel in terms of n, T,

m, τF.

6. Calculate the numerical value of the collision time τF in copper with mass
density 8.9 × 103 kg m−3, atomic number A = 63.5 and conductivity σel = 5 ×
107 (−1 m−1. Copper has one conduction electron per atom.

7. Calculate the other transport coefficients and the ratio κ/σel (Franz–
Wiedemann law)

κ

σel
= π2

3
k2

q2 T

Compare this expression with that previously obtained in B.3. Calculate the elec-
trical conductivity using the method of Question B.5.

8.6.3 Photon diffusion and energy transport in the Sun

In this problem we study the transfer of heat from the centre of the Sun (or more
generally a star) to its surface. This is what allows energy to be radiated into space.
The main contribution to this heat transfer (and the only mechanism we consider)
is the scattering of photons by electrons in the Sun.
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Solar data

Radius R⊙ = 7 × 108 m
Mass M⊙ = 2 × 1030 kg
Mean specific mass ρ = 1.4 × 103 kg m−3

Specific mass at the centre ρc = 105 kg m−3

Surface temperature Ts = 6000 K
Temperature at the centre Tc = 1.5 × 107 K

A Preliminaries

1. Consider a photon gas in equilibrium at temperature T . The photon momentum
is p⃗, energy ε = pc and velocity v⃗ = c p⃗/p = c p̂. The equilibrium distribution is
given by (5.38)

feq( p⃗) = 2
h3

1
eβε − 1

which satisfies
∫

d3 p feq( p⃗) = N
V

= n

Show that the number of photons per unit volume n and the energy density ϵ are
of the form

n = λ′ T 3 ϵ = λ T 4

Determine λ and λ′ in terms of h̄, k and c. Calculate the numerical values of n
and ϵ at the centre of the Sun as well as the pressure of the photon gas. We give
k4/(h̄3c3) = 1.16 × 10−15 MKSA.

2. What is, in terms of ϵ, the energy emitted per second per unit area by a black
body? Assuming the solar surface is a black body, calculate in terms of λ, c, R⊙
and Ts the power (energy per second) L⊙ emitted by the Sun. This quantity is
called the luminosity.

3. We assume that the Sun contains only protons and electrons that behave as ideal
gases. We may ignore me compared to mp. Calculate the Fermi momentum and
energy at the centre of the Sun in terms of ρc, h̄, me and mp. Evaluate numerically
the Fermi energy in eV and the Fermi temperature in K. Conclude that the electron
gas is neither degenerate nor relativistic.

Show that the pressure at the centre of the Sun is given by

Pc = 2
ρc

m p
kTc

and compare this expression with that for a photon gas.
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B Scattering equation

Our hypothesis is that photons are scattered only by electrons and that this scatter-
ing is elastic. The photons are described by the Boltzmann–Lorentz equation with
the electrons playing the rôle of the randomly distributed heavy scattering centres.
The transport cross section is equal to the total cross section σ and is independent
of the photon energy. It is given by

σ = 8π

3

(
e2

4πε0mec2

)2

≈ 6.6 × 10−29 m2

where −e is the electron charge and ε0 the vacuum permittivity. We solve the
Boltzmann–Lorentz equation by writing the photon distribution in the stationary
regime

f (r⃗ , p⃗) = f0(r⃗ , p⃗) + f̄ (r⃗ , p⃗)

where f0(r⃗ , p⃗) = f0(r⃗ , p) is a local equilibrium distribution

f0(r⃗ , p⃗) = 2
h3 [exp(β(r⃗)ε − 1)]−1

1. Express the collision time τ ∗(r⃗) in terms of mp, σ , c and the specific mass ρ(r⃗)

at point r⃗ .

2. Calculate the photon and energy currents, j⃗N and j⃗E , in terms of f0 and show
that they may be put in the form

j⃗N (r⃗) = −D′(r⃗)∇⃗n(r⃗) j⃗E (r⃗) = −D(r⃗)∇⃗ϵ(r⃗)

Give the expressions for D and D′ in terms of c and τ ∗(r⃗).

3. Assume that the specific mass is uniform ρ(r⃗) ≡ ρ. Show that in a situation
non-stationary but still at local equilibrium, n(r⃗ , t) satisfies a diffusion equation.
If a photon is created at the centre of the Sun at t = 0, estimate the time it needs
to leave the Sun.

