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Topics in non-equilibrium statistical mechanics

We have given in two previous chapters a first introduction to non-equilibrium
phenomena. The present chapter is devoted to a presentation of more general ap-
proaches, in which time dependence will be made explicit, whereas in practice we
had to limit ourselves to stationary situations in Chapters 6 and 8. In the first part
of the chapter, we examine the relaxation toward equilibrium of a system that has
been brought out of equilibrium by an external perturbation. The main result is
that, for small deviations from equilibrium, this relaxation is described by equilib-
rium time correlation functions, called Kubo (or relaxation) functions: this result is
also known as ‘Onsager’s regression law’. The Kubo functions turn out to be basic
objects of non-equilibrium statistical mechanics. First they allow one to compute
the dynamical susceptibilities, which describe the response of the system to an
external time dependent perturbation: the dynamical susceptibilities are, within a
multiplicative constant, the time derivatives of Kubo functions. A second crucial
property is that transport coefficients can be expressed in terms of time integrals of
Kubo functions. As we limit ourselves to small deviations from equilibrium, our
theory is restricted to a linear approximation and is known as linear response the-
ory.1 The classical version of linear reponse is somewhat simpler than the quantum
one, and will be described first in Section 9.1. We shall turn to the quantum theory
in Section 9.2, where one of our main results will be the proof of the fluctuation-
dissipation theorem. In Section 9.3 we shall describe the projection method, re-
stricting ourselves to the simplest case, the Mori projection method. The idea that
underlies this method is that one is not interested in the full dynamics of an N -body
system, but only in that of slow modes, for example hydrodynamic modes. One is
led to project the full dynamics on that of its slow modes. The back action of fast
modes on slow modes can be described thanks to memory effects. The projection

1 The validity of linear response theory has been challenged by van Kampen in Physica Norvegica 5, 279 (1971).
For an answer to van Kampen’s arguments, see for example Dorfman [33] Chapter 6.
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514 Topics in non-equilibrium statistical mechanics

method leads in a natural way to a description of the dynamics in Section 9.4 by a
stochastic differential equation, the Langevin equation. It will be shown in Section
9.5 that the probability distribution associated with the Langevin equation obeys
a partial differential equation, the Fokker–Planck equation, whose solutions will
be obtained by using an analogy with the Schrödinger equation in imaginary time.
Finally numerical studies of the Langevin equation will be examined in Section
9.6.

9.1 Linear response: classical theory

9.1.1 Dynamical susceptibility

Our goal is to study small deviations from equilibrium driven by a (small) per-
turbation applied to the system, when the equilibrium situation is described by an
unperturbed classical Hamiltonian H (p, q). As in Section 3.2.1, (p, q) is a short-
hand notation for the full set of canonical variables (p1, . . . , pN ; q1, . . . , qN ), N
being the number of degrees of freedom, and the partition function is

Z(H) =
∫

dp dq e−β H(p,q) (9.1)

The equilibrium average Ai of a classical dynamical variable Ai (p, q) is given
from (3.43) by

Ai ≡ ⟨Ai ⟩ ≡ ⟨Ai ⟩eq =
∫

dp dq Deq(p, q)Ai (p, q) (9.2)

where the probability density Deq is the normalized Boltzmann weight

Deq(p, q) = 1
Z(H)

e−β H(p,q) (9.3)

In the present chapter, the notation ⟨•⟩ will always stand for an average value
computed with the equilibrium probability density (9.3), or its quantum analogue
(9.55). Let us perturb the Hamiltonian H by applying a perturbation V of the form

V = −
∑

j

f jA j

so that

H → H1 = H + V = H −
∑

j

f jA j (9.4)

Comparing with (2.64), we see that the rôle of the Lagrange multipliers λ j is
now played by β f j . In the present context, the f j s are often called the exter-
nal forces, or simply the forces. This terminology is borrowed from the forced
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one-dimensional harmonic oscillator (Exercise 9.7.1), where the perturbation may
be written in terms of the dynamical variable x(t) as V = − f (t)x(t). We denote by
Ai the average of the dynamical variable Ai computed with the perturbed Hamilto-
nian H1. The response of the average Ai to a variation of the Lagrange multiplier
f j is given by the fluctuation-response theorem, which we may use in the form
(2.70) since the classical variables Ai commute

∂Ai

∂ f j
= β (Ai − Ai )(A j − A j ) (9.5)

If we restrict ourselves to small deviations from the equilibrium Hamiltonian H ,
we can take the limit f j → 0 in (9.5), which becomes, since the average values
are now computed with Deq,

∂Ai

∂ f j

∣∣∣
fk=0

= β⟨(Ai − ⟨Ai ⟩)(A j − ⟨A j ⟩)⟩

= β⟨δAi δA j ⟩ = ⟨Ai A j ⟩c

(9.6)

where we have defined δAi by

δAi = Ai − ⟨Ai ⟩ = Ai − Ai (9.7)

so that its (equilibrium) average value vanishes: ⟨δAi ⟩ = 0. The subscript c stands
for ‘cumulant’ or ‘connected’. In the linear approximation (9.6) implies at once

Ai = ⟨Ai ⟩ + β
∑

j

f j ⟨δAi δA j ⟩ = ⟨Ai ⟩ − β⟨AiV⟩c (9.8)

Thus, within this approximation, the deviation from equilibrium is linearly related
to the perturbation.

So far we have limited ourselves to static situations: the perturbed Hamiltonian
H1 is time-independent and has been used to define a new probability density D1

D1 = 1
Z(H1)

e−β H1

We now assume that the Hamiltonian is equal to H1 for t < 0 during which the
system is at equilibrium with a probability density D1, but we introduce an ex-
plicit time dependence by switching off suddenly the perturbation V at t = 0. The
Hamiltonian H̃1(t) is now

H̃1(t) = H −
∑

i

f jA j = H1 if t < 0 H̃1(t) = H if t ≥ 0 (9.9)
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Another equivalent way to proceed is to switch on adiabatically2 the perturbation
at t = −∞ and to switch it off suddenly at t = 0,3

H̃1(t) = H − θ(−t)eηt
∑

j

f jA j η → 0+ (9.10)

where θ(−t) is a step function. Note that the perturbation V is a mechanical per-
turbation and the time evolution is Hamiltonian. Energy flows into and out of the
system in the form of work only, and we assume that the system remains ther-
mally isolated. We expect that the system will relax for t → +∞ to an equilib-
rium situation described by H . It is very difficult to characterize this relaxation in
a general way. However, if the deviation from equilibrium is not large, we may
work in the framework of the linear approximation, and the analysis is straight-
forward. For t ≤ 0, Ai takes the time-independent value (9.8), and in particular
at t = 0

δAi (t = 0) = Ai (t = 0) − ⟨Ai ⟩ = β
∑

j

f j ⟨Ai (t = 0)A j ⟩c

= β
∑

j

f j ⟨δAi (t = 0)δA j ⟩

The non-equilibrium ensemble average is obtained by integrating over all possible
initial conditions at t = 0 with the weight D1 = exp(−β H1)/Z(H1). It is conve-
nient to write the dynamical variable Ai for positive t as a function of the initial
conditions at t = 0, p = p(t = 0), q = q(t = 0), and of t : Ai (t) = Ai (t; p, q).
Contrary to the t ≤ 0 case, Ai will be time dependent for t ≥ 0 because the time
evolution of Ai for positive t is governed by H

t > 0 : ∂tAi = {Ai , H}

while the probability density at t = 0 is determined by H1 (9.4)

H1 = H −
∑

j

f jA j = H −
∑

j

f jA j (0)

Then the non-equilibrium ensemble average of Ai (t) is

Ai (t) =
∫

dp dq D1(p, q)Ai (t; p, q)

2 In the present context, adiabatically means infinitely slowly. The relation between this meaning of adiabatic
and the thermodynamic one is complex, and is discussed for example in Balian [5], Chapter 5.

3 In all that follows, η will denote a positive infinitesimal number.
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and we get from (9.8)4

δAi (t) = Ai (t) − ⟨Ai ⟩ = β
∑

j

f j ⟨Ai (t)A j (0)⟩c = β
∑

j

f j ⟨δAi (t)δA j (0)⟩

(9.11)

Equation (9.11) has introduced the Kubo function (or relaxation function) Ci j (t)

Ci j (t) = ⟨Ai (t)A j (0)⟩c = ⟨δAi (t)δA j (0)⟩ (9.12)

which is the time correlation function of δAi (t) and δA j (0) computed at equilib-
rium with the probability density (9.2). Equation (9.11) is often called Onsager’s
regression law: for small deviations from equilibrium, the relaxation toward equi-
librium is governed by equilibrium fluctuations. Physically, this result can be un-
derstood as follows. One may obtain deviations from equilibrium by applying an
external perturbation, as described above, but such deviations may also occur as
the result of spontaneous fluctuations, and in both cases the relaxation toward equi-
librium should be governed by the same laws.

The Kubo function (9.12) is directly linked to the dynamical susceptibility
χi j (t), which is defined by writing the most general formula for the dynamical
linear response to an external time-dependent perturbation

∑
j f j (t)A j

δAi (t) =
∑

j

t∫

−∞

dt ′ χi j (t − t ′) f j (t ′) (9.13)

In Fourier space, and supposing that χi j (t − t ′) vanishes for t ′ > t , the convolution
in (9.13) is transformed into a product

δAi (ω) =
∑

j

χi j (ω) f j (ω) (9.14)

In the case of a sudden switching off of a constant external perturbation at t = 0,
as in (9.9), Equation (9.13) becomes

δAi (t) =
∑

j

f j

0∫

−∞

dt ′χi j (t − t ′) =
∑

j

f j

∞∫

t

χi j (τ ) dτ

4 One may wonder why δA j in (9.11) is taken at t ′ = 0, while any t ′ < 0 would be a priori possible. Indeed,
any t ′ < 0 would be fine, because H̃1(t ′) in (9.9) is time independent for t ′ < 0, but H(t ′) and V(t ′) are not
separately time independent. In (9.11) H is taken implicitly at t ′ = 0, which implies that V should also be
taken at t ′ = 0. Note that the correct boundary condition (9.8) is ensured at t = 0

δAi (t = 0) = β
∑

j
f j ⟨Ai (0)A j (0)⟩c
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Differentiating this equation with respect to t and comparing with (9.11) yields

d
dt

δAi (t) = −
∑

j

f j χi j (t) = β
∑

j

f jθ(t)Ċi j (t)

so that the dynamical susceptibility is nothing other than minus the time derivative
of the Kubo function times β

χi j (t) = −β θ(t)Ċi j (t) (9.15)

9.1.2 Nyquist theorem

As a simple application of the preceding considerations, let us derive the Nyquist
theorem, which relates the electrical conductivity σel to the equilibrium fluctua-
tions of the electric current. Since we need consider only two dynamical variables,
we simplify the notations by setting Ai = B and A j = A. Using time-translation
invariance at equilibrium yields

ĊB A(t) = ⟨Ḃ(t)A(0)⟩c = −⟨B(t)Ȧ(0)⟩c (9.16)

From (9.13) and (9.15) we can write the Fourier transform δB(ω) as

δB(ω) = β f A(ω)

∞∫

0

dt eiωt ⟨B(t)Ȧ(0)⟩c (9.17)

In case of convergence problems, ω should be understood as limη→0+(ω + iη)

(see Section 9.1.3). Let us use this result in the following case. We consider charge
carriers with charge q and mass m in a one-dimensional conductor and take as
dynamical variables the following A and B

A = q
∑

i

xi B = Ȧ = q
∑

i

ẋi = V jel (9.18)

where xi is the position of carrier i , jel the current density and V the volume of
the conductor. The external force is an external (uniform) time dependent electric
field E(t) and the perturbation V(t) is

V(t) = −q E(t)
∑

i

xi = −E(t)A



9.1 Linear response: classical theory 519

so that from (9.17)

δB(ω) = V jel(ω) = βV 2 E(ω)

∞∫

0

dt eiωt ⟨ jel(t) jel(0)⟩|E=0

= βq2 E(ω)

∞∫

0

dt eiωt
∑

i,k

⟨ẋi (t)ẋk(0)⟩|E=0

Since the average equilibrium (or E = 0) current density vanishes, we may write
jel instead of δ jel. This equation is nothing other than the time dependent Ohm’s
law jel(ω) = σel(ω)E(ω). We have thus shown that the electrical conductivity
σel(ω) is given by the Fourier transform of the time correlation of the current den-
sity in the absence of an external electric field

σel(ω) = βV

∞∫

0

dt eiωt ⟨ jel(t) jel(0)⟩|E=0 (9.19)

In the zero frequency limit ω = 0 we get the following formula for the static con-
ductivity σel

σel = βV

∞∫

0

dt ⟨ jel(t) jel(0)⟩|E=0 (9.20)

It may be necessary to include a factor exp(−ηt) in (9.20) in order to ensure the
convergence of the integral. Equation (9.20) is one version of the Nyquist theo-
rem, and is typical of a Green–Kubo formula, which gives a transport coefficient
(in the present case the static electrical conductivity) in terms of the integral of
a time correlation function. Let us give a rough estimate of (9.19). As we have
seen in Section 3.3.2, velocities of different particles are uncorrelated in classi-
cal statistical mechanics. Introducing a microscopic relaxation (or collision) time
τ ∗ ∼ 10−14 s

⟨ẋi (t)ẋk(0)⟩ = δik⟨ẋ(t)ẋ(0)⟩ ∼ δik
kT
m

e−|t |/τ∗

leads to the familiar result, already obtained in (6.59) in the case ω = 0

σel(ω) = nq2τ ∗

m(1 − iωτ ∗)
(9.21)
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where n is the density of carriers. Of course, (9.21) may be obtained by much more
elementary methods, but the point is that (9.19) and (9.20) are exact results, and at
least one knows where to start from if one wishes to derive better approximations.

9.1.3 Analyticity properties

In this subsection,5 we shall work for simplicity with a single dynamical variable
A, χAA(t) = χ(t), but the results generalize immediately to any χi j (t), provided
Ai and A j have the same parity under time reversal (see (9.67)). One very im-
portant property of χ(t) is causality: χ(t) = 0 if t < 0, which reflects the obvious
requirement that the effect must follow the cause. This property allows us to define
the Laplace transform of χ(t)

χ(z) =
∞∫

0

dt eiztχ(t) (9.22)

for any complex value of z such that Imz > 0. Indeed, if we write z = z1 +
iz2, z2 > 0, causality provides in (9.22) a convergence factor exp(−z2t) and this
equation defines an analytic function of z in the half plane Imz > 0. Following
standard notations, we define χ ′′(t) by

χ ′′(t) = i
2

β Ċ(t) (9.23)

or, equivalently, from (9.15), χ ′′(t) = −(i/2)χ(t) for t > 0; note that χ ′′(t) is an
odd function of t , as the Kubo function CAA(t) = C(t) is an even function of t .
Furthermore, χ ′′(t) is pure imaginary, so that its Fourier transform χ ′′(ω) is an
odd and real function of ω. Now, for t > 0

χ(t) = 2iχ ′′(t) = 2i
∫

dω

2π
e−iωtχ ′′(ω)

Plugging this expression for χ(t) in (9.22) and exchanging the t and ω integrations
leads to a dispersion relation6 for χ(z)

χ(z) =
∞∫

−∞

dω′

π

χ ′′(ω′)

ω′ − z
(9.24)

5 The reader is strongly advised to solve the example of the forced harmonic oscillator of Exercise 9.7.1, in order
to get some familiarity with the results of this section in an elementary case.

6 We have assumed in (9.24) that the ω′-integral is convergent at infinity. If this is not the case, one uses subtracted
dispersion relations, for example the once-subtracted dispersion relation

χ(z) − χ(z = 0) = z
∫ ∞

−∞

dω′

π

χ ′′(ω′)
ω′(ω′ − z)

However, this subtraction is done at the expense of introducing an unknown parameter χ(z = 0).
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The existence of a dispersion relation is of course directly linked to causality. Since
χ(z) is analytic in the upper half plane, χ(ω) is the limit η → 0+ of χ(ω + iη)

and χ ′′(ω) is the imaginary part of χ(ω)

Im χ(ω) = χ ′′(ω) (9.25)

where we have used in (9.24) z = ω + iη and

1
ω′ − ω − iη

= P
1

ω′ − ω
+ iπδ(ω′ − ω)

where P indicates the Cauchy principal value. A more elementary derivation uses
a periodic external force

f (t) = fω cos ωt

so that from (9.13), writing

χ(ω) = χ ′(ω) + iχ ′′(ω)

we get

δA(t) = fω
[
χ ′(ω) cos ωt + χ ′′(ω) sin ωt

]

In this simple case, the reactive part of the response, in phase with the force, is
controlled by the real part χ ′(ω) of χ(ω), while the dissipative part, in quadra-
ture with the force (i.e. out of phase by π/2 with the force), is controlled by its
imaginary part χ ′′(ω).7

The susceptibility χ(z) may also be expressed in terms of the Kubo function
and of the static susceptibility χ = limω→0 χ(ω + iη)8

χ(z) = −β

∞∫

0

dt eizt Ċ(t) = βC(t = 0) + izβ

∞∫

0

dt eiztC(t) = χ + izβC(z)

Solving for C(z) and using the fact that δA(t = 0) = χ f A allows us to derive an
expression for δA(z) that depends on δA(t = 0) (and not on f A)

δA(z) = 1
iz

(χ(z)
χ

− 1
)
δA(t = 0) (9.26)

7 However remember our warning: this is only true if Ai and A j have the same parity under time reversal.
8 The static susceptibility χ is in general different from the isothermal susceptibility χT , which is related to the

Kubo function by χT = βC(t = 0). The two susceptibilities coincide if the integral in the second expression
of χ(z) converges at infinity. If the integral does not converge, one writes

χ(z) = β[C(0) − C(∞)] + izβ
∫ ∞

0
dt eizt [C(t) − C(∞)]

and χ = β[C(0) − C(∞)].
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The relation which matches (9.24) for C(z) is

C(z) = − i
β

∞∫

−∞

dω′

π

χ ′′(ω′)

ω′(ω′ − z)
(9.27)

Furthermore, from (9.23) and from our conventions (9.22) for Fourier transforms:
∂t → −iω

χ ′′(ω) = 1
2

βω C(ω) (9.28)

This is the classical version of the fluctuation-dissipation theorem. On the right
hand side of (9.28), C(ω), being the Fourier transform of ⟨A(t)A(0)⟩, is clearly
a measure of the equilibrium fluctuations of A, but we have still to justify that
χ ′′(ω) does describe dissipation: this is shown formally in Section 9.2.4 and Ex-
ercise 9.7.6. However, from experience with the forced harmonic oscillator and
other systems, we already know that dissipation is governed by that part of the
response which is in quadrature of phase with the driving force. As already men-
tioned, and as is shown explicitly in Exercise 9.7.1, the real part of χ(ω) gives the
reactive component of the response, while its imaginary part gives the dissipative
component (see, however, the comments following (9.68)).

