Elements of Superconductivity

A. London theory of superconductivity

Superconductivity is a property common to several metals. Below a given transition temperature they present;
i) transport of charge with no measurable resistance
ii) perfect diamagnetism; Meissner effect

Phenomenologically these two effects can be described by the following equations:

London equations

$$
\begin{array}{r}
\mathbf{E}=\frac{\partial}{\partial t}\left(\Lambda \mathbf{J}_{s}\right) \\
\mathbf{B}=-c \nabla \times\left(\Lambda \mathbf{J}_{s}\right)
\end{array}
$$

Combined with the Maxwell equation

$$
\nabla \times \mathbf{B}=\frac{4 \pi}{c} \mathbf{J}_{s}
$$

Result in the equation that describes the Meissner effect

$$
\nabla^{2} \mathbf{B}=\frac{\mathbf{B}}{\lambda_{L}^{2}}
$$

where $\quad \Lambda=4 \pi \lambda_{L}{ }^{2} / c^{2}$

If the external scalar potential is zero

This implies that

Choosing (London gauge)

London equation in the London gauge

$$
\mathbf{J}_{s}=-\frac{1}{c \Lambda}\left(\mathbf{A}-\mathbf{A}_{0}\right)
$$

$$
\mathbf{E}=\frac{\partial}{\partial t}\left(\Lambda \mathbf{J}_{s}\right)=-\frac{1}{c} \frac{\partial \mathbf{A}}{\partial t}
$$

$$
\mathbf{J}_{s \perp}=\frac{1}{c \Lambda} \mathbf{A}_{0}=0
$$

$$
\mathbf{J}_{s}=-\frac{1}{c \Lambda} \mathbf{A}
$$

Bloch's theorem for the ground state of the

$$
\langle\mathbf{p}\rangle=0
$$

superconductor

applied to the system in a magnetic field

$$
\mathbf{p}=m \dot{\mathbf{r}}+e \frac{\mathbf{A}}{c}
$$

yields

$$
\mathbf{J}_{s}=n_{s} e\left\langle\mathbf{v}_{s}\right\rangle=-\frac{n_{s} e^{2} \mathbf{A}}{m c}=-\frac{1}{c \Lambda} \mathbf{A}
$$

and the London penetration depth is given by

$$
\lambda_{L}=\left(\frac{m c^{2}}{4 \pi n_{s} e^{2}}\right)^{1 / 2}
$$

For the ground state wavefunction of the superconductor

$$
\mathbf{J}_{s}=\frac{e \hbar}{2 m i}\left[\psi_{0}^{*} \nabla \psi_{0}-\psi_{0} \nabla \psi_{0}^{*}\right]=\frac{e}{m} \operatorname{Re}\left[\psi_{0}^{*} \mathbf{p} \psi_{0}\right]=0
$$

In an external field it changes to

$$
\mathbf{J}_{s}=\frac{e \hbar}{2 m i}\left[\psi^{*} \nabla \psi-\psi \nabla \psi^{*}\right]-\frac{e^{2} \mathbf{A}}{m c} \psi^{*} \psi
$$

If the wave function is rigid $\quad \psi \approx \psi_{0}$

$$
\mathbf{J}_{s}=-\frac{e^{2} \mathbf{A}}{m c} \psi^{*} \psi=-\frac{n e^{2} \mathbf{A}}{m c}
$$

Current - carrying wave function (constant velocity)

$$
\Psi_{\mathbf{K}}\left(\mathbf{r}_{1}, \ldots, \mathbf{r}_{k}, \ldots, \mathbf{r}_{N}\right)=\exp \left\{i \sum_{k} \mathbf{K} \cdot \mathbf{r}_{k}\right\} \Psi_{0}\left(\mathbf{r}_{1}, \ldots, \mathbf{r}_{k}, \ldots, \mathbf{r}_{N}\right) .
$$

Generalization to position dependent velocity

$$
\Psi\left(\mathbf{r}_{1}, \ldots, \mathbf{r}_{k}, \ldots, \mathbf{r}_{N}\right)=\exp \left\{i \sum_{k} \theta\left(\mathbf{r}_{k}\right)\right\} \Psi_{0}\left(\mathbf{r}_{1}, \ldots, \mathbf{r}_{k}, \ldots, \mathbf{r}_{N}\right) .
$$