C Model for the Sun

We are now back to a stationary situation and we assume that the problem has
spherical symmetry with the origin of coordinates at the centre of the Sun. We call
q(r) the energy produced by the thermonuclear reactions per unit time per unit
volume, and Q(r) the energy produced per unit time in a sphere S(r) of radius r

Q(r) = 4π

r∫

0

dr ′q(r ′)r
′2
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1. Relate Q(r) to the flux of j⃗E across S(r). Deduce the equation

−4π

3
A

r2

ρ(r)

d
dr

T 4(r) = Q(r) (8.160)

where A is a constant to be expressed in terms of λ, c, mp and σ . In what follows
we assume:

(i) the energy is produced uniformly in a sphere of radius Rc = 0.1 R⊙ (the solar core),
(ii) the specific mass is uniform: ρ(r) ≡ ρ.

2. Calculate T 4(r) in the regions 0 ≤ r ≤ Rc and Rc ≤ r ≤ R⊙. Determine the
integration constants for the differential equation (8.160) by examining the values
r = R⊙ and r = Rc.

3. It is useful to express the temperature Tc at the centre of the Sun in terms of its
luminosity L⊙. Show that

T 4
c = T 4

s + 3L⊙ρ

4π AR⊙

(
3R⊙
2Rc

− 1
)

Use the expression for L⊙ in terms of Ts to calculate the numerical value of Tc.

8.6.4 Momentum transfer in a shear flow

We consider a fluid in a stationary state flowing between two infinite parallel plates
separated by a distance L in the z direction (see Figure 6.6). One of the plates is
held fixed while the other moves at a constant speed u0 in the increasing x direction
always staying parallel to the first plate. The fluid is dragged by the moving plate.
After enough time has elapsed since the motion started, a stationary situation is
reached characterized by a linear dependence of the fluid speed ranging from 0
at one plate to u0 at the other. Each layer of fluid between z and z + dz has a
velocity ux (z). The flow thus established is called ‘simple shear flow’ or ‘plane
Couette flow’. The balance of the relative motion of the different layers of width
dz leads to the appearance of a friction force that opposes the motion of the plate
and tries to re-establish an equilibrium where the fluid moves uniformly. When
the velocity gradients are small, we expect a linear relation between the velocity
gradient and the force. Let Pαβ be the α component of the force applied on a unit
surface perpendicular to β. Pαβ is given in terms of the shear viscosity η by

Pαβ = −η ∂βuα

The symmetries and invariances of the problem considered here are such that only
Pxz = −η ∂zux is relevant.
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Table 8.1 Experimental values of the coefficient of viscosity for air

T (K) 911 1023 1083 1196 1307 1407
η (×10−7 poise) 401.4 426.3 441.9 464.3 490.6 520.6

We only treat the simple case where the fluid may be considered as a classical ideal
gas made of particles of mass m. The temperature T and density n of the fluid are
uniform. We assume that the total scattering cross section σ0 is constant and we
limit our attention to the case where the pulling speed u0 is very small compared
to the average thermal velocity.

A Viscosity and momentum diffusion

1. Consider the balance of forces applied on a volume element between two plane
parallel faces of unit area and located at z and z + dz. Show that the x component
of the momentum, px = mux , satisfies the diffusion equation

∂px

∂t
− η

nm
∂2 px

∂z2 = 0 (8.161)

2. Justify qualitatively the relation between the viscosity and momentum trans-
port.

B Coefficient of viscosity

1. Starting with (8.21), we easily show that

η = A
√

T (8.162)

where A is a constant. Measurement of the coefficient of viscosity for air yielded
Table 8.1. Does the temperature dependence of η given by (8.162) agree with ex-
periments?

2. Relation (8.162) predicts that η does not depend on the density of the gas
(or its pressure). Although non-intuitive, this has been established experimentally
over a rather wide range of density values. Give a qualitative interpretation of this
result.

3. Expression (8.21) for the coefficient of viscosity neglects collisions of more
than two particles. It is therefore valid only for small density, i.e. ℓ ≫ √

σtot. How-
ever, the density cannot be too small. What phenomenon, so far ignored, must be
taken into account if ℓ ≃ L?
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C Coefficient of viscosity in the relaxation time approximation

1. In the reference frame that follows the motion of the fluid layer between z
and z + dz (the fluid rest frame) we have at equilibrium a Maxwell–Boltzmann
distribution in the velocity w⃗ = v⃗ − u⃗

f ′
0(w⃗) = n

( m
2πkT

)3/2
exp

(
−mw⃗ 2

2kT

)

Write down the equilibrium velocity distribution f0(v⃗) in the laboratory frame.