9.1.4 Spin diffusion

As an illustration of the preceding considerations, let us consider, following
Kadanoff and Martin [61], a fluid of particles carrying a spin 1/2 aligned in a
fixed direction (or, equivalently, an Ising spin) with which is associated a magnetic
moment µ. A practical example would be helium-3. We assume that all spin flip
processes may be neglected. To the magnetization density

n(r⃗ , t) = µ[n+(r⃗ , t) − n−(r⃗ , t)]

where n+ (n−) is the density of particles with spin up (down), corresponds a mag-
netization current j⃗(r⃗ , t) such that magnetization is locally conserved

∂t n(r⃗ , t) + ∇⃗ · j⃗(r⃗ , t) = 0 (9.29)

Equation (9.29) is exact under the no spin flip assumption. It implies that the mag-
netization can change in a volume of space only because particles move into and
out of this volume. As a consequence, a local magnetization imbalance cannot dis-
appear locally, but only by slowly spreading over the entire system. The second
relation we need is a phenomenological one and is inspired by Fick’s law (6.26).
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It relates the magnetization current to the density gradient

j⃗(r⃗ , t) = −D∇⃗n(r⃗ , t) (9.30)

where D is the spin diffusion coefficient. Combining (9.29) and (9.30) leads, of
course, to a diffusion equation (6.21) for n

(
∂

∂t
− D∇2

)
n = 0 (9.31)

or, in Fourier space

(ω + iDk2)n(k⃗, ω) = 0 (9.32)

Note that our convention for space-time Fourier transforms is

f (k⃗, ω) =
∫

dt d3r e−i(k⃗·r⃗−ωt) f (r⃗ , t)

f (t, r⃗) =
∫

dω

2π

d3k
(2π)3 ei(k⃗·r⃗−ωt) f (k⃗, ω)

(9.33)

A mode with a dispersion law ω = −i Dk2 is called a diffusive mode and is char-
acteristic of the relaxation of a conserved quantity. Indeed, let us consider a fluctu-
ation of the magnetization density with wavelength λ. Since the relaxation occurs
via diffusion, the characteristic time τ is linked to λ through λ2 ∼ Dτ so that
τ ∼ λ2/D or ω ∼ Dk2.

Let us assume that we have created at t = 0 an off-equilibrium magnetization
density n(r⃗ , t = 0), or, in Fourier space, n(k⃗, t = 0). Then, for positive times, the
evolution of n(r⃗ , t) is governed by the diffusion equation (9.31), which we write
in (k⃗, t) space

∂t n(k⃗, t) = −Dk2n(k⃗, t) (9.34)

Taking the Laplace transform of both sides of (9.34) gives

n(k⃗, z) = i
z + iDk2 n(k⃗, t = 0) (9.35)

Let us now make the link with linear response. If our magnetic fluid is placed in a
time-independent, but space-dependent magnetic field, the perturbed Hamiltonian
reads (we set for simplicity µ = 1)

H1 = H −
∫

d3r n(r⃗)B(r⃗) (9.36)
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Using invariance under space translations, the fluctuation-response theorem
gives

δn(r⃗) =
∫

d3r ′ χ(r⃗ − r⃗ ′)B(r⃗ ′) (9.37)

where the static susceptibility χ(r⃗ − r⃗ ′) is given from (4.28) by the space correla-
tions of the density

χ(r⃗ − r⃗ ′) = β⟨n(r⃗)n(r⃗ ′)⟩c

Then, in Fourier space, (9.37) becomes

δn(k⃗) = χ(k⃗)B(k⃗) (9.38)

In Fourier space, the Fourier components are decoupled, so that all preceding re-
sults on the static suceptibility χ or on the dynamic susceptibility χ(t) apply with-
out modification to χ(k⃗) and χ(k⃗, t) respectively. Of course, this simplicity is a
consequence of space translation invariance: the equations would be much more
complicated in the absence of this invariance. Comparing (9.35) and (9.26), which
reads in the present case

δn(k⃗, z) = 1
iz

(
χ(k⃗, z)

χ(k⃗)
− 1

)

δn(k⃗, t = 0)

one derives the following expression for the dynamical susceptibility

χ(k⃗, z) = iDk2

z + iDk2 χ(k⃗) (9.39)

One notes that the susceptibility depends on a thermodynamic quantity χ(k⃗) and
on a transport coefficient D. Taking the imaginary part of both sides of (9.39), we
obtain χ ′′(k⃗, ω)

χ ′′(k⃗, ω) = ωDk2

ω2 + D2k4 χ(k⃗) (9.40)

This last expression leads to a Green–Kubo formula. Defining χ = χ(k⃗ = 0), one
verifies that

Dχ = lim
ω→0

lim
k→0

ω

k2 χ ′′(k, ω) (9.41)
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where the order of limits is crucial. The result can be transformed into (see
Exercise 9.7.3)

Dχ = 1
3
β

∞∫

0

dt
∫

d3r e−ηt
〈

j⃗(t, r⃗) · j⃗(0, 0⃗)
〉

eq
(9.42)

where the factor exp(−ηt) has been added in case convergence problems are en-
countered for t → ∞. One can show that the correct way to proceed to evaluate
expressions like (9.42) is to keep η finite for a finite volume, perform the t integral,
and then take the thermodynamic limit V → ∞.

The fluctuation-dissipation theorem (9.28) joined to (9.40) gives the Kubo
function C(k⃗, ω)

C(k⃗, ω) = S(k⃗, ω) = 2
β

Dk2

ω2 + D2k4 χ(k⃗) (9.43)

We have defined a new function S(k⃗, ω), which is called the dynamical structure
factor. It is the space-time Fourier transform of the (connected) density–density
correlation function ⟨n(r⃗ , t) n(0⃗, 0)⟩c

S(k⃗, ω) =
∫

dt d3r e−i(k⃗·r⃗−ωt)⟨n(r⃗ , t) n(0⃗, 0)⟩c (9.44)

In the classical case, the structure factor is identical to the Kubo function, but we
shall see shortly that the two functions are different in the quantum case. The dy-
namical structure factor generalizes the static structure factor introduced in Section
3.4.2, and it may also be measured in (inelastic) neutron scattering experiments:
see Problem 9.8.1 for an analogous case, that of inelastic light scattering by a sus-
pension of particles in a fluid.

In the case of light scattering by a simple fluid, the dynamical structure factor,
plotted as a function of ω, displays three peaks instead of the single peak of width
Dk2 at ω = 0 found in (9.43): see Figure 9.1 and Problem 9.8.2. The central peak
at ω = 0 is called the Rayleigh peak, and its width DTk2 is determined by the
coefficient of thermal conductivity κ , because it corresponds to light scattering by
heat diffusion. The other two peaks are the Brillouin peaks: they are centred at
ω = ±ck, where c is the sound speed, and they correspond to light scattering by
sound waves. Their width &k2/2 depends also on the shear viscosity η and the
bulk viscosity ζ defined in (6.88)

DT = κ

mncP
& = DT

(cP

cV
− 1

)
+

(4
3
η + ζ

) 1
mn

(9.45)

where mcP and mcV are the specific heat per particle at constant pressure and vol-
ume, m is the mass of the particles and n the fluid density. As in the spin diffusion
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2

Figure 9.1 Dynamical structure factors. (a) Spin diffusion, (b) light scattering by
a simple fluid.

case, the susceptibilities depend on thermodynamic quantities and on transport co-
efficients. It can also be shown that the transport coefficients κ , η and ζ may be
written in the form of Green–Kubo formulae analogous to (9.42).

9.2 Linear response: quantum theory

9.2.1 Quantum fluctuation response theorem

Let us first recall from Chapter 2 that the equilibrium density operator D ≡ DB is
given as a function of the relevant observables A j by (2.64)

DB ≡ D = 1
Z

exp(λ j A j ) Z = Tr exp(λ j A j ) (9.46)

where we adopt from now on the summation convention over repeated indices. Let
B be an observable that may or may not be a member of the set {A j }; its expectation
value ⟨B⟩D is

⟨B⟩D = Tr (BD) = 1
Z

Tr
[
B exp(λ j A j )

]

We now compute ∂⟨B⟩D/∂λi

∂⟨B⟩D

∂λi
= 1

Z
∂

∂λi
Tr

[
B exp(λ j A j )

]
− ⟨Ai ⟩D⟨B⟩D (9.47)

To compute the λi -derivative in (9.47), we use the identity (2.120) for an operator
A which depends on a parameter α

∂

∂α
eA(α) =

1∫

0

dx exA(α) ∂A(α)

∂α
e(1−x)A(α) (9.48)
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and obtain

∂

∂λi
Tr

[
B exp(λ j A j )

]
=

1∫

0

dx Tr
(
B exλ j A j Ai e(1−x)λ j A j

)

so that

∂⟨B⟩D

∂λi
=

1∫

0

dx Tr
[
δB Dx δAi D1−x

]
(9.49)

where δB = B − ⟨B⟩D and δAi = Ai − ⟨Ai ⟩D . The preceding equation gives the
quantum generalization of the fluctuation-response theorem (9.5), and it suggests
that it is useful to introduce the following combination of two operators A and B

⟨B; A⟩D =
1∫

0

dx Tr
[
B Dx A† D1−x

]
(9.50)

It is easily checked (Exercise 9.7.4) that Equation (9.50) defines on the vector
space of operators a positive definite scalar product of the two operators A and B,
called Mori’s scalar product. Note that ⟨B; A⟩∗D = ⟨A; B⟩D and that, in the classi-
cal limit, Mori’s scalar product is simply an equilibrium average of two classical
variables B and A

⟨B;A⟩classical
D = ⟨BA∗⟩D

Using the definition (9.50), the quantum fluctuation-response theorem (9.49) may
be written in the following equivalent forms

∂⟨B⟩D

∂λi
= ⟨δB; δA†

i ⟩D = ⟨δB; A†
i ⟩D = ⟨B; δA†

i ⟩D = ⟨B; A†
i ⟩D,c (9.51)

From now on we restrict ourselves to Hermitian Ai s, leaving the non-Hermitian
case to Exercise 9.7.4. Setting B = A j in (9.51) we recover (2.121)

∂⟨A j ⟩D

∂λi
= ∂2 ln Z

∂λi∂λ j
= ⟨δA j ; δAi ⟩D = C ji (9.52)

The matrix C ji is symmetric and positive definite for Hermitian Ai s (Exer-
cise 2.7.8) and has thus an inverse C−1

j i . We may write

d⟨A j ⟩D = C ji dλi or dλi = C−1
i j d⟨A j ⟩D
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so that

d⟨B⟩D = ⟨δB; δAi ⟩Ddλi = C−1
i j ⟨δB; δAi ⟩D d⟨A j ⟩D (9.53)

It is important to understand the meaning of (9.53). The average value ⟨B⟩D is a
function of the ⟨A j ⟩s, since it is the set of ⟨A j ⟩Ds which determines the density
operator D through the requirement

⟨Ai ⟩D = Tr(DAi ) = Ai

Then (9.53) controls the variation of the average value ⟨B⟩D when the ⟨A j ⟩Ds are
modified. Although we shall not use it, the preceding structure turns out to play an
important rôle because it may be generalized to non-equilibrium situations, and it
underlies more general approaches to the projection method than that which will
be described in this book. Note also that, for the time being, we have not used any
linear approximation. The linear approximation will come shortly.

9.2.2 Quantum Kubo function

As in the classical case, we perturb a Hamiltonian H

H → H1 = H − fi Ai exp(−β H) → exp(−β H1) = exp[−β(H − fi Ai )]
(9.54)

One of the observables of the preceding subsection, A0, is identified with the
Hamiltonian H , and the corresponding Lagrange multiplier λ0 is identified with
−β. As in the previous section, the other Lagrange multipliers λi , i = 1, . . . , N are
identified with β fi , and, as we are interested in linear response, we set λi = fi = 0,
i = 1, . . . , N once the derivatives have been taken. The equilibrium density ma-
trix to be used in the computation of the average values is

Deq = 1
Z(H)

exp(−β H) Z(H) = Tr exp(−β H) (9.55)

and, as in (9.2), we shall use the convention ⟨•⟩ ≡ ⟨•⟩eq = Tr (• Deq). As in the
classical case we take external forces of the form

fi (t) = eηtθ(−t) fi

and in (9.51) we choose as observable B the observable A j in the Heisenberg
picture, setting from now on h̄ = 1,

A jH(t) ≡ A j (t) = eiHt A j e−iHt (9.56)

Ai = Ai (0) is the observable in the Schrödinger picture; we have written Ai (t)
instead of AiH(t), as the explicit time dependence implies that the observable Ai (t)
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is taken in the Heisenberg picture. From (9.49) with δB = δA j (t), the ensemble
average δA j (t) is given in the linear approximation by

δA j (t) = β fi
〈
δA j (t); δAi (0)

〉
(9.57)

It is customary to make in (9.50) the change of variables α = βx and to write
(9.57) as

δA j (t) = fi

β∫

0

dα
〈
δA j (t) e−αH δAi (0) eαH

〉
(9.58)

Comparing with (9.11) and (9.12), we see that the Kubo function C ji (t) is now

C ji (t) =
〈
δA j (t); δAi (0)

〉
= 1

β

β∫

0

dα
〈
A j (t) e−αH Ai (0) eαH

〉

c
(9.59)

Note that, at equilibrium, the matrix C ji introduced in (9.52) is nothing other than
the Kubo function taken at t = 0: C ji = C ji (t = 0). In the classical limit, all op-
erators commute and one recovers (9.12). The Kubo function may be written in
a different form, using the property that the inverse temperature generates trans-
lations in imaginary time as already explained in Chapter 7. We may write from
(1.58), with t = iβ

ei(iβ H)Ai (0)e−i(iβ H) = Ai (iβ)

so that

C ji (t) = 1
β

β∫

0

dα
〈
A j (t)Ai (iα)

〉
c (9.60)

The dynamical susceptibility is related to the Kubo function exactly as in the clas-
sical case

χi j (t) = −βθ(t)Ċi j (t)

χ ′′
i j (t) = i

2
β Ċi j (t)

(9.61)

All the analyticity properties derived in Section 9.1.3 are also valid in the quantum
case, since they depend only on causality.
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9.2.3 Fluctuation-dissipation theorem

The susceptibility and its imaginary part are given from (9.61) by the time deriva-
tive of the Kubo function, and it turns out that this derivative has a much simpler
expression than the function itself. Using time translation invariance, we write the
time derivative of Ci j (t) as follows

Ċi j (t) = − 1
β

β∫

0

dα
〈
Ai (t)e−αH dA j

dt

∣∣∣
t=0

eαH
〉

c

From ∂tA = i[H, A]

Ċi j (t) = i
β

β∫

0

dα
〈
Ai (t)

d
dα

(
e−αH A j eαH

)〉

c

The α-integrand is then a total derivative, the integration is trivial and leads to the
important result

χ ′′
i j (t) = 1

2

〈
[Ai (t), A j (0)]

〉
(9.62)

The function χ ′′
i j (t) is given by the average value of a commutator.9 Similarly, the

susceptibility is given by the average value of a retarded commutator

χi j (t) = iθ(t)
〈
[Ai (t), A j (0)]

〉
(9.63)

As in the classical case, this equation shows that χi j (t) is a real function of t
if Ai and A j are Hermitian operators. Let us now evaluate (9.62) by inserting
complete sets of states |n⟩ of the Hamiltonian, H |n⟩ = En|n⟩. The first term in
the commutator on the right hand side of (9.62) is the dynamical structure factor
Si j (t) = ⟨Ai (t)A j (0)⟩c

Si j (t) = 1
Z

∑

n,m
exp(−βEn + i(En − Em)t)⟨n|δAi |m⟩⟨m|δA j |n⟩

and, taking the time Fourier transform

Si j (ω) = 1
Z

∑

n,m
exp(−βEn)δ(ω + En − Em)⟨n|δAi |m⟩⟨m|δA j |n⟩

The second term in the commutator is computed by noting that it may be written
as S ji (−t), so that its Fourier transform is S ji (−ω); exchanging the indices n and

9 Note that χ ′′(ω) is the imaginary part of χ(ω), but that χ ′′(t) is not the imaginary part of χ(t). We have kept
this standard notation, which is admittedly somewhat confusing.
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m in the expression of this second term, one readily finds

χ ′′
i j (ω) = 1

2h̄
(1 − exp(−βωh̄))Si j (ω) (9.64)

where we have for once written explicitly the Planck constant h̄. This is the quan-
tum version of the fluctuation-dissipation theorem, and one recovers its classical
version (9.28) in the limit h̄ → 0. As was already mentioned, the structure fac-
tor Si j (t) and the Kubo function Ci j (t) are identical in the classical case. How-
ever, they are different in the quantum case. Adding space dependence as in Sec-
tion 9.1.4, we get a structure factor Si j (k⃗, ω), which may be measured in inelastic
scattering experiments (light, X-rays, neutrons, electrons . . . ), while χ ′′

i j (k⃗, ω) de-
scribes dissipation.