Number and current densities

$$
\begin{gathered}
n(\mathbf{r})=\sum_{k} \int d \mathbf{r}_{1} \ldots d \mathbf{r}_{k} \ldots d \mathbf{r}_{N} \delta\left(\mathbf{r}-\mathbf{r}_{k}\right) \Psi^{*}\left(\mathbf{r}_{1}, \ldots, \mathbf{r}_{k}, \ldots, \mathbf{r}_{N}\right) \Psi\left(\mathbf{r}_{1}, \ldots, \mathbf{r}_{k}, \ldots, \mathbf{r}_{N}\right), \\
\mathbf{J}(\mathbf{r})=\sum_{k} \int d \mathbf{r}_{1} \ldots d \mathbf{r}_{k} \ldots d \mathbf{r}_{N} \frac{e \hbar}{2 m i}\left[\Psi^{*} \nabla_{k} \Psi-\Psi \nabla_{k} \Psi^{*}\right] \delta\left(\mathbf{r}-\mathbf{r}_{k}\right) .
\end{gathered}
$$

These imply in a current density $\Rightarrow \mathbf{J}(\mathbf{r})=\frac{e \hbar}{m} n(\mathbf{r}) \nabla \theta$ with a number density
$n(\mathbf{r})=N \int d \mathbf{r}_{2} \ldots d \mathbf{r}_{k} \ldots d \mathbf{r}_{N} \Psi^{*}\left(\mathbf{r}, \ldots, \mathbf{r}_{k}, \ldots, \mathbf{r}_{N}\right) \Psi\left(\mathbf{r}, \ldots, \mathbf{r}_{k}, \ldots, \mathbf{r}_{N}\right)$,
Macroscopic occupation of a single particle state or center-of-mass of a $\longmapsto n(\mathbf{r})=N \psi^{*}(\mathbf{r}) \psi(\mathbf{r})$, translationally invariant system

Single particle wavefunction

$$
\Longrightarrow \quad \psi(\mathbf{r})=\sqrt{n(\mathbf{r})} e^{i \theta(\mathbf{r})} .
$$

Non-ideal rigidity

$$
\Longrightarrow \mathbf{J}(\mathbf{r})=e n_{s}(\mathbf{r}) \mathbf{v}_{s}(\mathbf{r})+e n_{N}(\mathbf{r}) \mathbf{v}_{N}(\mathbf{r}),
$$

More generally, we can define the 1-particle reduced density operator
$n_{1}\left(\mathbf{r} ; \mathbf{r}^{\prime}\right)=N \int d \mathbf{r}_{2} \ldots d \mathbf{r}_{k} \ldots d \mathbf{r}_{N} \Psi_{0}\left(\mathbf{r}, \ldots, \mathbf{r}_{k}, \ldots, \mathbf{r}_{N}\right) \Psi_{0}^{*}\left(\mathbf{r}^{\prime}, \ldots, \mathbf{r}_{k}, \ldots, \mathbf{r}_{N}\right)$
From which $n(\mathbf{r})=n_{1}(\mathbf{r} ; \mathbf{r})$
Given general diagonal 1-body operator $\hat{\mathcal{O}}_{1} \equiv \sum_{i} \mathcal{O}_{1}\left(\mathbf{r}_{i}\right)$ we
can write

$$
\left\langle\hat{\mathcal{O}}_{1}\right\rangle=\operatorname{tr}\left[\hat{n}_{1} \hat{\mathcal{O}}_{1}\right]=\int d \mathbf{r} n_{1}(\mathbf{r} ; \mathbf{r}) \mathcal{O}_{1}(\mathbf{r})
$$

For a bosonic ground state given by a product state of single particle wave functions $\psi(\mathbf{r})$

$$
n(\mathbf{r})=N \psi^{*}(\mathbf{r}) \psi(\mathbf{r})
$$

Average of the effective inter-electronic interaction

$$
\hat{V}=\frac{1}{2} \sum_{i \neq j} V\left(\mathbf{r}_{i}-\mathbf{r}_{j}\right)
$$

$$
\langle\hat{V}\rangle=\frac{1}{2} \sum_{i \neq j} \int d \mathbf{r}_{1} \ldots d \mathbf{r}_{i} \ldots d \mathbf{r}_{j} \ldots d \mathbf{r}_{N} V\left(\mathbf{r}_{i}-\mathbf{r}_{j}\right)\left|\Psi_{0}\left(\mathbf{r}_{1}, \ldots, \mathbf{r}_{i}, \ldots, \mathbf{r}_{j}, \ldots, \mathbf{r}_{N}\right)\right|^{2}
$$

$$
=\frac{N(N-1)}{2} \int d \mathbf{x} d \mathbf{y} d \mathbf{r}_{3} \ldots d \mathbf{r}_{N} V(\mathbf{x}-\mathbf{y})\left|\Psi_{0}\left(\mathbf{x}, \mathbf{y}, \mathbf{r}_{3}, \ldots, \mathbf{r}_{N}\right)\right|^{2}
$$