2. Like the Boltzmann–Lorentz equation, the Boltzmann equation may be lin-
earized around a local equilibrium solution. This leads to the following expression
for the velocity distribution law in the fluid

f ≃ f0 − τ ∗v⃗ ·∇⃗ f0 (8.163)

τ ∗ is the characteristic time to return to equilibrium, which is of the order of the
time of flight between two collisions. Show that (8.163) allows us to write

Pxz = m
dux

dz

∫
d3w τ ∗wxw

2
z

∂ f ′
0

∂wx
(8.164)

3. The relaxation time depends a priori on v. To calculate (8.164) explicitly, we
need assumptions on the behaviour of τ ∗. To begin with we assume it to be con-
stant. Verify that this assumption leads to results in disagreement with experiments
which show that the viscosity coefficient depends linearly on the temperature.

If the cross section is almost independent of the velocity, a physically more
reasonable assumption is to take the mean free path ℓ = τ ∗|v⃗ − u⃗| to be constant.
Show that

Pxz = − 1
15

m2 ℓ

kT
dux

dz

∫
d3w w3 f ′

0 (8.165)

and verify that the viscosity coefficient can be written as

η = 4
15

nm⟨v⟩ℓ (8.166)

8.6.5 Electrical conductivity in a magnetic field and quantum Hall effect

We consider a non-relativistic ideal gas of electrons, mass m and charge q (q < 0)
obeying the Boltzmann–Lorentz equation in the presence of an external force
F⃗(r⃗). We assume here that the densities are independent of space and time

f (r⃗ , p⃗, t) = f ( p⃗) n(r⃗ , t) = n
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Therefore, the first two terms in (8.28) vanish. In addition we assume that the
local equilibrium distribution f0 is a function only of energy ε: f0( p⃗) = f0(p2/

2m = ε).

A Electric conductivity in the presence of a magnetic field

We consider the problem of conduction in a metal where the conduction electrons
form a highly degenerate ideal Fermi gas. We subject the metal to an electric field
E⃗ and a magnetic field B⃗. The force in Equation (8.28) is therefore the Lorentz
force

F⃗ = q
(

E⃗ + v⃗ × B⃗
)

(8.167)

1. First we take B⃗ = 0. Calculate f̄ = f − f0 and show that the electric current
density j⃗el is given by

j⃗el = −q2
∫

d3 p τ ∗(p)v⃗(v⃗ · E⃗)
∂ f0

∂ε

If f0 is the Fermi distribution at T = 0

f0(ε) = 2
h3 θ(εF − ε) (8.168)

where εF is the Fermi energy, show that the electrical conductivity σel, defined by
j⃗el = σel E⃗ , is given by

σel = nq2

m
τF

where we took τF = τ ∗(pF).

2. Now we take B⃗ ̸= 0. How is the conductivity modified if the applied B⃗ field
is parallel to E⃗? Consider the case where the E⃗ field is in the x Oy plane, E⃗ =
(Ex , Ey, 0), and the B⃗ field parallel to the z-axis, B⃗ = (0, 0, B), B > 0. Show
that (8.28) becomes

q v⃗ · E⃗
∂ f0

∂ε
+ q(v⃗ × B⃗) · ∇⃗ p⃗ f̄ = − f̄

τ ∗(p)
(8.169)

We seek a solution of the form

f̄ = −v⃗ · C⃗
∂ f0

∂ε

where C⃗ is an unknown vector to be determined that is a function of E⃗ and B⃗ but
independent of v⃗. What should C⃗ be when B⃗ = 0? E⃗ = 0? In this last case, first
estimate the average magnetic force.
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3. Show that C⃗ satisfies

q E⃗ + ω⃗ × C⃗ = C⃗
τ ∗(p)

(8.170)

with ω⃗ = (0, 0, ω), where ω = |q|B/m is the Larmor frequency. Justify that C⃗ is
necessarily of the form

C⃗ = α E⃗ + δ B⃗ + γ (B⃗ × E⃗)

where α, δ, γ are real numbers. Find the expression for C⃗ and show that

f̄ = − qτ ∗

1 + ω2τ ∗2

[
E⃗ + τ ∗(ω⃗ × E⃗)

]
· v⃗

∂ f0

∂ε
(8.171)

4. Calculate the electric current and the components σαβ of the conductivity
tensor

jel
x = σxx Ex + σxy Ey

jel
y = σyx Ex + σyy Ey (8.172)

Verify that

σxy = −σyx

and comment on this relation in terms of the Onsager relation.