9.2.4 Symmetry properties and dissipation

Before showing explicitly that χ ′′
i j describes dissipation, we need to derive its sym-

metry properties. They follow from various invariances.

(i) From time translation invariance

χ ′′
i j (t) = −χ ′′

j i (−t) or χ ′′
i j (ω) = −χ ′′

j i (−ω) (9.65)

(ii) From the Hermiticity of the Ai s (see Exercise 9.7.5 for non-Hermitian operators)

χ ′′∗
i j (t) = −χ ′′

i j (t) or χ ′′∗
i j (ω) = −χ ′′

i j (−ω) (9.66)

Then χ ′′
i j (t) is pure imaginary and χi j (t) is real from (9.61).

(iii) From time reversal invariance

χ ′′
i j (t) = −εiε jχ

′′
i j (−t) or χ ′′

i j (ω) = −εiε jχ
′′
i j (−ω) (9.67)

In (9.67), εi is the parity under time reversal of the observable Ai

% Ai (t)%−1 = εi Ai (−t) (9.68)

where % is the (antiunitary) time reversal operator. We have assumed that the ob-
servables have, as is generally the case, a definite parity εi under time reversal. The
proof of (9.67) is immediate in the classical case, where one first derives the parity
property of the Kubo function Ci j (t) = εiε j Ci j (−t), from which (9.67) follows.
The most common case is εiε j = +1, for example if Ai = A j = A, then χ ′′

i j (ω)

is a real and odd function of ω. If εiε j = −1, χ ′′
i j (ω) is imaginary and even in ω.

The symmetry properties under time reversal are, of course, intimately related to
the symmetry properties (6.38) of Onsager’s coefficients of irreversible thermody-
namics.
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Let us now justify that χ ′′ does describe dissipation. Instead of Heisenberg’s
picture, it is slightly more convenient to use Schrödinger’s picture, labelled by a
superscript S. Let DS

1 (t) denote the perturbed density operator in the presence of a
time-dependent pertubation VS(t) = −

∑
i fi (t)Ai , Ai = AS

i . The time evolution
of DS

1 is governed from (2.14) by

i∂t DS
1 (t) = [HS

1 (t), DS
1 (t)] = [H + VS(t), DS

1 (t)] (9.69)

The system is driven by external forces fi (t), which we assume to be periodic. As
a simple example, it is useful to recall the damped mechanical harmonic oscillator
driven by an external force: energy is dissipated in the viscous medium which
damps the oscillations. The rate dW/dt at which the external forces do work on
the system is equal to the variation per unit time of the energy E(t) of the system

dW
dt

= dE
dt

= d
dt

Tr
(

DS
1 (t)HS

1 (t)
)

= Tr(DS
1 ḢS

1 ) + Tr(ḊS
1 HS

1 ) (9.70)

The last term in (9.70) vanishes because of (9.69) and of Tr
(

[HS
1 , DS

1 ]HS
1

)
= 0.

Then

dW
dt

= −
∑

i

Tr[DS
1 (t)Ai ] ḟi (t) = −

∑

i

Ai (t) ḟi (t) (9.71)

Let us choose periodic fi (t)s

fi (t) = 1
2

(
f ω
i e−iωt + f ω

i
∗eiωt

)
= Re

(
f ω
i e−iωt

)
(9.72)

and take a time average of dW/dt over a time interval T ≫ ω−1. We may use
δAi instead of Ai in (9.71) because ⟨Ai ⟩ gives a vanishing contribution to a time
average. As δAi (t) is given by (9.13), plugging (9.13) in (9.70) and taking the time
average gives after an elementary calculation (see Exercises 9.7.1 and 9.7.6)

〈dW
dt

〉

T
= 1

2
ω f ω

i
∗χ ′′

i j (ω) f ω
j (9.73)

It is easy to check that the right hand side of (9.73) is a real quantity, even if χ ′′
i j (ω)

is imaginary, because combining (9.65) and (9.66), which are independent of time
reversal, gives (χ ′′

i j (ω))∗ = χ ′′
j i (ω). From the second law of thermodynamics, the

right hand side of (9.73) must always be positive, otherwise one would obtain
work from a single source of heat, which implies that the matrix ωχ ′′

i j (ω) must be
positive. The proof is left to Exercise 9.7.6.

To conclude this subsection, let us write the most general form of linear re-
sponse, including space-dependent terms, which we have already introduced in
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Section 9.1.4. The generalization of (9.13) is

δAi (r⃗ , t) =
∫

dt ′ d3r ′ χi j (r⃗ , r⃗ ′, t − t ′) f j (r⃗ ′, t ′) (9.74)

In general, space translation invariance holds and χ depends only on the differ-
ence r⃗ − r⃗ ′. Then one may take the space Fourier transform of (9.73) to cast the
convolution into a product

δAi (k⃗, t) =
∫

dt ′ χi j (k⃗, t − t ′) f j (k⃗, t ′) (9.75)

so that all Fourier components are decoupled, and the preceding results can be
immediately transposed to each individual Fourier component. However, in using
the symmetry property (9.66), one must be careful that Ai (k⃗, t) is not Hermitian,
even though Ai (r⃗ , t) is Hermitian since

[Ai (k⃗, t)]† = Ai (−k⃗, t)

9.2.5 Sum rules

The dynamical susceptibility obeys sum rules that are very useful to constrain
phenomenological expressions such as those written in Section 9.1.4. Let us start
from the representation (9.24) of χi j (z)

χi j (k⃗, z) =
∞∫

−∞

dω′

π

χ ′′
i j (k⃗, ω′)

ω′ − z
(9.76)

and assume that χ ′′
i j (k⃗, ω) is odd and real (εiε j = +1). The so-called thermody-

namic sum rule is obtained in the static limit z or ω → 0

χi j (k⃗, ω = 0) =
∞∫

−∞

dω′

π

χ ′′
i j (k⃗, ω′)

ω′ (9.77)

χi j = limk→0 χi j (k⃗, ω = 0) is a thermodynamic quantity, hence the terminology
‘thermodynamic sum rule’.

By examining the high frequency limit, we obtain the so-called f-sum rule (or
Nozières–Pines sum rule). Let us look at the behaviour |z| → ∞ of (9.76)

1
ω − z

= −1
z

(
1 + ω

z
+ ω2

z2 + · · ·
)
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Since χ ′′
i j is an odd function of ω

χi j (k⃗, z) = − 1
z2

∞∫

−∞

dω

π
ωχ ′′

i j (k⃗, ω) + O
( 1

z4

)
(9.78)

This equation gives the leading term in an expansion in 1/z of χi j (k⃗, z). We remark
that ωχ ′′

i j (k⃗, ω) is the time-Fourier transform of i∂tχ
′′(k⃗, ω)

ωχ ′′
i j (k⃗, ω) =

∫
dt eiωt

[
i∂tχ

′′
i j (k⃗, t)

]

so that, from (9.62), generalized to space-dependent observables Ai (r⃗ , t), we get
after a Fourier transformation

[
i∂tχ

′′
i j (k⃗, t)

]

t=0
=

∞∫

−∞

dω

π
ωχ ′′

i j (k⃗, ω) = i
V

〈[
Ȧi (k⃗, t), A j (−k⃗, 0)

]〉∣∣∣
t=0

where V is the total volume of the sample. By using the commutation relation

Ȧi (k⃗, t) = i[Ai (t), H ]

we finally get

∞∫

−∞

dω

π
ωχ ′′

i j (k⃗, ω) = 1
V

〈[[
Ai (k⃗), H

]
, A j (−k⃗)

]〉
(9.79)

The most important example is that of the density–density correlation function
χ ′′

nn . Let us perform the calculation in the classical limit, leaving the quantum case
to Exercise 9.7.7. From the classical fluctuation-dissipation theorem

χ ′′(k⃗, ω) = 1
2
βωS(k⃗, ω)

and the integral to be computed is

I = β

∫
dω

2π
ω2Snn(k⃗, ω)

Using time translation invariance leads to

V Snn(k⃗, t − t ′) =
〈
n(k⃗, t)n(−k⃗, t ′)

〉
c

and the integral I is

I = β

V

〈
ṅ(k⃗, t) ṅ(−k⃗, t)

〉
c
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Using the spatial Fourier transform of the continuity equation (9.29) ∂t n + ikl jl =
0 finally yields

I = β

V
klkm

〈
jl(k⃗, t) jm(k⃗, t)

〉

The current density j⃗ is given by a sum over the N particles of the system as a
function of their velocities v⃗ α

jl(r⃗ , t) =
N∑

α=1

vα
l δ(r⃗ − r⃗ α(t)) (9.80)

or, in Fourier space

jl(k⃗, t) =
N∑

α=1

vα
l exp[−ik⃗ · r⃗ α(t)] (9.81)

In the classical limit, the velocities of different particles are uncorrelated

⟨vα
l v

γ
m⟩ = 1

3
δαγ δlm⟨v⃗ 2⟩ = δαγ δlm

1
mβ

and we get the f -sum rule

∞∫

−∞

dω

π
ωχ ′′

nn(k⃗, ω) = n k2

m
(9.82)

where n = N/V is the density.

9.3 Projection method and memory effects

In this section, we first give a phenomenological introduction to memory effects,
and then we show that these effects can be accounted for by using the so-called
projection method. The idea which underlies the projection method is that it is
often possible to distinguish between macroscopic variables, which vary slowly in
time, and microscopic variables, which, on the contrary, exhibit fast variation with
time. The former variables will be called slow modes and the latter fast modes. In
general, we are not interested in the fast modes, associated with the microscopic
behaviour of the system. For example, in the case of Brownian motion, we are not
interested in the fast motion of the fluid molecules, but only in the slow motion
of the Brownian particle. The idea is then to project the dynamics onto a subspace
spanned by the slowly varying observables, in order to keep only the modes we are
interested in. The success of the method will depend on our ability to identify all
the slow modes and to restrict the dynamics to that of the slow modes only, which
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is called the reduced dynamics. The presence of slow modes can usually be traced
back to the following sources.

(i) Existence of local conservation laws: we have seen an example in Section 9.1.4. In
general, the corresponding slow modes are called hydrodynamic modes.

(ii) Existence of one heavy particle: this is the example of Brownian motion, where
a heavy particle of mass M is put in a fluid of particles of mass m, with
M/m ≫ 1. This example will be studied at the end of the present section and in
Problem 9.8.3.

(iii) Existence of Goldstone modes, associated with a broken continuous symmetry, for
example in magnets, superfluids and liquid crystals. These slow modes will not be
examined in this book, and we refer to the literature for an account of this very inter-
esting case.

Of course, one cannot completely eliminate the fast modes, and the reduced dy-
namics cannot be described by a closed set of differential (or partial differential)
equations. The back action of the fast modes on the reduced dynamics will appear
through a memory term and a stochastic force.

9.3.1 Phenomenological introduction to memory effects

Our hydrodynamic theory of Section 9.1.4 suffers from a major failure: the f-sum
rule (9.82) does not converge, since from (9.40) χ ′′(ω) ∼ 1/ω for ω → ∞. As the
continuity equation (9.29) is exact, the weak link of the hydrodynamic description
must be Fick’s law (9.30). Let us try to correct it, in a heuristic manner, by allowing
for memory effects in such a way that the current does not instantaneously follow
the density gradient

j⃗(r⃗ , t) = −
t∫

0

dt ′γ (t − t ′)∇⃗n(r⃗ , t ′) (9.83)

γ (t) is called the memory function. One could also introduce a spatial dependence
in the memory function; this generalization is easily handled by going to Fourier
space and is left as an exercise for the reader. Let us try the simple parametrization

γ (t) = D
τ ∗ e−|t |/τ∗

(9.84)

where τ ∗ is a microscopic time (τ ∗ ∼ 10−12 − 10−14 s), characteristic of relax-
ation towards local equilibrium (let us recall that a hydrodynamic description as-
sumes that a situation of local equilibrium has been reached). If ∇⃗n varies slowly
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γ(t− t′)

t′t

∇⃗n(r⃗, t′)

Figure 9.2 A slowly varying density distribution.

on a time scale ∼ τ ∗, one recovers Fick’s law (9.30) for t ≫ τ ∗ (Figure 9.2)

t∫

0

dt ′γ (t − t ′)∇⃗n(r⃗ , t ′) ≃ ∇⃗n(r⃗ , t)

∞∫

0

dt ′
D
τ ∗ e−t ′/τ∗ = D∇⃗n(r⃗ , t) (9.85)

so that (9.30) is recovered. With memory effects included, the continuity equation
reads in Fourier space

∂t n(k⃗, t) = −k2

t∫

0

dt ′γ (t − t ′)n(k⃗, t ′) (9.86)

We take the Laplace transform of (9.86) and note that the Laplace transform of the
convolution is transformed into a product

∞∫

0

dt

t∫

0

dt ′ eiz(t−t ′)eizt ′γ (t − t ′) n(k⃗, t ′) = γ (z) n(k⃗, z)

so that

n(k⃗, t = 0) + izn(k⃗, z) = k2γ (z)n(k⃗, z)

Solving for n(k⃗, z) and using (9.26) allows us to identify the new expression for
the susceptibility

χ(k⃗, z) = ik2γ (z)
z + ik2γ (z)

χ(k⃗) (9.87)

while γ (z) becomes in the approximation (9.84)

γ (z) = D
τ ∗

∞∫

0

dt eizt−t/τ∗ = D
1 − izτ ∗ (9.88)
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This yields the Laplace transform of the dynamical susceptibility

χ(k⃗, z) = ik2 D/(1 − izτ ∗)

z + ik2 D/(1 − izτ ∗)
χ(k⃗) (9.89)

and its imaginary part

χ ′′(k⃗, ω) = ωk2 D
ω2 + D2(k2 − ω2τ ∗/D)2 χ(k⃗) (9.90)

As χ ′′(ω) ∼ 1/ω3 for ω → ∞, the f-sum rule is now convergent. Since the integral
in the sum rule is given by the coefficient of −1/z2 in an expansion of χ(k⃗, z) for
|z| → ∞, and since from (9.89)

χ(k⃗, z) ∼ − k2 D
z2τ ∗ χ(k⃗) for |z| → ∞

Equation (9.82) leads to an interesting relation between the diffusion coefficient
and the microscopic time τ ∗

D = nτ ∗

mχ(k⃗)
(9.91)

Incidentally, this equation shows that D (or the memory function) must depend
on k. In the example of polarized helium-3 at low temperatures, one may prove
that τ ∗ ∼ 1/T 2 because of the Pauli principle, and (9.91) predicts that the same
behaviour should be observed for D, which is experimentally verified. However,
our approximation (9.84) for the memory function γ (t) cannot be the last word, as
sum rules with factors of ω2n+1 instead of ω remain divergent.

9.3.2 Projectors

We now turn to a formal derivation of memory effects. We shall need the Liou-
villian, which is an operator acting on the vector space of observables Ai . The
definition of the Liouvillian L follows from Heisenberg’s equation of motion for
an observable A

∂tA = i[H, A] = iLA (9.92)

The operators acting in the vector space of observables will be denoted by script
letters: L, P, Q. Equation (9.92) can be integrated formally as

A(t) = eiLt A(0) (9.93)
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An explicit expression for the Liouvillian can be obtained by choosing a basis in
the Hilbert space of states in which (9.92) reads

i∂tAmn(t) = Amν(t)Hνn − HmνAνn(t)

As the observables may be considered as elements of a vector space with compo-
nents labelled by two indices (m, n) or (µ, ν), the matrix elements of the Liouvil-
lian are then labelled by couples of indices

Lmn;µν = Hmµδnν − Hνnδmµ (9.94)

As explained in the introduction to the present section, we want to project the
dynamics on the subspace E spanned by a set of slowly varying observables Ai and
the identity operator I: E ≡ {I, Ai }. Actually the equations we are going to derive
in this subsection are valid for any set of observables, but they are physically useful
only if E is a set of slow variables. We are looking for a projector P (P2 = P) on
the subspace E such that

PB = B if B ∈ E ≡ {I, Ai } (9.95)

The complementary projector will be denoted by Q : Q = I − P . One should be
aware that the set {Ai } is defined at t = 0 and in general the observables Ai (t) at
a time t ̸= 0 do not belong to the subspace E : only the projected operators PAi (t)
belong to E .