Defining the 2-particle reduced density operator
$n_{2}\left(\mathbf{x}, \mathbf{y} ; \mathbf{x}^{\prime}, \mathbf{y}^{\prime}\right) \equiv N(N-1) \int d \mathbf{r}_{3} \ldots d \mathbf{r}_{N} \Psi_{0}\left(\mathbf{x}, \mathbf{y}, \mathbf{r}_{3}, \ldots, \mathbf{r}_{N}\right) \Psi_{0}^{*}\left(\mathbf{x}^{\prime}, \mathbf{y}^{\prime}, \mathbf{r}_{3}, \ldots, \mathbf{r}_{N}\right)$

We can rewrite $\langle\hat{V}\rangle=\frac{1}{2} \int d \mathbf{x} d \mathbf{y} n_{2}(\mathbf{x}, \mathbf{y} ; \mathbf{x}, \mathbf{y}) V(\mathbf{x}-\mathbf{y})$

For a general diagonal 2-body operator

$$
\hat{\mathcal{O}}_{2} \equiv \frac{1}{2} \sum_{i, j} \mathcal{O}_{2}\left(\mathbf{r}_{i}, \mathbf{r}_{j}\right)
$$

We have $\left\langle\hat{\mathcal{O}}_{2}\right\rangle=\frac{1}{2} \operatorname{tr}\left[\hat{n}_{2} \hat{\mathcal{O}}_{2}\right]=\frac{1}{2} \int d \mathbf{x} d \mathbf{y} n_{2}(\mathbf{x}, \mathbf{y} ; \mathbf{x}, \mathbf{y}) \mathcal{O}_{2}(\mathbf{x}, \mathbf{y})$

If the ground state is a properly anti-symmetrized product of single particle wave functions

$$
n_{2}(\mathbf{x}, \mathbf{y} ; \mathbf{x}, \mathbf{y})=N(N-1) \phi^{*}(\mathbf{x}, \mathbf{y}) \phi(\mathbf{x}, \mathbf{y})
$$

Using the center-of-mass and relative coordinates

$$
\mathbf{r} \equiv \frac{1}{2}(\mathbf{x}+\mathbf{y}) \text { and } \mathbf{u} \equiv \mathbf{x}-\mathbf{y}
$$

We have

$$
n_{1}\left(\mathbf{r} ; \mathbf{r}^{\prime}\right)=\frac{1}{N-1} \int d \mathbf{u} n_{2}\left(\mathbf{r}, \mathbf{u} ; \mathbf{r}^{\prime}, \mathbf{u}\right)
$$

Assuming translation invariance $\phi(\mathbf{r}, \mathbf{u})=\psi(\mathbf{r}) \chi(\mathbf{u})$
and then $\quad n(\mathbf{r}) \equiv n_{1}(\mathbf{r} ; \mathbf{r})=N \psi^{*}(\mathbf{r}) \psi(\mathbf{r})$
as before, but with a new interpretation.
Then $\psi(\mathbf{r})=\sqrt{n(\mathbf{r})} e^{i \theta(\mathbf{r})}$. Finite temperature effects implies depletion of the condensate (two-fluid model)

$$
\mathbf{J}(\mathbf{r})=e n_{s}(\mathbf{r}) \mathbf{v}_{s}(\mathbf{r})+e n_{N}(\mathbf{r}) \mathbf{v}_{N}(\mathbf{r}),
$$

And also invalidate pure state description \square density operators, ODLRO, order parameter etc.