B Simplified model and the Hall effect

1. To represent the effect of collisions in a simple way, we write an average equa-
tion of motion for the electrons (the Drude model)

d ⟨v⃗⟩
dt

= −
⟨v⃗⟩
τ ∗ + q

m

(
E⃗ + ⟨v⃗⟩ × B⃗

)
(8.173)

Give a physical interpretation for this equation. Verify that in the stationary regime
we have

⟨vx ⟩ = qτ ∗

m
Ex − ωτ ∗ 〈

vy
〉

〈
vy

〉
= qτ ∗

m
Ey + ωτ ∗ ⟨vx ⟩

Show that if we take τ ∗ = τF, this model gives the same expressions for σαβ found
above.

2. Calculate in terms of Ex the value EH of Ey which cancels jel
y . Verify that the

transport of electrons in this situation is the same as in the case B⃗ = 0, in other
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Figure 8.8 Schematic representation for an experiment on the Hall effect.

words

jx = σ Ex

The field EH is called the ‘Hall field’ and we define the ‘Hall resistance’ by

RH = VH

I

where VH is the ‘Hall voltage’, VH/ l = EH, and I the total current in the material
(Figure 8.8). Show that RH is given by

RH = B
ndq

By noting that RH is independent of the relaxation time, find its expression using
an elementary argument.

C Quantum Hall effect

Experiments of the type represented schematically in Figure 8.8 where electric
(E⃗ = (Ex , 0, 0)) and magnetic (B⃗ = (0, 0, B)) fields are applied, have shown that,
after transient effects have dissipated, a Hall field is established. However, in in-
tense magnetic fields (> 1 T) and at very low temperatures, the Hall resistance is
not linear in B as predicted by the Drude model. Experiments where the electrons
are confined in two-dimensional geometries of area S and negligible thickness,
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Figure 8.9 The Hall resistance as a function of the magnetic field for a hetero-
junction of InGaAs–InP, Images de la Physique, (1984).

exhibit a plateau structure for the Hall resistance as a function of magnetic field
(see Figure 8.9). This suggests that the Hall resistance is quantized.

1. Calculate the energy level density ρ(ε) of an electron gas in two dimensions
without assuming spin degeneracy since this is lifted by the magnetic field.

2. In the presence of a magnetic field perpendicular to the surface, the energy
levels (Landau levels) are labeled by an integer j: j = 0, 1, 2, . . . and have the
form (see Problem 5.7.2)

ε j = h̄ω

(
j + 1

2

)
(8.174)

where ω is the Larmor frequency. Calculate the degeneracy g of each level. This is
equal to the number of levels, in zero field, present between ε = ε j and ε = ε j+1.
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3. Take T = 0. Choose B so that ν Landau levels are occupied, in other words the
Fermi level should be just above the νth Landau level. Show that the surface elec-
tron density is nS = ν|q|B/h. Show that the Hall resistance is RH = −h/(νq2).

8.6.6 Specific heat and two-fluid model for helium II

Below the temperature Tλ ≃ 2.18 K, helium-4 becomes superfluid at atmospheric
pressure. This superfluid phase of helium-4 is called helium II. At T = 0, helium
II is described by the wave function of the ground state. When T ̸= 0, phonons
appear in the helium with a dispersion relation (energy ε( p⃗) as a function of mo-
mentum p⃗) given by

ε( p⃗) = c| p⃗| (8.175)

where c is the speed of sound (c ≃ 240 m s−1). The sound waves are longitudinal
(compression) since shear waves do not exist in a fluid. The phonons in helium II
have only one polarization.

A Specific heat

1. Specific heat due to phonons. Calculate the internal energy and the specific
heat due to the phonons. Assume the temperature is much lower than the Debye
temperature TD ≃ 30 K. Show that the specific heat per unit volume is given by

Cphonon
V = 2π2k4

15h̄3c3
T 3

2. Specific heat due to rotons. In fact, the dispersion law for the phonons (which
are called ‘elementary excitations’) is more complicated than Equation (8.175) and
is given in Figure 8.10. The region around p = p0 is called the ‘roton’ region. In
the neighbourhood of p = p0, we have the following approximate expression for
ε(p)

ε(p) = % + (p − p0)
2

2µ
(8.176)

with %/k ≃ 8.5 K, k0 = p0/h̄ ≃ 1.9 Å−1 and µ ≃ 10−27 kg.
Show that for T <∼ 1 K, we may replace the Bose distribution n(p) by a

Boltzmann distribution

n(p) ≃ e−βε(p)
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p

ε(p)

p0

Figure 8.10 Dispersion law for elementary excitations in helium II.