In order to compute P, let us recall an elementary example. Assume that we
are given in RN a set of M (M < N ) non-orthogonal, non-normalized vectors
e⃗1, . . . , e⃗M . The action on a vector V⃗ of the projector P that projects on the sub-
space spanned by these vectors is

P V⃗ = C−1
i j (V⃗ · e⃗i )e⃗ j where Ci j = e⃗i · e⃗ j (9.96)

Equation (9.96) is generally valid provided one is given a scalar product Ci j of two
vectors e⃗i and e⃗ j . In particular we can use (9.96) in the space of observables and
choose Mori’s scalar product (9.51) to define the projector P on the subspace E ,10

P = δA j C
−1
jk δAk C jk = ⟨δA j ; δAk⟩ (9.97)

10 Strictly speaking, there is one term missing in (9.97), because one must have P I = I . Setting δA0 = I , we
may write

P =
∑

j,k=0
δA j C−1

jk δAk

where we have used ⟨δA0; δA0⟩ = 1 and ⟨δA0; δAi ⟩ = 0 for i ̸= 0.
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and the average ⟨•⟩ is computed with the equilibrium density operator (9.55); re-
call that δAi = Ai − Ai . The explicit action of P on an observable B is

PB = δA j C−1
jk ⟨δAk; B⟩ = ∂ B

∂ A j
δA j

where the last equation follows from (9.53) and Hermiticity of Ak and B. It is easily
checked that P2 = P and that P† = P . Moreover we also note that the Liouvillian
is Hermitian with respect to Mori’s scalar product (Exercise 9.7.4)

⟨A;LB⟩ = ⟨LA; B⟩ (9.98)

An important consequence of (9.98) is the antisymmetry property deduced from
∂t = iL

⟨A; Ḃ⟩ = −⟨Ȧ; B⟩ (9.99)

where Ȧ = ∂tA, from which ⟨A; Ȧ⟩ = 0 follows.

9.3.3 Langevin–Mori equation

We now wish to derive equations of motion for the observables of the set Ai .11 Let
us start from the trivial identity P + Q = I and write

Ȧi (t) = eiLtQȦi + eiLtPȦi (9.100)

It is easy to evaluate the second term in (9.100)

eiLtPȦi = eiLtδA j C
−1
jk ⟨δAk; iLAi ⟩

= # j i eiLt δA j (9.101)

the frequencies # j i being defined by

# j i = C−1
jk ⟨δAk; iLAi ⟩ (9.102)

Note that # j i = 0 if all observables in E have the same parity under time reversal
(see Exercise 9.7.4). In this case ⟨Ȧi ; A j ⟩ = 0 ∀(i, j) and Ȧi ∈ E⊥. In particular
# = 0 if there is only one slow observable.

In order to deal with the first term in (9.100) we use the operator identity (2.118),
which can be cast into the form

eiLt = eiQLt + i

t∫

0

dt ′ eiL(t−t ′)PLeiQLt ′ (9.103)

11 We are going to derive Mori’s version of the projection method. There exist many other versions of the pro-
jection method, but Mori’s turns out to be the easiest to derive and the most useful close to equilibrium.
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We then transform (9.103) by introducing operators fi (t), which are called stochas-
tic forces for reasons that will become clear in Section 9.3.5, through

fi (t) = eiQLQt QȦi (9.104)

The stochastic forces live entirely in the space E⊥ orthogonal to E . First Q projects
Ȧi on this subspace,12 and then the operator QLQ, which has non-zero ma-
trix element only in E⊥, is the evolution operator in E⊥: exp(iQLQt)QȦi does
not leave E⊥. The stochastic forces may thus vary with a time scale entirely
different from that characteristic of PAi (t), which should evolve slowly with
time. Note also that the stochastic forces have zero equilibrium average values,
⟨fi (t)⟩ = 0, and that they are orthogonal by construction to the Ai s: ⟨Ai ; fi (t)⟩ = 0.
Given the definition (9.104), the first term in (9.103) yields, when applied
to QȦi

eiQLtQȦi = e iQLQtQȦi = fi (t)

where we have used
(

I + iQLt + i2

2!
QLQLt2 + · · ·

)
Q

=
(

I + iQLQt + i2

2!
(QLQ)(QLQ)t2 + · · ·

)
Q

because Q2 = Q. The last contribution comes from the second term in (9.103)
t∫

0

dt ′ eiL(t−t ′) δA j C−1
jk

〈
δAk;Le iQLQt ′Q δȦi

〉

=
t∫

0

dt ′ eiL(t−t ′)δA j C−1
jk

〈
δAk; iL fi (t ′)

〉

Using the Hermiticity (9.98) of L, we transform the scalar product
〈
δAk; iL fi (t ′)

〉
= −

〈
iL δAk;Q fi (t ′)⟩ = −⟨fk; fi (t ′)

〉

and cast the second term coming from (9.103) into the form

−
t∫

0

dt ′ δA j (t − t ′)C−1
jk

〈
fk; fi (t ′)

〉
= −

t∫

0

dt ′ δA j (t − t ′)γ j i (t ′)

12 If all slow observables have the same parity under time reversal, QȦi = Ȧi .
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where we have defined the memory matrix γ j i (t)

γ j i (t) = C−1
jk

〈
fk; fi (t)

〉
(9.105)

Gathering all terms in the preceding discussion leads to the Langevin–Mori equa-
tions, which are the promised equations of motion for the slow observables Ai

∂tAi (t) = Ȧi (t) = # j i δA j (t) −
t∫

0

dt ′ γ j i (t ′)δA j (t − t ′) + eiQLQt fi (9.106)

The Langevin–Mori equations contain a frequency term, a memory term and a
stochastic force. We emphasize that no approximations have been made in deriving
(9.106), and the Langevin–Mori equations are exact. As already mentioned, they
are valid for any set of observables {Ai }, but they are useful only if this is a set of
slow observables. Note that Ȧi (t) = δȦi (t) as Ai is time independent. Other exact
equations can be obtained if we assume a time-dependent situation given by the
quantum version of (9.9). If D is the density operator at t = 0, we can compute
the average value of (9.106) with D, and using the same notation as in (9.11),
Ai = ⟨Ai ⟩D , we obtain for t > 0

∂t δAi (t) = # j i δA j (t) −
t∫

0

dt ′ γ j i (t ′)δAi (t − t ′) +
〈
eiQLQt fi

〉
D (9.107)

In the absence of the last term in (9.107), we would have a simple linear integro-
differential equation for the average values δAi (t). The complexity of the dynamics
lies in the average value of the stochastic force, which reflects the dynamics of the
fast modes.

The stochastic forces may be eliminated if we restrict ourselves to equations of
motion for the Kubo functions. Indeed, taking the scalar product of the Langevin–
Mori equation (9.106) with δAk we get

Ċki (t) = # j i Ck j (t) −
t∫

0

dt ′ γ j i (t ′)Ckj (t − t ′) (9.108)

In the case of a single slow mode, this equation simplifies to

Ċ(t) = −
t∫

0

dt ′ γ (t ′)C(t − t ′) (9.109)
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Using (9.57) and (9.108), we can derive equations of motion for the average val-
ues δAi (t), which are then given by (9.107), but without the stochastic term.
We thus have a closed sytem of integro-differential equations of motion for the
δAi (t)s. However, this system of equations is only valid close to equilibrium, be-
cause we have used (9.57), which implies linear response, and thus small devi-
ations from equilibrium. In the case of a single observable, this system reduces
to

∂tδA(t) = −
t∫

0

dt ′γ (t ′)δA(t − t ′) (9.110)

These equations can also be derived directly, by using in (9.107) the linear approx-
imation to the density operator D which follows from (2.119)

D ≃ Deq

(
I − fi

β∫

0

dα eαH Ai e−αH
)

and observing that ⟨fi (t)⟩ = ⟨I ; fi (t)⟩ = 0 and ⟨Ai ; f j (t)⟩ = 0. Comparing (9.110)
with (9.83), we clearly see the connection with our previous heuristic approach to
memory effects.

9.3.4 Brownian motion: qualitative description

We consider in classical mechanics a Brownian particle, namely a ‘heavy’ (by
microscopic standards) particle of mass M in a heat bath of light molecules of mass
m: m/M ≪ 1. The first effect one can think of is viscosity. If the heavy particle
has a velocity v⃗ in the positive x direction, the fluid molecules coming from the
right will appear to have a larger velocity than those coming from the left, and
because of its collisions with the fluid molecules and of this simple Doppler effect,
the particle will be submitted to a force directed toward the left

F⃗ = −αv⃗ (9.111)

where α is the friction coefficient; τ = M/α = 1/γ defines a characteristic macro-
scopic time scale for the particle. However, there is another time scale in the prob-
lem, a microscopic time scale τ ∗. Due to the random character of the collisions
with the fluid molecules, one observes fluctuations of the force on a time scale
∼ 10−12 − 10−14 s on the order of the duration of a collision. The separation of
time scales relies on the inequality m/M ≪ 1: compare on Figure 9.3 the be-
haviour of the velocity of a Brownian particle and that of a 17O molecule in a
gas of 16O molecules. In the latter case the velocity changes suddenly on a time
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t

(b)

vx(t)

τ∗

(a)

τ∗

τ

vx(t)

t

Figure 9.3 x-component of the velocity. (a) Heavy (Brownian) particle in a bath
of light particles, (b) 17O molecules in a gas of 16O molecules.

scale τ ∗ (it may even change sign), while in the case of the Brownian particle, the
time scale for velocity changes is τ because of its large inertia, although a short
time scale τ ∗ is superimposed on this average motion. Although the Brownian par-
ticle may suffer large accelerations, the mean velocity varies very little on a time
scale τ ∗, and the average motion is a smooth one.

Let A = v be the velocity of a one-dimensional Brownian particle (or B-particle
for short) which we identify with the (classical) observable in (9.110). From the
preceding qualitative analysis, we may hope that v (but not v̇!) is a slow variable,
and we note that δv = v since ⟨v⟩ = 0. In the classical limit

⟨v(0); v(t)⟩ → ⟨v(0)v(t)⟩ = Cvv(t)

Cvv(t) is the velocity autocorrelation function. Equation (9.109) becomes in this
case

Ċvv(t) = −
t∫

0

dt ′ γ (t ′) Cvv(t − t ′)

If the characteristic time scale of γ (t) is much shorter than that of Cvv(t), we may
use a Markovian approximation as in (9.85), and we get an ordinary differential
equation

Ċvv(t) = −γ Cvv(t) with γ =
∞∫

0

dt γ (t)

whose solution, taking into account the parity property of C , leads to an exponen-
tial decrease of the correlation function

Cvv(t) = e−γ |t |Cvv(0) = e−|t |/τ Cvv(0) (9.112)
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9.3.5 Brownian motion: the m/M → 0 limit

Since the friction force F⃗ in (9.111) is due to the collisions with the fluid
molecules, it should be related to the stochastic force. In this subsection, we shall
derive this relation in the limit m/M → 0.13 Let us write a classical Hamiltonian
for the system composed of the fluid and Brownian particle

H =
∑

α

p2
α

2m
+ 1

2

∑

α ̸=β

V (r⃗αβ) + P2

2M
+

∑

α

U (R⃗ − r⃗α) (9.113)

where pα and m denote the momenta and mass of the fluid molecules, V their
potential energy, P and M the momentum and mass of the B-particle and U its
potential energy in the fluid. The Liouvillian L corresponding to (9.113) may be
written as L = Lf + δL, where Lf is the fluid Liouvillian corresponding to the first
two terms in (9.113)

iLf =
∑

α

p⃗α

m
· ∂

∂ r⃗α
− 1

2

∑

α ̸=β

∇⃗V (r⃗αβ) ·
( ∂

∂ p⃗α
− ∂

∂ p⃗β

)
(9.114)

and

iδL = P⃗
M

· ∂

∂ R⃗
−

∑

α

∇⃗U (R⃗ − r⃗α) · ∂

∂ P⃗
+

∑

α

∇⃗U (R⃗ − r⃗α) · ∂

∂ p⃗α
(9.115)

In (9.115), the first term, denoted by LB, is the Liouvillian of a free B-particle,
the second Lf→B represents the action of the fluid molecules on the B-particle
and the third LB→f the action of the B-particle on the fluid molecules. Our slow
variables are the components Pi of the momentum P⃗; remember that Ṗi is not a
slow variable, as is clear from Figure 9.3, and does not belong to E . Let Ci j (t) be
the equilibrium time correlation function of the components of P⃗

Ci j (t) = ⟨Pi ; eiLt Pj ⟩ → ⟨Pi (0)Pj (t)⟩ (9.116)

From rotational invariance (no summation over i in (9.117) and (9.118))

Ci j (t) = δi j C(t) Cii (0) = ⟨P2
i ⟩ = MkT (9.117)

The memory matrix γi j is also proportional to δi j : γi j = δi jγ (t)

γ (t) = 1
MkT

⟨Ṗi ; eiQLQt Ṗi ⟩ (9.118)

Since ⟨P⃗⟩ = 0, the projector Q is, from (9.97) and (9.117),

Q = I − P⃗
1

MkT
P⃗ (9.119)

13 Our derivation follows closely Foerster [43], Section 6.1.
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We now use the property that p ∼
√

mkT and P ∼
√

MkT to remark that in
(9.114) and (9.115)

P/M
p/m

∼
( m

M

)1/2 ∂/∂ P
∂/∂p

∼
( m

M

)1/2

so that

LB + Lf→B

Lf + LB→f
∼

( m
M

)1/2

and L → L0 = Lf + LB→f in the limit m/M → 0. But L0 does not act on the
B-particle: L0 P⃗ = 0, so that

lim
m/M→0

γ (t) = γ∞(t) = 1
MkT

⟨Ṗi ; eiL0t Ṗi ⟩

Now,

d
dt

P⃗ = iLP⃗ = −
∑

α

∇⃗U (R⃗ − r⃗α) = F⃗

where F⃗ is the instantaneous force that the fluid molecules exert on the B-particle,
not to be confused with the friction force F⃗ (9.111), which represents a mean
effect. Thus we get our final result for the memory function

γ∞(t) = 1
3MkT

⟨F⃗∞(t) · F⃗∞(0)⟩ (9.120)

where F⃗∞(t) is the force on an infinitely heavy B-particle, namely a B-particle at
rest in the fluid, so that we are in an equilibrium situation. This force, which has
zero average value, ⟨F⃗∞⟩ = 0, varies randomly in time with a characteristic scale
τ ∗, which justifies the terminology ‘stochastic force’ in the definition (9.104). In a
Markovian approximation, the viscosity parameter γ = α/M , where α is defined
in (9.111), is given by

γ = 1
6MkT

∞∫

−∞

dt ⟨F⃗∞(t) · F⃗∞(0)⟩ (9.121)

This is a Green–Kubo formula; another derivation of this result is proposed in
Exercise 9.7.2. To summarize, we have derived a stochastic differential equation
for the B-particle

d
dt

P⃗ = −γ P⃗ + F⃗∞(t) (9.122)
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where γ is given by (9.121) and F⃗∞(t) is the stochastic force acting on a B-particle
at rest in the fluid.

9.4 Langevin equation

Equation (9.122) is the prototype of a stochastic differential equation and is called
a Langevin equation. We have just seen that it is able to describe Brownian mo-
tion, but its importance lies in the fact that it has many other applications in
physics, due to its versatility in the description of noise in general physical systems.
One important particular case of the Langevin equation corresponds to the so-
called Ornstein–Uhlenbeck process, where, in addition to the stochastic force, the
Brownian particle is submitted to an harmonic force in the strong friction limit.

9.4.1 Definitions and first properties

We have derived in the case of Brownian motion a stochastic differential equa-
tion (9.122). In order to encompass more general situations, we rewrite it in one
dimension as

V̇ (t) = −γ V (t) + f (t) f (t) = 1
m

F∞(t) (9.123)

where, from now on, we denote by m the mass of the B-particle. In (9.123), V (t)
is a random function, which we write with an upper case letter V in order to make
the distinction with the number v(t), which is the value of the velocity for a partic-
ular realization of f (t). The function f (t) is a random function with zero average
value, f (t) = 0, and with a characteristic time scale τ ∗ much smaller than the
characteristic time scale τ = 1/γ of the velocity: τ ∗ ≪ τ . In general, X denotes
an average of the random variable X taken over all the realizations of the random
function f (t), while ⟨X⟩ denotes as before an equilibrium average. In the case of
Brownian motion with a B-particle at equilibrium, X = ⟨X⟩ and (9.121) becomes
in the one-dimensional case

γ = m
2kT

∞∫

−∞

dt ⟨ f (t) f (0)⟩ ⟨ f (t)⟩ = 0 (9.124)

In order to write the Langevin equation in a precise form, we must define the time
autocorrelation function of f (t) in (9.123). Since τ ∗ ≪ τ , we shall approximate
the time autocorrelation of f (t) by a δ-function

f (t) f (t ′) = 2A δ(t − t ′) (9.125)
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In the case of Brownian motion, the coefficient A is then given from (9.124) by

A = γ
kT
m

(9.126)

Since f (t) is the result of a large number of random collisions, it is customary to
assume (but we shall not need this assumption), that in addition to f (t) = 0 and
(9.125), f (t) is a Gaussian random function. These assumptions on f (t) specify
completely the stochastic differential equation (9.123).