Flux Quantization

Canonical momentum in an external

$$
\hbar \nabla \theta=m \mathbf{v}+e \mathbf{A} / c
$$ field

Integrated along an open path

$$
\int_{1}^{2}\left(m \mathbf{v}+\frac{e}{c} \mathbf{A}\right) \cdot d \mathbf{r}=\hbar\left(\theta_{2}-\theta_{1}\right)
$$

Along a closed path deep into a super-

$$
\oint\left(m \mathbf{v}+\frac{e}{c} \mathbf{A}\right) \cdot d \mathbf{r}=\frac{e}{c} \oint(c \Lambda \mathbf{J}+\mathbf{A}) \cdot d \mathbf{r}=2 \pi n \hbar
$$ conductor

Multiply connected region

$$
\oint(\Lambda \mathbf{J}+\mathbf{A}) \cdot d \mathbf{r}=-\frac{2 \pi n \hbar c}{2|e|} \equiv n \phi_{0}
$$

Flux quantization

$$
\oint \mathbf{A} \cdot d \mathbf{r}=\int \mathbf{B} \cdot d \mathbf{s}=n \phi_{0}
$$

Josephson Effect

Decoupled superconductors

Superconductors coupled by a junction

Resulting equations for the phase and number density

$$
\begin{aligned}
& i \hbar \dot{\psi_{1}}=E_{1} \psi_{1} \\
& i \hbar \dot{\psi_{2}}=E_{2} \psi_{2} .
\end{aligned}
$$

$$
\begin{aligned}
& i \hbar \dot{\psi_{1}}=E_{1} \psi_{1}+\Delta \psi_{2} \\
& i \hbar \dot{\psi}_{2}=E_{2} \psi_{2}+\Delta^{*} \psi_{1} .
\end{aligned}
$$

$$
-\hbar \dot{\theta}_{1}=\Delta \sqrt{\frac{n_{2}}{n_{1}}} \cos \left(\theta_{2}-\theta_{1}\right)+E_{1}
$$

$$
\dot{n_{1}}=\frac{2 \Delta}{\hbar} \sqrt{n_{1} n_{2}} \sin \left(\theta_{2}-\theta_{1}\right)=-\dot{n_{2}} .
$$

Josephson relations

$$
j=j_{0} \sin \theta
$$

$$
\dot{\theta}=\frac{-2|e| V}{\hbar}
$$

$$
\theta \equiv \theta_{1}-\theta_{2}, \quad j_{0} \equiv \frac{2 n_{s} \Delta}{\hbar} \quad \text { and } \quad \frac{E_{2}-E_{1}}{\hbar}=\frac{-2|e| V}{\hbar} .
$$

B. Superconducting devices

Superconducting Quantum Interference Devices (SQUIDs)
Superconducting ring closed by a Josephson junction

Modification of the flux quantization rule

$$
\begin{aligned}
& \int_{1}^{2} \mathbf{J} \cdot d \mathbf{r}=\frac{n_{s} e \hbar}{m} \int_{1}^{2} \nabla \theta \cdot d \mathbf{r}-\frac{n_{s} e \hbar}{m} \frac{2 \pi}{\phi_{0}} \int_{1}^{2} \mathbf{A} \cdot d \mathbf{r} . \\
& \int_{\Gamma} \nabla \theta \cdot d \mathbf{r}=\oint \nabla \theta \cdot d \mathbf{r}-\int_{2}^{1} \nabla \theta \cdot d \mathbf{r} \quad \longrightarrow \quad \int_{\Gamma} \nabla \theta \cdot d \mathbf{r}=2 \pi n-\Delta \theta \\
& \text { Then } \quad \begin{array}{l}
\phi+\frac{\phi_{0}}{2 \pi} \Delta \theta=n \phi_{0} \\
i_{s}=i_{0} \sin \Delta \theta
\end{array} \quad \text { where } \quad \phi=\phi_{x}+L i \\
& \text { and } \quad i=i_{N}=\frac{V}{R} \quad i_{c}=C \dot{V}
\end{aligned}
$$

Using that $\quad V=-\dot{\phi} \quad \longleftrightarrow \frac{\phi_{x}-\phi}{L}=i_{0} \sin \frac{2 \pi \phi}{\phi_{0}}+\frac{\dot{\phi}}{R}+C \ddot{\phi}$

Electromagnetic potential energy

$$
U(\phi)=\frac{\left(\phi-\phi_{x}\right)^{2}}{2 L}-\frac{\phi_{0} i_{0}}{2 \pi} \cos \frac{2 \pi \phi}{\phi_{0}}
$$

Equation of motion for the Total flux in the ring

$$
C \ddot{\phi}+\frac{\dot{\phi}}{R}+U^{\prime}(\phi)=0
$$

Current Biased Josephson Junction (CBJJs)