Write the expression giving the contribution of the rotons to the internal energy.
Compare p2

0 and µkBT for T = 1 K and also ! and kBT . Use this to simplify
the integral. Hint: Change variables x =

√
β/2µ(p − p0). Then express the roton

contribution to the specific heat C roton
V . Compare Cphonon

V and C roton
V for T → 0

and their numerical values for T = 1 K.

B The two-fluid model

1. Flow of helium II. We consider a fluid of mass M containing N particles of
mass m. The i th particle is characterized by its position r⃗i and momentum q⃗i with
the total momentum P⃗ =

∑
q⃗i . The fluid is assumed to be non-viscous and flows

without friction in a tube. Consider this flow of the superfluid helium of mass M
in two Galilean reference frames: in the frame R where the helium is at rest and
the walls have a velocity v⃗, and the frame R′ where the walls are at rest and the
helium flows with velocity −v⃗. This description is possible because in the absence
of viscosity the velocity of the helium does not vanish at the walls of the tube
(in R′). In frame R the Hamiltonian is

H =
N∑

i=1

q⃗i
2

2m
+ 1

2

∑

i ̸= j

U (r⃗i − r⃗ j ) (8.177)

Give the expression for the Hamiltonian H ′ in R′.
In the Landau two-fluid model, we assume that helium II is made of a super-

fluid with zero viscosity, and a normal viscous fluid that is identified with the
phonon gas (or more generally with the gas of elementary excitations). We ignore
interactions among elementary excitations and also between the normal fluid and
superfluid components. The superfluid flows without friction whereas the elemen-
tary excitations are in equilibrium with the walls of the tube. The dispersion law
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v⃗

v⃗

−v⃗ MM

R R′

Figure 8.11 The flow of a mass M of superfluid helium in two reference frames.

ε( p⃗) of the elementary excitations is given in the frame R where the superfluid has
zero velocity: the momentum p⃗ of the elementary excitations is measured in this
reference frame.

We consider the flow of helium II in a tube in the two Galilean frames R and
R′ (Figure 8.11). By examining in R the creation of an elementary excitation of
momentum p⃗ and energy ε( p⃗), show that in R′ where the tube is at rest, the energy
of this excitation is

ε′( p⃗) = ε( p⃗) − p⃗ · v⃗ (8.178)

2. Momentum density. The gas of elementary excitations is in equilibrium with
the walls at temperature T and has a bulk velocity v⃗ in the frame R. What is the
distribution ñ( p⃗, v⃗) of the elementary excitations in terms of the Bose distribution
n(ε) = 1/(eβε − 1)? Show that in the frame R the momentum density g⃗ is given
to first order in v by

g⃗ = −1
3

∫
d3 p

(2π h̄)3 p2 dn
dε

v⃗ (8.179)

The relation g⃗ = ρn v⃗ defines the density ρn of the normal fluid. Note: In what fol-
lows it is recommended not to use the explicit expression for n(ε). By integration
by parts, relate ρn to the energy density ϵ of a phonon gas where the dispersion
law is ε = c p⃗. What is the pressure P of the phonon gas?

3. Energy current and momentum density. Show that for a phonon gas, the energy
current j⃗E calculated in the frame R is related to the momentum density by

j⃗E = c2g⃗
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4. Second sound. Use the continuity equations and Euler’s equation (6.70) to show
that in the absence of dissipation and for sufficiently low velocities, we have

∂ϵ

∂t
= −c2∇⃗ · (ρn v⃗)

∂(ρn v⃗)

∂t
= −1

3
∇⃗ϵ

Show that ϵ obeys a wave equation and verify that the propagation velocity is
c/

√
3. How do you interpret this wave of the so-called ‘second sound’? What

happens when helium II is heated locally? What is the sound velocity in a dilute
ultra-relativistic gas?

8.6.7 Landau theory of Fermi liquids

Our goal in this problem is to go beyond the ideal gas approximation of the Fermi
gas in the case of neutral particles, one example being liquid helium-3. We denote
the dispersion law of the interacting Fermi liquid26 by ε(p): more precisely, ε(p)

is the extra energy due to adding one particle of momentum p⃗ to the system at equi-
librium. In the ideal case, ε(p) = p2/(2m), but we want to consider more general
dispersion laws. For simplicity, we neglect spin effects: these may be easily taken
into account if one is interested, for example, in Pauli paramagnetism. Landau’s
first assumption is the existence of a sharp Fermi surface at zero temperature. The
Fermi distribution is then the following functional of ε(p) (µ was denoted by ε0

in Section 5.2.3)

f0[ε(p)] = θ(µ − ε(p))
δ f0[ε(p)]

δε(p)
= −δ(ε(p) − µ)

This distribution is the equilibrium distribution of the interacting Fermi liquid
at zero temperature. The Fermi momentum pF is still given by (5.17), but µ ̸=
p2

F/(2m) = εF.