Equation (9.123) may be solved as a function of the initial velocity v0 = V
(t = 0) as

V (t) = v0e−γ t + e−γ t

t∫

0

dt ′ eγ t ′ f (t ′) (9.127)

from which we derive, by taking an average over all realizations of f (t),14

(
V (t) − v0e−γ t

)2 = e−2γ t

t∫

0

dt ′ dt ′′ e2γ (t ′+t ′′) f (t ′) f (t ′′)

= 2A e−2γ t

t∫

0

dt ′ e2γ t ′ = A
γ

(
1 − e−2γ t

)
(9.128)

If t ≫ 1/γ we reach an equilibrium situation
〈(

V (t) − v0e−γ t
)2〉

→ ⟨V 2⟩ = A
γ

= kT
m

and we recover (9.126). We can also compute the position X (t) of the Brownian
particle from

X (t) = x0 +
t∫

0

dt ′V (t ′)

An elementary, but somewhat tedious, calculation leads to

(X (t) − x0)2 =
(
v2

0 − kT
m

) 1
γ 2

(
1 − e−γ t)2 + 2kT

mγ

(
t − 1

γ

[
1 − e−γ t]

)

14 We cannot use an equilibrium average because the B-particle is not at equilibrium if it is launched in the
thermal bath with a velocity v0 ≫

√
kT/m.
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For large values of t , t ≫ 1/γ , one recovers a diffusive behaviour (see
Exercise 9.7.8 for another derivation of (9.129))

⟨(X (t) − x0)
2⟩ = 2

kT
mγ

t = 2D t (9.129)

The diffusion coefficient D is given by Einstein’s relation (6.61)

D = kT
mγ

= 1
βmγ

(9.130)

For t ≪ 1/γ , one observes a ballistic behaviour: (X (t) − x0)2 = v2
0 t2.

9.4.2 Ornstein–Uhlenbeck process

We are now interested in writing down a Langevin equation for the position X (t)
of a Brownian particle submitted to an external (deterministic) force F(x). We
assume that we may use a strong friction limit,15 where the Brownian particle
takes almost instantaneously its limit velocity vL. Neglecting diffusion for the time
being

v̇ = −γ v + F(x)

m
(9.131)

and the limit velocity is given by v̇ = 0, or vL(x) = F(x)/(mγ ). Then one adds
to ẋ = vL a random force b(t)

Ẋ(t) = F(x)

mγ
+ b(t) (9.132)

In the absence of F(x), one should recover the diffusive behaviour (9.129), and
this is satisfied if

b(t)b(t ′) = 2D δ(t − t ′) (9.133)

A more rigorous derivation of (9.132) is proposed in Exercise 9.7.9 in the case
of the harmonic oscillator, and in Problem 9.8.4, where one first writes an exact
system of coupled equations for X and V (Kramer’s equation). The strong friction
limit is then obtained as a controlled approximation to this equation. The Ornstein–
Uhlenbeck (O–U) process is obtained if one chooses F(x) to be a harmonic force,

15 The strong friction limit was introduced in Section 6.2.2.
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F(x) = −m ω2
0 x

F(x)

mγ
= −γ x γ =

ω2
0

γ
(9.134)

The O–U process is thus defined by the stochastic differential equation

Ẋ(t) = −γ X (t) + b(t) (9.135)

where b(t) is a Gaussian random function of zero mean that obeys (9.133). Since
the Fourier tranform of b(t)b(t ′) is a constant, b(t) is also called a Gaussian white
noise.

We now wish to compute the conditional probability P(x, t |x0, t0) of finding
the particle at point x at time t , knowing that it was at point x0 at time t0. We shall
take for simplicity t0 = 0, and write P(x, t |x0, t0) = P(x, t |x0). From (9.127) we
can solve (9.135) for X (t)

Y = X (t) = x0e−γ t + e−γ t

t∫

0

dt ′ eγ t ′b(t ′) (9.136)

Equation (9.136) defines a random variable Y . We are going to show that the prob-
ability distribution of Y is Gaussian. Let us divide the [0, t] interval in N small
intervals of length ε = t/N , N ≫ 1, with ti = iε and define the random variable
Bi

ε by

Bi
ε =

ti +ε∫

ti

dt ′ b(t ′) dt ′ (9.137)

Bi
ε is time independent due to time translation invariance. We note that Bi

ε = 0 and
that from (9.133)

Bi
ε B j

ε =
∫

dt ′ dt ′′ b(t ′)b(t ′′) = 2εD δi j (9.138)

The definition (9.137) allows us to write a Riemann approximation to the integral
in (9.136)

Y ≃ e−γ t
N−1∑

i=0

eγ ti Bi
ε

which shows that Y is the sum of a large number of independent random variables.
From the central limit theorem, the probability distribution of Y is Gaussian with
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a variance given by Y 2

Y 2 = e−2γ t
N−1∑

i, j=0

eγ ti eγ t j Bi
ε B j

ε

= εe−2γ t
N∑

i=0

e2γ ti → e−2γ t

t∫

0

dt ′ e2γ t ′ = D
γ

(
1 − e−2γ t

)

This gives the probability distribution of Y , or equivalently of X (t)

P(x, t |x0) =
[ γ

2π D(1 − e−2γ t )

]1/2
exp

[
−γ (x − x0e−γ t )2

2D(1 − e−2γ t )

]
(9.139)

The final result (9.139) has a simple interpretation: as is clear from the previous
derivation, it is a Gaussian distribution for the centred variable y = (x − x0eγ t )

with a variance σ 2(t) = (D/γ )(1 − exp(−2γ t)).
It is instructive to look at the short and long time limits of (9.139). In the long

time limit t ≫ 1/γ , one reaches an equilibrium situation governed by a Boltzmann
distribution

P(x, t |x0) →
( γ

2π D

)1/2
exp

(
−γ x2

2D

)
= Peq(x) ∝ exp

(
−

m ω2
0 x2

2kBT

)
(9.140)

Equation (9.140) gives another derivation of Einstein’s relation (9.130), since it
leads to

γ

D
=

m ω2
0

kBT
with γ =

ω2
0

γ

The limit t ≪ 1/γ

P(x, t |x0) → 1
(4π Dt)1/2 exp

[(x − x0)
2

4Dt

]
(9.141)

shows that the short time limit is dominated by diffusion

⟨(x − x0)
2⟩ ∼ 2D t

As one can write ⟨|X (t + ε) − x(t)|⟩ ∝
√

t , one sees that the trajectory x(t) is a
continuous, but non-differentiable function of t (see also Exercise 9.7.12).

Of course (9.139) may also be used to obtain P(v, t |v0) from (9.132): one has
only to make in (9.139) the substitutions x → v, D → A and γ → γ to get

P(v, t |v0) =
[ γ

2π A(1 − e−2γ t )

]1/2
exp

[
−γ (v − v0e−γ t )2

2A(1 − e−2γ t )

]
(9.142)
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The long time limit of (9.143) gives the Maxwell distribution exp[−mv2/(2kBT )],
and comparison of the Maxwell distribution with the long time limit of (9.143)
leads once more to (9.126).

9.5 Fokker–Planck equation

The probability distribution (9.141) derived from the Langevin equation obeys a
partial differential equation, the Fokker–Planck equation. This equation displays
a remarkable analogy with a Schrödinger equation in imaginary time, an analogy
that we shall use to study convergence to equilibrium.

9.5.1 Derivation of Fokker–Planck from Langevin equation

We wish to derive a partial differential equation (PDE) for the conditional proba-
bility P(x, t |x0), when x(t) obeys a Langevin equation of the form

Ẋ(t) = a(x) + b(t) (9.143)

where we have set a(x) = F(x)/(mγ ). This PDE is the Fokker–Planck (F–P)
equation. Note that (9.143) is a generalization of the O–U equation (9.135), where
a(x) = −γ x ; the random function b(t) has the same properties as in the preceding
section, and in particular it obeys (9.133). Equation (9.143) defines a Markovian
process, because it is first order in time and because of the delta function in (9.133):
if b(t) had a finite (microscopic) autocorrelation time τ ∗, or, in other words, if b(t)
was not strictly a white noise, then (9.133) would not define a Markovian process.
Having a Markovian process allows us to write down a Chapman–Kolmogorov
equation for P

P(x, t + ε|x0) =
∫

dy P(x, t + ε|y, t)P(y, t |x0) (9.144)

and integrating (9.143) over an infinitesimal time ε gives the random trajectory
X [b]

y (t + ε; t) for a particular realization of the random force b(t) and of the initial
position X (t) = y

X [b]
y (t + ε; t) = y + εa(y) +

t+ε∫

t

dt ′ b(t ′) = y + εa(y) + Bε
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where we have used the definition (9.137) of Bε. From this equation follows, to
order ε

P(x, t + ε|y, t) = δ(x − y − εa(y) − Bε)

≃ (1 − εa′(x)) δ(x − y − εa(x) − Bε)

Indeed, at order ε, we may write a(x) = a(y) + O(ε); we have also used the stan-
dard identity

δ( f (y)) = 1
| f ′(y)|

δ(y − y0) f (y0) = 0

We expand formally the δ-function in powers of ε,16 noting that one must expand
to order B2

ε , because Bε is in fact of order
√

ε

δ(x − y − εa(x) − Bε) = δ(x − y) + [εa(x) + Bε]δ′(x − y)

+1
2

[εa(x) + Bε]2δ′′(x − y) + · · ·

and plug the result in the Chapman–Kolmogorov equation, keeping only terms of
order

√
ε and ε. This leads to the integral

∫
dy P(y, t |x0)

×
[
(1 − εa′(x))δ(y − x) + (εa(x) + Bε)δ′(y − x) + (B2

ε /2)δ′′(y − x)
]

which is evaluated thanks to Bε = 0 and B2
ε = 2Dε. Performing the now trivial

integrations gives to order ε

P(x, t + ε|x0) = P(x, t |x0) + ε
∂ P
∂t

= P(x, t |x0) + ε

[
−a′(x)P(x, t |x0) − a(x)

∂

∂x
P(x, t |x0)

+D
∂2

∂x2 P(x, t |x0)

]
+ O(ε2)

16 This is simply a shorthand notation; for example

∫
dx f (x)δ(x − (x0 + ε)) = f (x0 + ε) = f (x0) + ε f ′(x0)

∫
dx f (x)[δ(x − x0) − εδ′(x − x0)] = f (x0) + ε f ′(x0)
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and we obtain the Fokker–Planck equation

∂

∂t
P(x, t |x0) = − ∂

∂x

[
a(x)P(x, t |x0)

]
+ D

∂2

∂x2 P(x, t |x0) (9.145)

The clearest physical interpretation of the F–P equation follows from writing it in
the form of a continuity equation. Defining the current j (x, t)

j (x, t) = a(x)P(x, t) − D
∂ P(x, t)

∂x
= F(x)

mγ
P(x, t) − D

∂ P(x, t)
∂x

(9.146)

where we have used the shorthand notation P(x, t) = P(x, t |x0), (9.145) becomes
a continuity equation

∂ P(x, t)
∂t

+ ∂ j (x, t)
∂x

= 0 (9.147)

We find the important physical result that the current is the sum of the usual
deterministic part a(x)P = ẋ P in the absence of diffusion, and of a diffusive part
−D∂ P/∂x . Another useful expression of the current is obtained by introducing
the potential V (x): F(x) = −∂V/∂x and using Einstein’s relation (9.130)

j (x, t) = −D
(
β P

∂V
∂x

+ ∂ P
∂x

)
(9.148)

9.5.2 Equilibrium and convergence to equilibrium

There is a remarkable correspondence between the F–P equation and the
Schrödinger equation in imaginary time.17 Let us write the Schrödinger equation
for a particle moving in one dimension in a potential U (x) (h̄ = 1)

i
∂ψ(x, t ′)

∂t ′
= − 1

2m
∂2ψ(x, t ′)

∂x2 + U (x)ψ(x, t ′) = Hψ(x, t ′)

and make the change of variables t ′ = −it

∂ψ(x, t)
∂t

= 1
2m

∂2ψ(x, t)
∂x2 − U (x)ψ(x, t) = −Hψ(x, t) (9.149)

Taking U = 0 in (9.149), one recognizes the diffusion equation (6.21) if one iden-
tifies D = 1/(2m). The F–P equation (9.145) is not yet in the form of (9.149),
but it will not be difficult to find the transformation that casts (9.145) in the form

17 In other words, the F–P equation is related to the Schrödinger equation by the Wick rotation already encoun-
tered in Chapter 7.
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of (9.149). Let us first find the equilibrium distribution; we set β = 1 in order to
simplify the notations and use (9.147) and (9.148)

∂ P
∂t

= D
∂

∂x

(
P

∂V
∂x

+ ∂ P
∂x

)
= − ∂ j

∂x

A sufficient condition for equilibrium is that j = 0,18 leading to the Boltzmannn
distribution (with β = 1)

Peq(x) ∝ exp(−V (x))

Let us define ρ(x, t) by

P(x, t) = exp
(
−1

2
V (x)

)
ρ(x, t) (9.150)

so that

∂ P
∂x

+ P
∂V
∂x

= exp
(
−1

2
V (x)

) [
∂ρ

∂x
+ 1

2
ρ

∂V
∂x

]

A straightforward calculation shows that the unwanted terms of (9.149) cancel out,
leaving us with the desired result

∂ρ(x, t)
∂t

= D
∂2ρ(x, t)

∂x2 − U (x)ρ(x, t) = −Hρ(x, t)

H = −D
∂2

∂x2 + U (x) U (x) = D
4

(∂V
∂x

)2
− D

2
∂2V
∂x2

(9.151)

Let us define ψ0(x) = N exp(−1
2 V (x)), where N is a normalization constant such

that
∫

dx |ψ0(x)|2 = 1

The result Peq(x) ∝ exp(−V (x)) is equivalent to Hψ0 = 0; indeed
[ ∂

∂x
+ 1

2
∂V
∂x

]
ψ0(x) = 0

which corresponds to j = 0. Since ψ0(x) has no nodes (zeroes), one knows from
a standard theorem in quantum mechanics that ψ0(x) is the ground state wave
function, and it has energy E0 = 0. All excited states have energies En > 0. In
order to obtain the time evolution, we expand the initial condition at time t = 0 on
a complete set of eigenfunctions ψn(x) = ⟨x |n⟩ of H

Hψn(x) = Enψn(x) (9.152)

18 In one dimension j = const implies j = 0, but one may have stationary non-equilibrium currents in higher
dimensions.
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which can be chosen to be real. Then

ρ(x, 0|x0) =
∑

n
cnψn(x)

cn =
∫

dx ψn(x)ρ(x, 0|x0) = ψn(x0)e
1
2 V (x0) = ⟨n|x0⟩e

1
2 V (x0)

since ρ(x, 0|x0) = exp(1
2 V (x0))δ(x − x0) and we have intoduced Dirac’s bra and

ket notation. We get ρ(x, t |x0) from the time evolution of the ψns: ψn(x, t) =
exp(−Ent)ψn(x)

ρ(x, t |x0) =
∑

n
cne−Entψn(x)

=
∑

n
e

1
2 V (x0)⟨x |n⟩e−Ent ⟨n|x0⟩

= e
1
2 V (x0)⟨x |e−t H |x0⟩

Summarizing

P(x, t |x0) = e− 1
2 (V (x)−V (x0))⟨x |e−t H |x0⟩ (9.153)

For large times

e−t H ≃ |0⟩⟨0| + e−E1t |1⟩⟨1|

so that the approach to equilibrium is controlled by the energy E1 of the first
excited state ψ1(x): Hψ1(x) = E1ψ1(x).19 One checks from (9.153) that

lim
t→∞

P(x, t |x0) = N 2e−V (x)

9.5.3 Space-dependent diffusion coefficient

It is possible to generalize the F–P equation (9.145) to a space-dependent diffusion
coefficient D(x)

∂

∂t
P(x, t |x0) = − ∂

∂x

[
a(x)P(x, t |x0)

]
+ ∂2

∂x2

[
D(x)P(x, t |x0)

]
(9.154)

Note that we have written a priori D(x) inside the x-derivative. Further comments
on this apparently arbitrary choice will be given later on, but for the time being
let us use (9.154) as it stands to compute the first and second moments of the tra-
jectory. Let us expand P(x, t + ε|x0, t) in powers of ε and use (9.154) to express

19 The reader will remark the analogy with Equation (7.188) of Problem 7.9.8.
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∂ P/∂t

P(x, t + ε|x0, t) = δ(x − x0) + ε
∂ P
∂t

+ O(ε2)

= δ(x − x0) − ε
∂

∂x
[a(x)P] + ε

∂2

∂x2 [D(x)P] + O(ε2)

The first moment is

lim
ε→0

1
ε

X (t + ε) − x0 =
∫

dx (x − x0)
[
− ∂

∂x
[(a(x)P] + ∂2

∂x2 [D(x)P)]
]

(9.155)

where we have used (x − x0) δ(x − x0) = 0. We integrate (9.155) by parts and
use lim|x |→∞ P(x, t |x0) = 0, so that only the first term in the square bracket of
(9.155) contributes and

lim
ε→0

1
ε

X (t + ε) − x0 = a(x0) (9.156)

The second moment (1/ε)(X (t + ε) − x0)2 is also given by an integration by
parts, but it is now the second term in the square bracket of (9.155) that contributes

lim
ε→0

1
ε

(X (t + ε) − x0)2 = 2D(x0) (9.157)

Thus, given the first two moments of the trajectory (9.156) and (9.157), one can
write the corresponding F–P equation (9.154). These results are easily generalized
to multivariate F–P equations (Exercise 9.7.11).