Phase-flux relation

$$
\phi=-\frac{\phi_{0}}{2 \pi} \Delta \theta \equiv \frac{\phi_{0}}{2 \pi} \varphi
$$

SQUID ring such that $L \rightarrow \infty, \phi_{x} \rightarrow \infty$ but $\phi_{x} / L=I_{x}$

Washboard potential

$$
U(\varphi)=-I_{x} \varphi-i_{0} \cos \varphi
$$

Equation of motion for the phase

$$
\begin{array}{r}
\frac{\phi_{0}}{2 \pi} C \ddot{\varphi}+\frac{\phi_{0}}{2 \pi R} \dot{\varphi}+U^{\prime}(\varphi)=0 \\
E_{J} \equiv \frac{\phi_{0} i_{0}}{2 \pi}
\end{array}
$$

V x I carachteristic of the
CBJJ

Cooper Pair Boxes (CPBs)
Charging energy

$$
E_{C}=\frac{e^{2}}{2 C} \quad \text { If } \quad E_{C} \gg E_{J}
$$

" Nearly free-electron model" for the phase in a periodic potential

$$
H_{0}=\frac{Q^{2}}{2 C}+U(\varphi) \quad \text { where } \quad Q=-i \hbar \frac{\mathrm{~d}}{\mathrm{~d}\left(\phi_{0} \varphi / 2 \pi\right)}
$$

Bloch's theorem $\psi_{n q}(\varphi)=\exp \left\{i\left(\frac{q}{2 e}\right) \varphi\right\} u_{n}(\varphi)$
with $\quad u_{n}(\varphi+2 \pi)=u_{n}(\varphi)$
where

$$
q(t)=q_{0}+Q_{x}(t) \quad \text { and }
$$

$$
Q_{x}(t)=\int_{t_{0}}^{t} d t^{\prime} I_{x}\left(t^{\prime}\right)
$$

New Schrödinger equation (adiabatic approximation)
$\mathcal{H}_{q} u_{n}(\varphi)=\frac{(Q+q)^{2}}{2 C} u_{n}(\varphi)+U(\varphi) u_{n}(\varphi)=E_{n}(q) u_{n}(\varphi)$
where

$$
Q=-2 i e \frac{\partial}{\partial \varphi}
$$

with $\quad u_{n}(\varphi+2 \pi)=u_{n}(\varphi)$
Band structure of the CPB

C. Vortices in superconductors

New charactristic length, the coherence length $\xi=\xi(T)$
$\xi_{0}=\xi(0)$ is basically the radius of the Cooper pair

Estimate of this radius:
Energy cost to create an excitation in a metal is zero, but in a superconductor

$$
E_{F}-\Delta<\frac{p^{2}}{2 m}<E_{F}+\Delta
$$

$$
\Delta \ll E_{F} \quad \Longrightarrow \quad \delta p=2 \Delta / v_{F}
$$

Uncertainty principle

$$
\delta x \propto \frac{\hbar}{\delta p}=\frac{\hbar v_{F}}{2 \Delta} \quad \xi_{0}=\frac{\hbar v_{F}}{\pi \Delta}
$$

Temperature dependence is the same for $\xi(T)$ and $\lambda(T)$

What matters is λ_{L} / ξ_{0}. From the Ginzburg-Landau theory

Pure metals $\quad \lambda_{L} / \xi_{0}<1 / \sqrt{2}$

Alloys $\lambda_{L} / \xi_{0}>1 / \sqrt{2}$

Type I superconductors Pippard theory

Type II superconductors London theory

The supercurrent $\mathbf{J}_{\mathbf{s}}(\mathbf{r})$ is obtained from an average of $\mathbf{A}\left(\mathbf{r}^{\prime}\right)$ Over a region such that $\left|\mathbf{r}-\mathbf{r}^{\prime}\right|<\xi_{0}$ in the Pippard theory

Condensation energy

Order parameter and penetration depth change abruptly at a surface

$$
F_{N}-F_{S}=\frac{H_{c}^{2}}{8 \pi}
$$

If not $\longrightarrow F_{N}-F_{S}=\frac{H_{c}^{2}}{8 \pi}+\frac{H_{c}^{2}}{8 \pi} \frac{(\lambda-\xi) S}{V}$

In a cylinder the EM field penetrates the sample in tubes: vortices. Creation of as many vortices as possible to reduce the superconducting free energy. It is halted by vortex-vortex interaction.