A Static properties

1. One adds (removes) a particle of energy ε(p) to (from) the Fermi sea, thus
creating a quasiparticle (quasihole). Show that

ε(p)
∣∣∣

p=pF
= µ

26 We assume an isotropic Fermi gas, which is the case for helium-3. However, electrons in metals do not obey
this assumption due to the loss of rotational invariance arising from the crystal lattice.
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ppF
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Figure 8.12 Perturbation of the equilibrium distribution. δ f ( p⃗) is non-zero only
in the vicinity of the Fermi surface. The negative part of δ f corresponds to the
hole distribution, the positive part to that of particles.

2. One now assumes that many quasiparticles or quasiholes are added to the Fermi
sea. This does not necessarily mean that the total number of particles varies, but
the particle distribution is modified with respect to the equilibrium distribution

δ f ( p⃗) = f ( p⃗) − f0( p⃗)

The quantity δ f ( p⃗) is a measure of the deviation of the particle distribution from
the equilibrium distribution, or, in other words, it measures the ‘degree of exci-
tation’ in the neighbourhood of the Fermi surface. Because it relies in fact on an
expansion in powers of δ f , Landau’s theory will only be valid at low tempera-
tures, and δ f will differ from zero only in a neighbourhood ξ of the Fermi sea
(Figure 8.12)

|ε(p) − µ| <∼ ξ ≪ µ

Landau’s second assumption is that one may write the energy of a quasiparticle in
the environment of other quasiparticles as

ε̃( p⃗) = ε(p) + 2V
h3

∫
d3 p′ λ( p⃗, p⃗ ′)δ f (p⃗ ′)

Therefore, as already mentioned, ε̃( p⃗) = ε(p) if one adds a single particle to the
system. Note that, contrary to ε(p), ε̃( p⃗) is not in general an isotropic function,
since δ f ( p⃗) is not isotropic. The function λ( p⃗, p⃗ ′) is defined in the vicinity of the
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Fermi surface (p = p′ = pF) and is expanded in Legendre polynomials

λ( p⃗, p⃗ ′) =
∞∑

ℓ=0

αℓ Pℓ(cos θ)

where θ is the angle between p⃗ and p⃗ ′ and the αℓs are real coefficients. Show that
the order of magnitude of λ( p⃗, p⃗ ′) is a3/V , where a is the range of the interac-
tion between particles. Show that, exactly as |ε(p) − µ|, the second term in the
equation for ε̃(p) is of the order of ξ , and may not be neglected. However, a term
∝ (δ f (p))2 in the expansion of ε̃( p⃗) would be negligible. Show that if δ f ( p⃗) is
isotropic, then

ε̃(p) = ε(p) + α0δN

where δN is the total number of quasiparticles.

3. Instead of δ f ( p⃗), it is useful to define

δ f ( p⃗) = f ( p⃗) − f0(ε̃( p⃗))

Show that

δ f ( p⃗) = δ f ( p⃗) + δ(ε − µ)
2V
h3

∫
d3 p′ λ( p⃗, p⃗ ′)δ f ( p⃗ ′)

4. Let f0( p⃗, T ) be the equilibrium distribution of quasiparticles at temperature T ,
kT ≪ µ

f0( p⃗, T ) = 1
1 + exp[(ε̃( p⃗) − µ)/kT ]

and define the ‘thermal excitation’ δ f ( p⃗, T ) by

δ f ( p⃗, T ) = f0( p⃗, T ) − f0[ε(p)]

Using the Sommerfeld formula (5.29), show that
∫

d3 p δ f ( p⃗, T ) ∝ (kT )2ρ′(µ)

where ρ(ε) is the density of states. Deduce from this result that
∫

p2dp δ f ( p⃗, T ) ∝ T 2

for any direction of p⃗, and that one can set ε̃( p⃗) = ε(p) to leading order in T . Thus
one can adapt the formulae of the non-interacting Fermi gas by simply replacing
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the free particle dispersion law by ε(p). Obtain the specific heat

CV = π2k2T
3

ρ(µ) = V k2T

3h̄2 m∗ pF

where the effective mass m∗ is defined by

dε

dp

∣∣∣
p=pF

= pF

m∗

In the rest of the problem, we shall revert to the T = 0 case.