From these results, one would be tempted to conclude that X (t) obeys a
Langevin equation

Ẋ(t) = a(x) +
√

D(x) b(t) b(t)b(t ′) = 2δ(t − t ′) (9.158)

However, because of the delta function in (9.158), the function b(t) is singu-
lar, and the product

√
D(x) b(t) is not defined: this leads to the famous Itô

vs. Stratonovitch dilemma (see Problem 9.8.4 for more details). Let us define
C(x) =

√
D(x) and try to integrate Equation (9.158) over a small time interval ε

X (t + ε) − x(t) = εa(x(t)) +
t+ε∫

t

dt ′ C(x(t ′))b(t ′)

There are many possible prescriptions for handling the product C(x(t ′))b(t ′), and
each of them leads to a different F–P equation. One can show that giving a finite
width τ ∗ to the time autocorrelation function of b(t) leads to the Stratonovitch
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prescription

t+ε∫

t

dt ′ C(x(t ′))b(t ′) → C
[ x(t) + x(t + ε)

2

] t+ε∫

t

dt ′ b(t ′)

and a corresponding F–P equation

∂

∂t
P(x, t |x0) = − ∂

∂x

[
a(x)P(x, t |x0)

]
+ ∂

∂x

[
C(x)

∂

∂x
C(x)P(x, t |x0)

]

(9.159)

while the Itô prescription

t+ε∫

t

dt ′ C(x(t ′))b(t ′) → C(x(t))

t+ε∫

t

dt ′ b(t ′)

leads to the F–P equation (9.154). Other prescriptions and the corresponding F–P
equations are examined in Problem 9.8.4. One may always write the F–P equation
in the form (9.154); however, the various prescriptions correspond to modifying
the drift velocity a(x).

9.6 Numerical integration

In this section it will be convenient to work in a system of units with D = mγ = 1
(and kT = 1 from Equation (9.130)). Then as we saw in Section 9.5, the Langevin
equation

Ẋ(t) = a(x) + b(t) (9.160)

where a(x) = −∂V (x)/∂x and b(t)b(t ′) = 2δ(t − t ′), admits a stationary solution
of the form

P(x, t |x0) ∝ e−V (x) (9.161)

In other words, for t → ∞, the configurations are given by the time-independent
probability distribution (9.161). It was also shown in the previous section that the
approach to this stationary solution is controlled by the spectrum of the Fokker–
Planck Hamiltonian, which is not known in general.

It is therefore evident that numerical solutions of the Langevin equation are im-
portant in the non-equilibrium case where transient effects are dominant. However,
it should be evident from the discussions of Chapter 7 and Equation (9.161) that
the Langevin equation can also be used as a tool to perform numerical simulations
at equilibrium. In Chapter 7 we discussed how to construct dynamics (for example
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Metropolis, Glauber or Wolff) which, in the long time limit, generate configura-
tions with the correct Boltzmann distribution, PB = exp(−βE). Equations (9.160)
and (9.161) give another way with V = βE . Therefore, the numerical methods
that we now discuss may be applied both to equilibrium and non-equilibrium sit-
uations. We stress, however, that in the equilibrium case, the Langevin dynamics
may or may not describe the actual approach to the stationary state: one may use
the Langevin equation even if it does not describe the true dynamics of the system
if the interest is only in the equilibrium properties.

In the case of a deterministic differential equation,

dx(t)
dt

= −∂V (x)

∂x
(9.162)

one may use the simplest (Euler) discretization of the time derivative,

x(t + ε) ≈ x(t) − ε
∂V (x)

∂x
+ O(ε2) (9.163)

The error committed in this case is of the order of ε2. We shall now apply the same
approximation to the Langevin equation (9.160)20

x(t + ε) ≈ x(t) − ε
∂V (x)

∂x
+ εb(t) (9.164)

However, care must be taken with the stochastic noise b(t) since t is now discrete
and we can no longer have b(t)b(t ′) = 2δ(t − t ′). Recalling that the dimension of
δ(t − t ′) is t−1, we see that the discrete time form of the delta function becomes

b(t)b(t ′) = 2
δt t ′

ε
(9.165)

We may then rescale the noise, b(t) → b(t)
√

2/ε, leading to the discrete time
Langevin equation

x(t + ε) ≈ x(t) − ε
∂V (x)

∂x
+

√
2εb(t) (9.166)

where we now have

b(t)b(t ′) = δt t ′ (9.167)

Since the noise term in Equation (9.166) is of the order of
√

ε, the numerical error
due to this discretization is O(ε) and not O(ε2) as for the deterministic equation.
This may also be seen clearly from the derivation of the Fokker–Planck equation
where the same discretization was used for the Langevin equation and where we
neglected terms of order ε in the final result.

20 For the numerical integration of the Langevin equation we make no distinction between X (t) and x(t) and
write all variables with lower case.
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In the general case, where we may have, say, N variables (for example N
B-particles) the Langevin equations are given by

xi (t + ε) ≈ xi (t) − ε
∂V ({x})

∂xi
+

√
2εbi (t) (9.168)

with

bi (t)b j (t ′) = δt t ′δi j (9.169)

The numerical integration is now simple to implement: choose an initial configura-
tion, {xi (t0)}, at t = t0, calculate the deterministic force −∂V ({x})/∂xi , generate
N random numbers, bi (t0), and use Equation (9.168) to obtain xi (t0 + ε) and re-
peat for as many time steps as is desired.

It is clear that random numbers bi (t) satisfying (9.169) may be easily generated
using a Gaussian random number generator. However, while this is sufficient, it is
not necessary: all one needs for (9.168) is a random number such that bi (t) = 0
and whose second moment is given by (9.169) with no conditions given for higher
moments. For example, random numbers drawn from a uniform distribution be-
tween −

√
3 and +

√
3 satisfy these conditions and are much faster to generate

than Gaussian ones.
To obtain higher precision with this algorithm, it is necessary to take smaller

time steps. But, in order to keep the same physical time, the number of steps must
be increased correspondingly, which might be costly in computer time.

It is therefore desirable to have a higher order algorithm that yields smaller
errors for the same time step. A very simple such algorithm is the second order
Runge–Kutta discretization. As for deterministic equations, first do a tentative up-
date of the variables using a simple Euler step,

x ′
i (t + ε) = xi (t) − ε

∂V ({x})
∂xi

+
√

2εbi (t) (9.170)

and then use this x ′
i (t + ε) with xi (t) to get the final evolution of one time step,

xi (t + ε) = xi (t) − ε

2

(
∂V ({x})

∂xi

∣∣∣
{xi (t)}

+ ∂V ({x})
∂xi

∣∣∣
{x ′

i (t+ε)}

)
+

√
2εbi (t)

(9.171)

For example, taking the simple case of V (x) = x2/2, the tentative update (9.170)
becomes

x ′(t + ε) = x(t) − εx(t) +
√

2εb(t) (9.172)



9.6 Numerical integration 561

and the final update (9.171) is obtained from

x(t + ε) = x(t) − ε

2

(
∂V ({x})

∂x

∣∣∣
{x(t)}

+ ∂V ({x})
∂x

∣∣∣
{x ′(t+ε)}

)
+

√
2εb(t)

= x(t) − ε

2

(
x(t) + x ′(t + ε)

)
+

√
2εb(t)

= x(t) − ε
(

1 − ε

2

)
x(t) +

√
2ε

(
1 − ε

2

)
b(t) (9.173)

Although the Runge–Kutta algorithm is rather simple in general for these stochas-
tic equations, the above particularly simple form is a special case for the quadratic
case.

Three very important remarks are in order. First, it is crucial to emphasize that
the same random number bi (t) is used in both (9.170) and (9.171): we do not gen-
erate a number for step (9.170) and another for (9.171). This condition is required
to ensure that the error is O(ε2) and has the additional advantage that it reduces the
amount of work. The second remark is that it is no longer sufficient to use a random
number uniformly distributed between −

√
3 and +

√
3: in the proof that the error

in this algorithm is O(ε2), the fourth moment of the random number is needed.
The easiest way to satisfy all the conditions in this case is to use a Gaussian ran-
dom number generator. The third remark is to note that this algorithm is in fact not
equivalent to two successive Euler steps, which would still lead to an order O(ε)

algorithm. The error of the second order Runge–Kutta algorithm just presented
is O(ε2). This may be shown with a tedious calculation that follows steps lead-
ing to Equation (9.145) but using (9.170) and (9.171) for the discretized Langevin
equation [12, 52]. The behaviour of the errors will be studied numerically in the
exercises. Higher order Runge–Kutta discretizations are also available but become
very complicated.

One final comment concerns the stability of the integration. Consider the one-
variable Langevin equation in the Euler discretization (9.164) with V (x) = ax2/2
and with a a constant.21 Iterating this equation a few times one observes the ap-
pearance of a term of the form (1 − εa)n where n is the number of iterations.
Clearly, for the iterations to converge, the condition εa < 1 must be satisfied. In
the more general case where V ({xi }) = xi Mi j x j/2 (i and j are summed), the sta-
bility condition becomes ελmax < 1 where λmax is the largest eigenvalue of the
matrix M . We therefore arrive at the very important result that the time step is set
by the largest eigenvalue, i.e. by the fastest mode. On the other hand, we saw at
the end of Section 9.5.2 that the relaxation time is controlled by the lowest ex-
cited state, in other words the smallest eigenvalue, λmin. So the relaxation time

21 While we present the argument based on the Euler discretization, the conclusions are in fact general and apply
for the Runge–Kutta case too.
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is τ ∼ λ−1
min while the time step is ε ∼ λ−1

max. Therefore the number of iterations
required to decorrelate the configurations is

ncorr ∼ λmax/λmin (9.174)

For this reason, ncorr can be very large indeed. When λmax/λmin ≫ 1, the matrix
M is said to be ill-conditioned. This is another example of critical slowing down
which was discussed in Chapter 7.

If one is interested only in the stationary solution of the Langevin equation and
not in how that solution is approached, one may modify the dynamics to precon-
dition M and greatly accelerate the convergence. This topic is beyond our scope;
see Reference [12].

9.7 Exercises

9.7.1 Linear response: forced harmonic oscillator

1. Let us consider a forced one-dimensional harmonic oscillator with mass m and
damping constant γ

ẍ + γ ẋ + ω2
0x = f (t)

m

and define its dynamical susceptibility χ(t) by

x(t) =
∫

dt ′ χ(t − t ′) f (t ′)

Show that the Fourier transform of χ(t) is

χ(ω) = 1

m[−ω2 − iωγ + ω2
0]

Write the explicit expression of χ ′′(ω). Find the location of the poles ω± of χ(ω)

in the complex ω-plane and show that one must distinguish between the cases
γ < 2ω0 and γ > 2ω0; γ = 2ω0 is the critical damping. When γ ≥ 2ω0, one says
that the oscillator is overdamped.

2. Find the static susceptibility χ

χ = lim
ω→0

χ(ω) = 1

mω2
0

and show that in the overdamped case one may write

χ(ω) = 1
m

1

ω2
0 − iωγ

= χ

1 − iωτ
τ = γ

ω2
0

(9.175)
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Write χ ′′(ω) explicitly. Note that working in the strong friction limit amounts to
neglecting inertia.

3. Starting from the work per unit of time done by the external force on the
oscillator

dW
dt

= f (t)ẋ(t)

and taking a periodic f (t)

f (t) = Re
(

fω e−iωt
)

= 1
2

(
fω e−iωt + f ∗

ω eiωt
)

show that the time average of dW/dt over a time interval T ≫ ω−1 is

〈dW
dt

〉

T
= 1

2
ω| fω|2

∞∫

0

dt χ(t) sin ωt

Observing that χ(t) = 2i θ(t) χ ′′(t) and that χ ′′(t) = −χ ′′(−t), deduce from this
equation

〈dW
dt

〉

T
= 1

2
ω| fω|2 χ ′′(ω) (9.176)

9.7.2 Force on a Brownian particle

Let us consider a Brownian particle with mass M in a fluid. We call m the mass
of the fluid molecules, m ≪ M and v⃗ the velocity of the Brownian particle with
respect to the fluid. In the Galilean frame where the Brownian particle is at rest,
the Hamiltonian reads

H1 =
N∑

i=1

1
2

m(v⃗i − v⃗)2 + potential energy

where v⃗i is the velocity of molecule i . Define the dynamical variable A⃗ by

A⃗ = m
N∑

i=1

v⃗i

In the linear approximation, the perturbation is V = −A⃗ · v⃗. Use linear response
theory to compute dδA⃗/dt , and show that the viscosity coefficient α is given by

α = 1
3kT

∞∫

0

dt ⟨F⃗(t) · F⃗(0)⟩
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where F⃗ is the force on the particle assumed to be at rest in the fluid.

9.7.3 Green–Kubo formula

Starting from

Dχ = lim
ω→0

lim
k→0

ω

k2 χ ′′(k, ω)

show that the diffusion coefficient is given by the Green–Kubo formula

Dχ = β

3

∞∫

0

dt
∫

d3r ⟨ j⃗(t, r⃗) · j⃗(0, 0⃗)⟩

Hints

(i) Using rotational invariance, show that (l, m = x, y, z)
∫

d3r e−i k⃗·r⃗ ⟨∇⃗ · j⃗(t, r⃗) ∇⃗ · j⃗(0, 0⃗)⟩ =
∑

l,m

klkm

(
H(t, k2)δlm + K (t, k2)klkm

)

(ii) Study the limit

lim
ω→0

lim
k→0

1
3

∞∫

−∞

dt eiωt
∫

d3r e−i k⃗·r⃗ ⟨ j⃗(t, r⃗) · j⃗(0, 0⃗)⟩

9.7.4 Mori’s scalar product

1. One defines for two operators A and B and a density operator D the scalar
product

⟨B; A⟩D =
1∫

0

dx Tr
[
B Dx A† D1−x

]

Show that ⟨B; A⟩D defines a Hermitian scalar product: it is linear in B, antilinear
in A and it obeys

⟨A; B⟩D = ⟨B; A⟩∗D

Hint: [Tr(ABC)]∗ = Tr(C†B†A†). Furthermore, show that ⟨A; A⟩D ≥ 0 and that
⟨A; A⟩D = 0 implies that A = 0. These last two results show that Mori’s scalar
product is positive definite.
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2. Show that L is Hermitian with respect to Mori’s scalar product

⟨A;LB⟩ = ⟨LA; B⟩

Hint: First derive

⟨A;LB⟩ = 1
β

⟨[A, B]⟩ (9.177)

3. Show that

⟨Ai ; Ȧ j ⟩ = −εiε j ⟨Ai ; Ȧ j ⟩ (9.178)

where εi (ε j ) is the parity of Ai (A j ) under time reversal.

9.7.5 Symmetry properties of χ ′′
i j

1. Show the following properties for Hermitian Ai s:

(i) from time translation invariance

χ ′′
i j (t) = −χ ′′

j i (−t) or χ ′′
i j (ω) = −χ ′′

j i (−ω)

(ii) from the Hermiticity of the Ai s

χ ′′∗
i j (t) = −χ ′′

i j (t) or χ ′′∗
i j (ω) = −χ ′′

i j (−ω)

(iii) from time reversal invariance

χ ′′
i j (t) = −εiε jχ

′′
i j (−t) or χ ′′

i j (ω) = −εiε jχ
′′
i j (−ω)

where εi (ε j ) is the parity of Ai (A j ) under time reversal. Combine (i) and (ii) to
show that (χ ′′

i j (ω))∗ = χ ′′
j i (ω). Hint for (iii): If H is invariant under time reversal,

%H%−1 = H , show that for two operators Ai and A j

⟨Ai (t) A j (0)⟩ = εiε j ⟨A†
j (0) A†

i (−t)⟩

by noticing that |ñ⟩ = %|n⟩ is an eigenvector of H

H |ñ⟩ = En|ñ⟩

if H |n⟩ = En|n⟩.

2. In the case of two operators A and B, not necessarily Hermitian, one defines

χ ′′
AB(t) = 1

2
⟨[A(t), B†(0)]⟩ (9.179)

Show the following properties:
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(i) from time translation invariance

χ ′′∗
AB(t) = −χ ′′

B† A†(−t)

(ii) from Hermitian conjugation

χ ′′
AB(t) = −χ ′′

A†B†(t)

(iii) from time reversal invariance

χ ′′
AB(t) = −εAεBχ ′′

A†B†(−t) = εAεBχ ′′
B† A†(t)

9.7.6 Dissipation

Give the detailed proof of
〈dW

dt

〉

T
= 1

2

∑

i, j

f ω
i

∗ωχ ′′
i j (ω) f ω

j

Hint: Use (9.13) in the form

δAi (t) =
∫

dt ′ χi j (t ′) f j (t − t ′)

and integrate over t in the range [0, T ], T ≫ ω−1. It is useful to remark that
χ ′′

i j (t) = −χ ′′
j i (−t). Furthermore, show that ωχ ′′

i j (ω) is a positive matrix. Hint:
Study

∑

i, j

T∫

0

dt dt ′ai eiωt a∗
j e−iωt ′ ⟨Ai (t)A j (t ′)⟩

9.7.7 Proof of the f-sum rule in quantum mechanics

The particle density operator n is defined as

n(r⃗) =
N∑

α=1

δ(r⃗ − r⃗α
)

for a system of N particles of mass m, while the current density operator is
(i = x, y, z)

ji (r⃗) =
N∑

α=1

pα
i

m
δ(r⃗ − r⃗α

)

More precisely, one should use a symmetrized version of the right hand side in the
above definition; r⃗α and p⃗α are the position and momentum of particle α, which
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obey the commutation relations (h̄ = 1)

[xα
i , pβ

j ] = iδi jδαβ I

1. Show that the sum rule (9.79) may be written
∫

dω

π
ωχ ′′

nn(r⃗ , r⃗ ′; ω) = −i∇x ·
〈
[ j⃗(r⃗), n(r⃗ ′)]

〉

2. Take the Fourier transform of both sides and remark, for example in the case
of the density, that

n(q⃗) =
N∑

α=1

exp(iq⃗ · r⃗α
)

3. Compute the commutator. For a single variable

[p, exp(iqx)] = −i
∂

∂x
exp(iqx) = q exp(iqx)

9.7.8 Diffusion of a Brownian particle

1. Let I (T ) be the integral

I (T ) =
T/2∫

−T/2

dt1

T/2∫

−T/2

dt2 g(t)

where the function g(t) depends only on the difference t = t1 − t2. Show that

I (T ) = T

+T∫

−T

dt g(t)
(

1 − |t |
T

)
(9.180)

The second term may be neglected if the function g(t) decreases rapidly on a time
scale τ ≪ T . Application:

T/2∫

−T/2

dt1

T/2∫

−T/2

dt2 e−|t |/τ = 2T
[
τ

(
1 − τ

T

)
+ τ 2

T
e−T/τ

]
(9.181)

2. Starting from the equilibrium velocity autocorrelation function (9.112) Ceq
vv(t),

compute

⟨()X (t))2⟩ = ⟨(X (t) − x(0))2⟩



568 Topics in non-equilibrium statistical mechanics

and show that one obtains a diffusive behaviour

⟨(!X (t))2⟩ = 2Dt

when t ≫ 1/γ .