5. Compute δ f ( p⃗) when the chemical potential varies from µ to µ + dµ. Taking
into account the isotropy of δ f ( p⃗) in this case, show that

∂ N
∂µ

= ρ(µ)

1 + &0

&0 = α0ρ(µ) is a dimensionless parameter independent of V . Show that the ex-
pression for the T = 0 compressibility is now given by

κ = 1
n2

m∗ pF

π2h̄3(1 + &0)

For helium-3 at atmospheric pressure, m∗/m ≃ 3 and &0 ≃ 10. Is the compress-
ibility over or underestimated when it is computed in the ideal gas model?

B Boltzmann equation

1. In a local equilibrium situation, the quasiparticle energy, ε̃( p⃗, r⃗), is a function
of p⃗ and r⃗ . In order to describe transport phenomena in a Fermi liquid, Landau
assumed that independent quasiparticles are described by a classical Hamiltonian
ε̃. A kinetic theory of the ideal gas is then possible.27 Taking into account

dr⃗
dt

= v⃗ = ∇⃗ p⃗ ε̃
d p⃗
dt

= F⃗ = −∇⃗r⃗ ε̃

the Boltzmann equation for the distribution f (r⃗ , p⃗, t) of quasiparticles in the ab-
sence of collisions reads

∂ f
∂t

+ ∇⃗ p⃗ ε̃ · ∇⃗r⃗ f − (∇⃗r⃗ ε̃) · ∇⃗ p⃗ f = 0

2. One writes for the local deviation from equilibrium

f (r⃗ , p⃗, t) = f0[ε(p)] + δ f (r⃗ , p⃗, t)

27 Strictly speaking, the assumption of a one-particle distribution f (r⃗ , p⃗, t) is incompatible with the uncertainty
principle. One can show that the theory is valid provided the characteristic space and time scales ℓ and τ of f
obey h̄vF/ℓ ≪ µ and h̄/τ ≪ µ.
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where f0 is the equilibrium distribution. The density n(r⃗ , t) is given by

n(r⃗ , t) = 2
h3

∫
d3 p f (r⃗ , p⃗, t)

The local ε̃ is then

ε̃( p⃗, r⃗ , t) = ε(p) + 2V
h3

∫
d3 p′ λ( p⃗, p⃗ ′)δ f (r⃗ , p⃗ ′, t)

Show that ∇⃗r⃗ ε̃ is first order in δ f . Check that

∇⃗ p⃗ f0 = − p⃗
m∗ δ(ε(p) − µ) = −v⃗ δ(ε(p) − µ)

where v⃗ is the group velocity. Show that to leading order in δ f , the Boltzmann
equation is given by (note that the equation features the time-derivative of δ f and
the space-derivative of δ f !)

∂ δ f
∂t

+ v⃗ · ∇⃗r⃗ δ f = C[δ f ]

Do not try to give the explicit expression for the collision term C[δ f ].

3. The density excess of quasiparticles is given by

δn(r⃗ , t) = 2
h3

∫
d3 p δ f (r⃗ , p⃗, t)

and the associated current j⃗ must obey the continuity equation

∂δn
∂t

+ ∇⃗r⃗ · j⃗ = 0

Using the Boltzmann equation and the property of the collision term
∫

d3 p C[δ f ] = 0

show that the current

j⃗ = 2
h3

∫
d3 p v⃗ δ f

obeys the continuity equation. One could have guessed the following form of the
current

j⃗ ′ = 2
h3

∫
d3 p v⃗ δ f

Why is it incorrect?
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4. One can nevertheless write a correct expression for the current featuring δ f

j⃗ = 2
h3

∫
d3 p j⃗p⃗ δ f

with

j⃗ p⃗ = v⃗ + 2V
h3

∫
d3 p′ p⃗ ′

m∗ λ( p⃗, p⃗ ′)δ(ε(p′) − µ) = v⃗

(
1 + 1

3
α1ρ(µ)

)

which one identifies with the current associated with a single localized quasiparti-
cle. For a translation invariant system, Galilean invariance implies j⃗ p⃗ = p⃗/m. Use
this property to derive a relation between the effective mass and the mass of the
free particle

1
m

= 1
m∗

(
1 + 1

3
&1

)
&1 = α1ρ(µ)

8.6.8 Calculation of the coefficient of thermal conductivity

1. We assume the gas to be at rest, with a temperature gradient along the z di-
rection: the temperature T (z) is a function of z. The pressure P must be uniform,
otherwise a pressure gradient would set the gas in motion. Show that the local
equilibrium distribution f0(z) is given by (β(z) = 1/(kT (z))

f0(z) = P
[β(z)]5/2

(2πm)3/2 exp
(

−β(z)p2

2m

)

One writes, following (8.127)

f = f0

(
1 − )

∂T
∂z

)

Show that the drift term of the Boltzmann equation is

D f = β

T

(
5
2

k − ε(p)

)
f0

∂T
∂z

ε(p) = p2

2m

If the gas is not mono-atomic, one can show that

) = β

T
(cP − ε(p))

where cP is the specific heat per particle at constant pressure, cP = 5k/2 for a
mono-atomic gas.

2. Following (8.128), one writes the linearized Boltzmann equation in the form

(ε(p) − cP T )pz = mT
β

∫ 4∏

i=2

d3 pi W f02+) = L[)]
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From the symmetry of the problem, the function !( p⃗) must be proportional to pz

!( p⃗) = A(p)pz

One must also choose !( p⃗) in such a way that (8.120) is obeyed. Show that
∫

d3 p ε(p)pz f0(p)!( p⃗) = T m
4β

∫ 4∏

i=1

d3 pi W f01 f02($!)2

3. Derive the following expression for the coefficient of thermal conductivity κ

κ = 1
m

∫
d3 p ε(p)pz f0(p)!( p⃗)

and using the scalar product defined in (8.131), show that

κ = ⟨!|X⟩ = ⟨!|L|!⟩

where |X⟩ is the Hilbert space vector representing the function ε(p)pz . From these
results, devise a variational method for computing κ .

4. The simplest choice one can think of as a trial function is & = Apz with a con-
stant A. However, with this choice, the second equation in (8.120) is not satisfied.
Show that the trial function

&( p⃗) = A(1 − γ p2)pz

has all the required properties if γ = β/(5m).

5. Show that

⟨X |&⟩ = − An
β2

where n is the density, and that

⟨&|L|&⟩ = 32
25

√
π

A2T n2 m
β3

(
β

m

)1/2

σtr

Hint: Going to centre-of-mass variables P⃗ , p⃗ and p⃗ ′, you will have to integrate an
expression of the form
∫

d3 p d3 P
[
(P⃗ · p⃗)pz − (P⃗ · p⃗ ′)p′

z

]2
· · · → 2

9

∫
d3 p d3 P P2 p4(1 − cos2 θ)

First show that the angular average over the direction of P⃗ gives a factor 1/3.

6. From these results, derive a variational estimate for κ , assuming a p-
independent transport cross section

κ = 25
√

π

32
k
m

√
mkT
σtr
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Compute the ratio κ/η and compare with the elementary estimate derived in Sec-
tion 8.1.3.

8.7 Further reading

The classical calculation of cross sections is done in Goldstein [48] (Chapter III),
Landau and Lifshitz [69] (Chapter IV) and the quantum calculation in Messiah
[89] (Chapter X) and Cohen-Tannoudji et al. [30] (Chapter VIII). An elementary
treatment of kinetic theory is in Reif [109] (Chapter 12) and Baierlein [4] (Chapter
15). At a more advanced level, the reference in the subject is the book by Lifshitz
and Pitaevskii [81]. The Boltzmann–Lorentz model is treated in Balian [5] (Chap-
ter 15) and Lifshitz and Pitaevskii [81] (Section 11). As further reading on the
Boltzmann equation, we recommend Reif [109] (Chapters 13 and 14), Balian [5]
(Chapter 15), Kreuzer [67] (Chapter 8), Kubo [68] (Chapter 6), McQuarrie [88]
(Chapters 16 to 19) and Lifshitz and Pitaevskii [81] (Sections 1 to 10). One finds
in these references a complete calculation of transport coefficients. An example
of the increase of the H-function is given by Jaynes [60], but the argument is
incomplete. The extension of the Boltzmann equation to the quantum case (the
Landau–Uhlenbeck equation) can be found in Balian [5] (Chapter 11), Pines and
Nozières [102] (Chapter 1), Baym and Pethick [15] and Lifshitz and Pitaevskii
[81] (Chapter VIII).

The following references may be helpful for problems. The integer quantum
Hall effect is described in the Nobel lectures by Laughlin [71] and Stormer [116].
For the fractional Hall effect see the reviews by Jain [59], Heiblum and Stern [55]
and the Nobel lectures by Laughlin [71] and Stormer [116]. The two-fluid model
for helium-4 is discussed in Landau and Lifshitz [70] (Volume 2), Chapter III,
Goodstein [49] (Chapter 5) and Nozières and Pines [96] (Chapter 6). Landau’s
theory of Fermi liquids is examined in Lifshitz and Pitaevskii [81] (Section 74) to
76. See also Baym and Pethick [15] and Pines and Nozières [102] (Chapter 1).