9.7.9 Strong friction limit: harmonic oscillator

We consider again the forced harmonic oscillator of Exercise 9.7.1, assuming that
the external force F(t) is a stationary random force

Ẍ + γ Ẋ + ω2
0 X = F(t)

m

Let Cxx (t) denote the position autocorrelation function

Cxx (t) = X (t ′ + t)X (t ′)

and C pp(t) the momentum autocorrelation function

C pp(t) = P(t ′ + t)P(t ′)

τx and τp are the characteristic times of Cxx (t) and C pp(t).

1. Using the Wiener–Kinchin theorem (9.189), compute the Fourier transform
Cxx (ω) as a function of the autocorrelation of the force CF F (ω). If CF F (t) is
given by (9.125)

CF F (t) = F(t ′ + t)F(t ′) = 2Aδ(t)

show that

Cxx (ω) = 1
m2

2A

(ω2 − ω2
0)

2 + γ 2ω2
(9.182)

2. The strong friction limit corresponds to γ ≫ ω0. Draw qualitatively Cxx (ω)

in this limit, show that the width of the curve is ≃ ω2
0/γ and estimate τx .

3. What is the relation between Cxx (ω) and C pp(ω)? Draw qualitatively C pp(ω)

in the strong friction limit and determine its width. Deduce from this width that
τp ≃ 1/γ and that τx ≫ τp. Discuss the physical significance of this result.

4. Show that taking the strong friction limit amounts to neglecting the inertial
term Ẍ in the equation of motion and recover the Ornstein–Uhlenbeck equation
for Ẋ as well as τx .
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9.7.10 Green’s function method

Let G(t) be the retarded Green’s function of the damped harmonic oscillator
(G(t) = 0 if t < 0)

( d2

dt2 + γ
d
dt

+ ω2
0

)
G(t) = δ(t)

If γ < 2ω0, show that

G(t) = θ(t)
ω1

e−γ t/2 sin ω1t ω1 = 1
2
(4ω2

0 − γ 2)1/2

where θ(t) is the step function. We want to solve the following stochastic differ-
ential equation for the random function X (t), with initial conditions x(0) and ẋ(0)

( d2

dt2 + γ
d
dt

+ ω2
0

)
X (t) = b(t)

where b(t) is a stochastic force

b(t)b(t ′) = 2A
m2 δ(t − t ′)

Show that

X (t) − x0(t) = Y (t) =
t∫

0

dt ′ G(t − t ′)b(t ′)

where x0(t) is the solution of the homogeneous equation with initial condi-
tions x(0) and ẋ(0). What is the characteristic damping time of x0(t)? Compute
⟨Y (t)Y (t + τ )⟩ for t ≫ 1/γ

Y (t)Y (t + τ ) ≃ Ae−γ τ/2

γω2
0

[
cos ω1t + γ

2ω1
sin ω1t

]

9.7.11 Moments of the Fokker–Planck equation

Let P(x, t), x = (x1, . . . , xN ) be a multivariate probability distribution that obeys
the Fokker–Planck equation

∂ P
∂t

= −
N∑

i=1

∂

∂xi

[
Ai (x)P

]
+

N∑

i, j=1

∂2

∂xi∂x j

[
Di j (x)P

]
(9.183)
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Define !Xi = Xi (t + ε) − xi (t). Show that

lim
ε→0

1
ε

!Xi = Ai (x)

lim
ε→0

1
ε

!Xi!X j = 2Di j (x)

(9.184)

Hint: Integrate by parts. What is the corresponding Langevin equation if Di j is
x-independent?

9.7.12 Backward velocity

Let v+ be the forward velocity

v+ = lim
ε→0

1
ε

X (t + ε) − x = a(x)

for the Langevin equation

dX
dt

= a(x) + b(t) b(t)b(t ′) = 2Dδ(t − t ′)

Assume that one knows that the particle is at x at time t . One now wishes to deter-
mine the backward velocity

v− = lim
ε→0

1
ε

x − X (t − ε)

Show that

v− = v+ − 2D
∂ ln P(x, t |x0)

∂x
Hint: Use P(x, t |y, t − ε). This result shows clearly that the trajectory is not dif-
ferentiable.

9.7.13 Numerical integration of the Langevin equation

In this exercise we shall test the Euler and Runge–Kutta integration schemes dis-
cussed in Section 9.6.

1. Write a program to implement the Euler approximation (9.166) with V (x) =
x2/2. Run your program doing of the order of 104 thermalization iterations and
then about 106 measurement iterations. Measure ⟨x2⟩ as a function of the discrete
time step ε for 0.1 ≤ ε ≤ 0.5. Compare with the exact result, which you can cal-
culate easily. Time your program and verify that, for the same precision and the
same physical time t = nε where n is the number of iterations, the Runge–Kutta
method is much more efficient than Euler’s.
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Do the same for V (x) = x4/4. In this case, the exact result is unavailable but
you will see that both Euler and Runge–Kutta tend to the same value as ε → 0. In
this case do the simulations for 5 × 10−3 ≤ ε ≤ 0.1.

Note: It is important to work in double precision otherwise you will quickly lose
accuracy as ε gets smaller.

2. For the case V (x) = x2/2 calculate the autocorrelation function ⟨x(t0)x(t0 +
t)⟩ and verify that it decays exponentially. Use the Runge–Kutta method with ε =
0.2. What is the relaxation time? Does it agree with the prediction of the Fokker–
Planck equation? Compare with the exact result. See Equations (9.151) and (9.153)
but note that whereas in (9.153) we took E0 = 0, in the numerical integration it is
not!

Use this method to determine E0 − E1 for the case V (x) = x4/4. In this case
take ε = 0.01 or smaller.

9.7.14 Metastable states and escape times

In this exercise we shall study the tunneling time τ of a particle trapped in a
metastable state (local minimum). We shall assume the particle dynamics to be
described by the Langevin equation,

dx(t)
dt

= −∂V (x)

∂x
+

√
T b(t) (9.185)

where we have introduced the temperature explicitly. The potential

V (x) = (ax2 − b)2 (9.186)

has two degenerate minima at x = ±
√

b/a and looks like a section of the Mexi-
can hat potential in Chapter 4. This degeneracy is lifted by the application of an
external ‘field’ h

V (x) = (ax2 − b)2 − hx (9.187)

where, to fix ideas, we take h > 0. This lifts the minimum at −
√

a/b to a higher
energy than the minimum at +

√
a/b; it also slightly shifts their positions. So now

the minimum at x < 0 is a local minimum, and a particle trapped in it will eventu-
ally tunnel out into the global minimum.22 Our goal is to study this tunneling time
as a function of temperature.

Take a = 1, b = 1 and h = 0.3, and use the Runge–Kutta discretization with
ε = 0.01 to study the escape of the particle. We consider the particle to have

22 If one waits long enough the particle will tunnel back into the local minimum for a while and then tunnel out
of it again.
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escaped the local minimum as soon as x > 0 since then it will have passed the
peak of the barrier.

To determine the average escape time, we place the particle at x = −1 and start
the Runge–Kutta integration. We stop when x > 0 and record the time it took to
reach this point. We repeat this, say, 5000 times and calculate the average of the
escape times thus found.23 Of course this is equivalent to taking a population of
5000 particles in the local minimum and observing it decay to the global one.

1. For several temperatures, say T = 0.075, 0.08, 0.09, 0.1, make a separate
histogram of the escape times recorded for each temperature. Does the shape of the
histogram suggest a form for the dependence of the population on time? Calculate
the average escape time τ for each of these temperatures and try a fit of the form
exp(−t/τ ) for the histograms.

2. Determine τ for many temperatures 0.075 ≤ T ≤ 1.5 and plot τ versus T .
Compare your numerical results with the theoretical calculation24

τ = 2π√
V ′′(xA)|V ′′(xB)|

e(V (xB)−V (xA))/T (9.188)

where V ′′(x) is the second derivative of the potential, xA < 0 is the position of
the local minimum, V ′(xA) = 0, and xB is the position of the peak separating the
two minima, V ′(xB) = 0. Is the agreement better at low or at high temperature?
At what temperature does the agreement become bad?

In fact, the very definition of escape time τ presupposes that τ is much longer
than the time needed to establish local equilibrium in the local minimum. Since
as the temperature of the particle increases its energy gets closer to the top of the
barrier, this condition is no longer satisfied and the agreement between theory and
simulation deteriorates.

9.8 Problems

9.8.1 Inelastic light scattering from a suspension of particles

In this problem we limit ourselves to the classical approximation. When light trav-
els through a dielectric medium, the medium is polarized, and the polarization acts
as the source of the electromagnetic field. We split the dielectric response into a
component ε independent of space and time and a fluctuation δε(r⃗ , t); the polar-
ization is written accordingly

P⃗ = ε0(ε − 1)E⃗(r⃗ , t) + δ P⃗(r⃗ , t)

23 Although we are always starting the particle at the same initial position, it will not follow the same path since
the noise (sequence of random numbers) is different.

24 See for example van Kampen [119] Chapter XI.
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where ε0 is the vacuum permittivity and E⃗(r⃗ , t) the electric field.

1. Show that in the gauge defined by

ε

c2

∂ϕ

∂t
+ ∇⃗ · A⃗ = 0

where ϕ is the scalar potential, the vector potential A⃗ obeys

∇2 A⃗ − ε

c2

∂2 A⃗
∂t2 = − 1

ε0c2

∂δ P⃗
∂t

What is the corresponding equation for the scalar potential ϕ? Note that c/
√

ε is
the light velocity in the medium.

2. It is convenient to use the Hertz vector Z⃗

ϕ = −∇⃗ · Z⃗ A⃗ = ε

c2

∂ Z⃗
∂t

Write the partial differential equation obeyed by Z⃗ as a function of δ P⃗ . Give the
expression of E⃗ as a function of Z⃗ .

3. Show that if the wave is scattered by a fluctuation δ P⃗ of frequency ω lo-
cated around r⃗ ′, then for r = |r⃗ | ≫ |r⃗ ′| (see Figure 9.4 for the geometry of the
scattering)

Z⃗(r⃗ , ω) ≃ 1
4πε0ε

eikr

r

∫
d3r ′ e−ik⃗·r⃗ ′

δ P⃗(r⃗ ′, ω)

In the above equation, k⃗ = kr̂ (r̂ = r⃗/r) is the wave vector of the scattered light,
k = ω

√
ε/c. Obtain from this equation the scattered electric field

E⃗(r⃗ , ω) ≃ ω2

4πε0c2

eikr

r

∫
d3r ′ e−ik⃗·r⃗ ′

k̂ × (δ P⃗(r⃗ ′, ω) × k̂)

r⃗ − r⃗ ′

k⃗,ω

k⃗0,ω0

r⃗ ′

r⃗

Figure 9.4 Geometry of the scattering.
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4. Show the Wiener–Kinchin theorem: If X (t) is a stationary random function
and XT (t) is defined by

XT (t) = X (t) − T ≤ t ≤ T, otherwise XT (t) = 0

where T is a time chosen to be much larger than all the characteristic times of the
problem, then

⟨XT (ω)X∗
T (ω)⟩ ≃ T ST (ω) (9.189)

where ST (ω) is the Fourier transform of the autocorrelation function of XT (t)

ST (ω) =
∫

dt eiωt ⟨XT (t)X∗
T (0)⟩ (9.190)

Hint: Use (9.180). In what follows, the subscript T will be suppressed.

5. We consider light scattering by small particles suspended in a fluid. The fluctu-
ations of the polarization δ P⃗(r⃗ , t) of the medium submitted to an incident electric
field

E⃗(r⃗ , t) = E⃗0 ei(k⃗0·r⃗−ω0t)

are given by

δ P⃗(r⃗ , t) = αε0δn(r⃗ , t)E⃗0ei(k⃗0·r⃗−ω0t)

where ε0 is the vacuum polarizability, α the difference between the particle dielec-
tric constant and that of the fluid and δn(r⃗ , t) the density fluctuations of the parti-
cles. One notes the similarity of this problem with the spin diffusion considered in
Section 9.1.4: here the rôle of the magnetic field, conjugate to the magnetization
density, is played by the chemical potential, conjugate to the density.

Show that the power dP radiated in a solid angle d% and a frequency range dω

is

dP
d% dω

= ε0c
(4πε0)2

(ω

c

)4 1
2πT

(ê0 × k̂)2⟨δ P⃗(k⃗, ω) · δ P⃗∗(k⃗, ω)⟩

where ê0 = E⃗0/E0 and % is the solid angle of k⃗.

6. Show that

δ P⃗(k⃗, ω) = αε0 E⃗0 δn(k⃗ − k⃗0, ω − ω0)

and deduce that per unit volume of the target

dP
d% dω

= ε0c
32π3

(ω

c

)4
(ê0 × k̂)2 α2 E⃗2

0 Snn(k⃗ ′, ω′)
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where k⃗ ′ = k⃗ − k⃗0, ω′ = ω − ω0 and Snn(r⃗ , t) is the density autocorrelation
function

Snn(r⃗ , t) = ⟨δn(r⃗ , t)δn(0⃗, 0)⟩

7. One takes for Snn(k⃗ ′, ω′) the following expression

Snn(k⃗ ′, ω′) = 2
β

χ(k⃗ ′)
Dk′2

ω′2 + (Dk′2)2

where D is the diffusion coefficient of the particles in the fluid and χ(k⃗ ′) the
Fourier transform of the static susceptibility χ(r⃗ − r⃗ ′) = δn(r⃗)/δµ(r⃗ ′). By ap-
pealing to Section 9.1.4, give a justification of this expression.

8. Taking into account that r2⟨E⃗(r⃗ , ω) · E⃗∗(r⃗ , ω)⟩ is in fact a function of k⃗ ′ and
ω, one defines E⃗(r⃗ , t) = r E⃗(r⃗ , t) and SE E (k⃗ ′, ω) as the time autocorrelation func-
tion of E⃗(r⃗ , t)

SE E (k⃗ ′, ω) =
∫

dt eiωt ⟨E⃗(r⃗ , t) · E⃗∗(r⃗ , 0)⟩

Show that

SE E (k⃗ ′, ω) = A
2Dk′2

(ω − ω0)2 + (Dk′2)2

and determine the coefficient A. What is the value of ⟨E⃗(r⃗ , t) · E⃗∗(r⃗ , 0)⟩? One
recalls that

∫
dt eiωt−γ |t | = 2γ

ω2 + γ 2

Note also that ω′ ≪ ω0 : A(ω) ≃ A(ω0).

9. Instead of dP/d& dω, one can measure experimentally the intensity correla-
tion function SI I (r⃗ , t) of r2 I (r⃗ , t) = E⃗(r⃗ , t) · E⃗∗(r⃗ , t) whose Fourier transform is
I(k⃗ ′, t)

SI I (k⃗ ′, ω) =
∫

dt eiωt ⟨I(k⃗ ′, t)I(k⃗ ′, 0)⟩

Assuming that E⃗(r⃗ , t) is a Gaussian random function, show that SI I (k⃗ ′, ω) is pro-
portional to

2πδ(ω) + 4Dk′2

ω2 + (2Dk′2)2
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Knowing that Dk′2 ≃ 500 Hz, why is it more advantageous to measure SI I (k⃗ ′, ω)

rather than SE E (k⃗ ′, ω)?

9.8.2 Light scattering by a simple fluid

We consider a simple fluid close to static equilibrium and call n, ε and g⃗ = 0 the
equilibrium particle, energy and momentum densities. The notations are those of
Section 6.3. As in Section 9.1, we assume that a non-equilibrium situation has
been created at t = 0 and we wish to study the relaxation toward equilibrium for
t > 0. This study will allow us to compute the Kubo function, from which one
deduces the dynamical structure factors which govern light scattering by the fluid.
We denote the deviations from equilibrium by n(r⃗ , t), ε(r⃗ , t) and g⃗(r⃗ , t): since
g⃗ = 0 at equilibrium, there is no need for a bar. We assume that all these deviations
are small, so that we may work in the linear approximation and use a linearized
form of the hydrodynamic equations of Section 6.3.

1. Linearized hydrodynamics. Show that in the linear approximation, the Navier–
Stoke equation (6.91) becomes

∂t g⃗ + ∇⃗ P − 1
mn

(
ζ + η

3

)
∇⃗(∇⃗ · g⃗) − η

mn
∇2g⃗ = 0 (9.191)

where P is the pressure and we have written the mass densiy ρ = mn, m being the
mass of the fluid molecules. Note that the advection term u⃗ · ∇⃗u⃗ in (6.91), which is
quadratic in the fluid velocity u⃗, has been eliminated in the linear approximation.
Show that within the same approximation the energy current j⃗E becomes

j⃗E = (ε + P)u⃗ − κ∇⃗T (9.192)

2. Decomposition into transverse and longitudinal components. As for any vector
field, the momentum density g⃗ may be split into a transverse component g⃗T and a
longitudinal component g⃗L

g⃗ = g⃗T + g⃗L ∇⃗ · g⃗T = 0 ∇⃗ × g⃗L = 0

This terminology reflects a property of the spatial Fourier transforms: g⃗T(k⃗, t) is
perpendicular to k⃗ (transverse), k⃗ · g⃗T(k⃗, t) = 0 and g⃗L(k⃗, t) is parallel to k⃗ (longi-
tudinal), k⃗ × g⃗L(k⃗, t) = 0. Show that the continuity and Navier–Stokes equations
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for n(r⃗ , t), g⃗(r⃗ , t) and ε(r⃗ , t) take the form

∂t n + 1
n
∇⃗ · g⃗L = 0 (9.193)

(
∂t − η

mn
∇2

)
g⃗T = 0 (9.194)

∂t g⃗L + ∇⃗ P − ζ ′

mn
∇2g⃗L = 0 (9.195)

∂t ε + ε + P
mn

∇⃗ · g⃗L − κ∇2T = 0 (9.196)

where ζ ′ = (4η/3 + ζ ). Hint: To show (9.195), remember that for a vector field
V⃗ (r⃗)

∇⃗ × ∇⃗ × V⃗ = ∇⃗(∇⃗ · V⃗ ) − ∇⃗2V⃗

From (9.193) and (9.196), show that the continuity equation for the energy may be
put into the following form

∂t ε − ε + P
n

∂t n − κ∇2T = 0 (9.197)

This equation suggests that it is useful to introduce the following quantity

q(r⃗ , t) = ε(r⃗ , t) − ε + P
n

n(r⃗ , t) (9.198)

3. Transverse component. Equation (9.194) shows that g⃗T obeys a diffusion
equation. Show that this equation implies that the Fourier–Laplace transform
(9.22) g⃗T(k⃗, z) obeys

g⃗T(k⃗, z) = i
z + ik2η/(mn)

g⃗(k⃗, t = 0)

Discuss the physical interpretation of this equation by comparing with Section
9.1.4 and give the expression for the dynamical structure factor ST(k⃗, ω).

4. Thermodynamic identities. The study of the longitudinal component g⃗L is un-
fortunately somewhat more complicated than that of g⃗T. The dynamical variables
are ε, n and g⃗L and they obey a system of coupled partial differential equations.
Furthermore, we want to use as independent thermodynamic variables n and ε,
and we must express ∇⃗ P and ∇⃗T as functions of these variables. We consider a
subsystem of the fluid containing a fixed number N of molecules (it has of course
a variable volume V ) and all thermodynamic derivatives will be taken at fixed N ;
note that fixed V is then equivalent to fixed density n. Let us start from

δP = ∂ P
∂n

∣∣∣
ε
δn + ∂ P

∂ε

∣∣∣
n
δε
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where (∂ P/∂n)ε and (∂ P/∂ε)n are equilibrium thermodynamic derivatives. Show
that

∂ P
∂ε

∣∣∣
n

= V
T

∂ P
∂S

∣∣∣
n

where S is the entropy of the subsystem. To evaluate (∂ P/∂n)ε, start from

V dε = T dS − (ε + P) dV

and show that
∂ P
∂V

∣∣∣
ε

= ε + P
T

∂ P
∂S

∣∣∣
n

+ ∂ P
∂V

∣∣∣
S

It is then easy to derive

∇⃗ P = ∂ P
∂n

∣∣∣
S
∇⃗n + V

T
∂ P
∂S

∣∣∣
n
∇⃗q

The calculation of ∇⃗T follows exactly the same lines: one simply makes the sub-
stitution P → T and obtains

∇⃗T = ∂T
∂n

∣∣∣
S
∇⃗n + V

T
∂T
∂S

∣∣∣
n
∇⃗q

5. Equation for g⃗L. From the results of Question 4, transform the coupled equa-
tions for q, n and g⃗L into

[
∂t − ζ ′

mn
∇2

]
g⃗L + ∂ P

∂n

∣∣∣
S
∇⃗ n + V

T
∂ P
∂S

∣∣∣
n
∇⃗q = 0 (9.199)

[
∂t − κ

V
T

∂T
∂S

∣∣∣
n
∇2

]
q − κ

∂T
∂n

∣∣∣
S
∇2n = 0 (9.200)

Show also that δq (9.198) is related to the entropy density

T
V

δS = δε − ε + P
n

δn = δq

It is convenient to define the following quantities

DL = ζ ′

mn
= 1

mn

(
4
3

η + ζ

)

mncV = T
V

∂S
∂T

∣∣∣
n

mncP = T
V

∂S
∂T

∣∣∣
P

c2 = 1
m

∂ P
∂n

∣∣∣
S

c is the sound velocity, mcV and mcP are the specific heat capacities per fluid
molecule.



9.8 Problems 579

6. Relaxation of ε, q and g⃗L. Equations (9.193), (9.199) and (9.200) define a
system of coupled PDE for ε, q and g⃗L. Show that they can be solved by taking
the spatial Fourier and time Laplace transforms

⎛

⎜⎜⎜⎜⎜⎝

z − k
m

0

−kmc2 z + ik2 DL −V
T

∂ P
∂S

∣∣∣
n
k

ik2κ
∂T
∂n

∣∣∣
S

0 z + ik2 κ

mncV

⎞

⎟⎟⎟⎟⎟⎠

⎛

⎝
n(k⃗, z)
gL(k⃗, z)
q(k⃗, z)

⎞

⎠ = i

⎛

⎝
n(k⃗, t = 0)

gL(k⃗, t = 0)

q(k⃗, t = 0)

⎞

⎠

(9.201)

where we have defined gL(k⃗, z) by g⃗L(k⃗, z) = k̂ gL(k⃗, z).

7. Poles of g⃗L(k⃗, z). An explicit solution of (9.201) requires the inversion of
the 3 × 3 matrix M in this equation. We shall limit ourselves to finding the poles
of the functions n(k⃗, z), q(k⃗, z) and g⃗L(k⃗, z), which are given by the zeroes of
the determinant of M . First we use a low temperature approximation, where P is
essentially a function of n and S essentially a function of T , so that

∂ P
∂S

∣∣∣
n

= ∂T
∂n

∣∣∣
S

≃ 0

and cP ≃ cV . Within this approximation, show that the poles are located at

z ≃ −i
κ

mncV
k2

z ≃ ±ck − i
2

DLk2

In the general case, show that the additional term in the determinant is proportional
to k4 with a coefficient X

X = i
κV
T

∂T
∂ P

∣∣∣
S

∂ P
∂S

∣∣∣
n

and that X may be written as

X = i
κV T

CPCV

∂V
∂T

∣∣∣
P

∂ P
∂T

∣∣∣
V

Use (1.38) to express the result in terms of CP − CV . Show that the position of the
poles is now

z ≃ −i
κ

mncP
k2

z ≃ ±ck − i
2

k2
[

DL + κ

mncP

(
cP

cV
− 1

)]
= ±ck − i

$

2
k2
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xN x0

xx0
N x0

0 x0
1

x1

Figure 9.5 Springs and masses.

These equations give the positions of the heat pole and the two sound poles of
Figure 9.1. If laser light is scattered from a simple fluid with wave vector trans-
fer k⃗, the position of the sound poles gives the sound velocity and the width of
the poles gives a combination of transport coefficients and thermodynamic quanti-
ties. It remains to compute explicitly the Kubo functions and the structure factors
describing light scattering. This computation is now straightforward but cumber-
some, and we refer the courageous reader who has followed us up to this point to
Kadanoff and Martin [61] or Foerster [43].

9.8.3 Exactly solvable model of a Brownian particle

The model considered in this problem is an exactly solvable model, in which one
can compute explicitly the memory function and the stochastic force. The model
consists of a chain of coupled harmonic oscillators, with N (N → ∞) light os-
cillators of mass m, and a heavy (Brownian) oscillator of mass M , with M ≫ m,
although the model can be solved for any ratio m/M . The goal of the problem is to
compute the memory function, the memory time τ ∗, the velocity relaxation time
τ , and to show that τ ∗/τ ∼ m/M . We use a quantum mechanical treatment, as it
is no more complicated than a classical one.

A Preliminary results

Let us consider N identical masses m, linked by identical springs with spring con-
stant K (Figure 9.5). The equilibrium position of mass n is labelled by x0

n = n,
where the lattice spacing is taken to be unity, and n = 1, . . . , N ; xn denotes the
deviation with respect to equilibrium of the position of mass n. The extremities
of the first and last springs are fixed: x0 = xN+1 = 0. Let qk denote the (lattice)
Fourier tranform of xn

qk =
∑

n
Cknxn
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with

Cnk = Ckn =
√

2
N + 1

sin
( πkn

N + 1

)

1. Show that Cnk is an orthogonal matrix

N∑

k=1

CnkCkm = δnm

2. The Hamiltonian H of the chain reads

H =
N∑

n=1

p2
n

2m
+ 1

2
K

N∑

n=0

(xn+1 − xn)
2

Show that

H =
N∑

k=1

r2
k

2m
+ 1

2
m

N∑

k=1

ω2
kq2

k ωk =
√

4K
m

sin
πk

2(N + 1)

and rk is the Fourier transform of pn .

B The model

We use as quantum Hamiltonian of the model

H =
p2

0

2M
+

N∑

n=1

p2
n

2m
+ 1

2
K

N∑

n=0

(xn+1 − xn)
2

Note the periodic boundary condition: xN+1 = x0. The strategy will be to project
the dynamics on the slow variable p0, namely the momentum of the heavy particle.

3. Using the relation (see Exercise 9.7.4)

⟨A;LB⟩ = 1
β

⟨[A†, B]⟩

where ⟨•; •⟩ denotes Mori’s scalar product and L the Liouvillian, show that

iLx0 = p0

M
⟨p0; p0⟩ = M

β
⟨p0; x0⟩ = 0

4. Let P denote the projector on p0 (with respect to the Mori scalar product), and
Q = I − P . Show that for any dynamical variable B that is a linear combination
of pn and xn

B =
N∑

n=0

(λnpn + µnxn)
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if one defines H = H − p2
0/2M , then

QLB = [H , B] = LB

The potential energy can be re-expressed as a function of the variables x′
n = xn −

x0, and the projected dynamics corresponds to that of a heavy particle at rest.

5. Show that the stochastic force f(t) = exp(iL t)Q iLp0 is given by

f(t) = K exp(iLt) (x1 + xN − 2x0)

6. By going to Fourier space, show that f(t) is given as a function of the operators
xn and pn in the Schrödinger picture by

f(t) = K
N∑

k,n=1

(C1k + CNk)
[
Ckn(xn − x0) cos ωkt + Ckn

pn

mωk
sin ωkt

]

and the memory function by

γ (t) = β

M
⟨f(0); f(t)⟩ = K

M

N∑

k,n=1

Ckn(C1k + CNk) cos ωkt

7. Compute γ (t) in the thermodynamic limit N → ∞

lim
N→∞

γ (t) = m
M

α2 J1(αt)
αt

with α =
√

4K/m, and where J1 is a Bessel function. One may use the following
representation of the Bessel function

J1(αt)
αt

= 1
π

π/2∫

−π/2

cos2 ϕ cos(αt sin ϕ)dϕ

Compute the velocity relaxation time τ and give an estimate of the memory time
τ ∗. Show that τ ∗/τ ∼ m/M and give a physical discussion of your results.

9.8.4 Itô versus Stratonovitch dilemma

When the diffusion coefficient is x-dependent, the Langevin equation is ambigu-
ous. Let us write

dX
dt

= a(x) +
√

D(x0) b(t)

with

b(t)b(t ′) = 2 δ(t − t ′)
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while, for an infinitesimal time interval [t, t + ε], x0 is defined as a function of a
parameter q, 0 ≤ q ≤ 1, by

x0 = x(t) + (1 − q)[X (t + ε) − x(t)] = y + (1 − q)[X (t + ε) − y]

We define as in (9.137)

Bε =
t+ε∫

t

dt ′ b(t ′) Bε = 0 B2
ε = 2

1. Itô prescription. We first study the Itô prescription, which corresponds to q =
1: x0 = x(t)

X (t + ε) = y + εa(y) +
√

D(y)

t+ε∫

t

dt ′ b(t ′)

As in Section 9.5.1, we start from the Chapman–Kolmogorov equation (9.144)
with

P(x, t + ε|y, t) = δ(x − y − εa(y) −
√

D(y) Bε)

Show that, to order ε, the δ-function may be written as f ′(x)δ(y − f (x)) where

f (x) = x − εa(x) − Bε

√
D(x) + 1

2
B2

ε D′(x) (9.202)

Taking an average over all realizations of b(t), derive the F–P equation (9.154)

∂ P
∂t

= − ∂

∂x
[a(x)P] + ∂2

∂x2 [D(x)P]

2. General case. In the general case, show that

X (t + ε) − y = ε[a(y) + (1 − q)D′(y)]

and, with respect to the preceding case, one has to make the substitution

a(y) → a(y) + (1 − q)D′(y)

Derive the F–P equation for arbitrary q

∂ P
∂t

= − ∂

∂x
[a(x)P] + ∂

∂x

[
D1−q(x)

∂

∂x
Dq(x)P

]

The Stratonovitch prescription corresponds to q = 1/2. One notes that the various
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prescriptions differ by the drift velocities if one wants to write the F–P equation in
the form (9.154).

9.8.5 Kramers equation

Consider a particle of mass m, moving in one dimension, which is subjected to
a deterministic force F(x) = −∂V/∂x , a viscous force −γ p and a random force
f (t)

f (t) f (t ′) = 2A δ(t − t ′)

The equations of motion are

Ṗ = F(x) − γ P + f (t) Ẋ = P
m

Note that X and P alone are not Markovian variables, but the set (X, P) is
Markovian.

1. By examining the moments ⟨$X⟩, ⟨$P⟩, ⟨($P)2⟩, ⟨($X)2⟩ and ⟨$P$X⟩
and by using (9.183) and (9.184), show that the probability distribution P(x, p; t)
obeys the Kramers equation

[
∂

∂t
+ p

m
∂

∂x
+ F(x)

∂

∂p

]
P = γ

[
∂

∂p
(pP) + mkT

∂2 P
∂p2

]

with kT = A/(mγ ). This equation can be simplified in the strong friction limit.
Let us define the density

ρ(x, t) =
∫

dp P(x, p; t)

and the current

j (x, t) =
∫

dp
p
m

P(x, p; t)

2. From the |p| → ∞ behaviour of P(x, p; t), prove the (exact) continuity
equation

∂ρ

∂t
+ ∂ j

∂x
= 0

In the strong friction limit, show that one expects

P(x, p; t) ≃ ρ(x, t)

√
1

2πmkT
exp

(
− [p − p(x)]2

2mkT

)

with p(x) = F(x)/γ .
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3. Let us finally define

K (x, t) =
∫

dp
p2

m
P(x, p; t)

What is the physical meaning of K ? Prove the (exact) continuity equation

m
∂ j
∂t

+ ∂K
∂x

− F(x)ρ = −γ mj (x, t)

and show that in the strong friction limit
∣∣∣
∂ j
∂t

∣∣∣ ≪ γ | j |

and that

K (x, t) ≃ ρ(x, t)

[

kT + p2(x)

m

]

Using the continuity equation for K (x, t), show that ρ(x, t) obeys a Fokker–
Planck equation when kT ≫ p2(x)/m

∂ρ

∂t
+ ∂

∂x

[
F(x)

mγ
ρ(x, t) − D

∂

∂x
ρ(x, t)

]
= 0

Give the explicit expression of the diffusion coefficient D for x-independent γ and
A. Can you generalize to x-dependent γ and A?

4. Show that for F(x) = 0, X (t) obeys a diffusion equation with a space-
dependent diffusion coefficient. Write this diffusion equation in the form of a
Langevin equation and find the prescription (Itô, Stratonovitch or other, see Prob-
lem 9.8.4) that must be used in the following two cases (i) γ is x-independent and
A is x-dependent and (ii) vice versa.

9.9 Further reading

An elementary introduction to the topics of this chapter may be found in Chandler
[28]. The material in Sections 9.1 and 9.2 is detailed by Foerster [43] (Chapter 2)
and by Fick and Sauermann [41] (Chapter 9). Spin diffusion is treated in Foerster
[43] (Chapter 2) and in Kadanoff and Martin [61]. Good references on the pro-
jection method are: Balian et al. [7], Fick and Sauermann [41] (Chapters 14 to
18), Grabert [51], Zubarev et al. [126] (Chapter 2) and Rau and Müller [107]. The
discussion of Section 9.3.5 follows Foerster [43] (Chapter 6); see also Lebowitz
and Résibois [76]. The application of the projection method to Goldstone modes
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is discussed in great detail by Foerster [43] (Chapters 7 to 11); see also Chaikin
and Lubensky [26] (Chapter 8). Although the articles are some fifty years old, the
collection by Wax [121] is still a very useful reference on random functions; see
also, e.g. Mandel and Wolff [86] (Chapters 1 and 2). There are many references on
the Langevin and Fokker–Planck equations, among them: Parisi [99] (Chapter 19),
van Kampen [119], Risken [110], Reichl [108] (Chapter 5).