Vortices

Energy per unit length of a vortex in a type II superconductor

$$
\epsilon_{l}=\frac{1}{8 \pi} \int_{r>\xi} d S\left(\lambda^{2}|\nabla \times \mathbf{h}(\mathbf{r})|^{2}+h^{2}(\mathbf{r})\right)
$$

For $\kappa \equiv \lambda_{L} / \xi_{0} \gg 1, \quad \epsilon_{l}=\epsilon_{0} \ln \kappa \quad$ with $\quad \epsilon_{0}=\left(\frac{\phi_{0}}{4 \pi \lambda}\right)^{2}$
For a distorted vortex tube with $\mathbf{u}(z)=\left[u_{x}(z), u_{y}(z)\right]$

$$
\begin{aligned}
\mathcal{F}_{\mathrm{el}}=\int d z \epsilon_{l}\{[1+ & \left.\left.\left(\frac{\partial \mathbf{u}}{\partial z}\right)^{2}\right]^{1 / 2}-1\right\} \\
& \approx \int d z \frac{\epsilon_{l}}{2}\left(\frac{\partial \mathbf{u}}{\partial z}\right)^{2}
\end{aligned}
$$

Vortices

Fraction of electrons per unit length localized within the flux tube $2 \pi \xi^{2} N\left(E_{F}\right) \delta \epsilon$ where $\delta \epsilon \simeq \hbar v_{F} / \pi \xi$ and

$$
N\left(E_{F}\right)=m_{e} k_{F} / 2 \pi^{2} \hbar^{2}
$$

Change of the confined mass of electrons within the core

$$
m_{e} \delta \epsilon / E_{F}
$$

Linear density of mass of the vortex line is

$$
m_{l}=\frac{2}{\pi^{3}} m_{e} k_{F}
$$

This linear density can also be of other origins

Vortex-vortex interaction

Field produced at a given position by vortices 1 and 2

$$
\mathbf{h}(\mathbf{r})=\mathbf{h}_{1}(\mathbf{r})+\mathbf{h}_{2}(\mathbf{r})
$$

Vortex pair energy per unit length

$$
E_{l}=\frac{\phi_{0}}{8 \pi}\left[h_{1}\left(\mathbf{r}_{1}\right)+h_{1}\left(\mathbf{r}_{2}\right)+h_{2}\left(\mathbf{r}_{1}\right)+h_{2}\left(\mathbf{r}_{2}\right)\right]
$$

Vortex pair interaction energy per unit length $\Delta E_{l}=\frac{\phi_{0}}{4 \pi} h_{1}\left(\mathbf{r}_{2}\right)$
Vortex field $\quad h(\mathbf{r})=\frac{\phi_{0}}{2 \pi \lambda^{2}} K_{0}\left(\frac{r}{\lambda}\right)$
$\Delta E_{l}\left(r_{12}\right)=\frac{\phi_{0}^{2}}{8 \pi^{2} \lambda^{2}} K_{0}\left(\frac{r_{12}}{\lambda}\right)$
and $\quad \mathbf{f}\left(\mathbf{r}_{2}\right)=-\nabla_{2} \Delta E_{l}\left(r_{12}\right)=-\frac{\phi_{0}}{4 \pi} \nabla_{2} h_{1}\left(\mathbf{r}_{2}\right)$

Force on a vortex $\mathbf{f}\left(\mathbf{r}_{2}\right)=\mathbf{J}_{1}\left(\mathbf{r}_{2}\right) \times \frac{\boldsymbol{\Phi}_{0}}{c}$
In general, Lorentz force $\mathbf{f}_{L}(\mathbf{r})=\mathbf{J}_{s}(\mathbf{r}) \times \frac{\boldsymbol{\Phi}_{0}}{c}$
Magnus force due to the motion relative to the superfluid velocity

$$
\mathbf{f}_{M}(\mathbf{r})=\rho_{s}\left[\mathbf{v}_{s}(\mathbf{r})-\mathbf{v}_{l}\right] \times \frac{\mathbf{\Phi}_{0}}{c}
$$

Dissipative and Hall effects on a stiff line $m_{l} \dot{\mathbf{v}}_{l}+\eta_{l} \mathbf{v}_{l}+\alpha_{l} \mathbf{v}_{l} \times \hat{\mathbf{z}}=\mathbf{f}_{L}$

$$
\begin{aligned}
& \eta_{l}=\frac{\phi_{0}}{c} \rho_{s} \frac{\omega_{0} \tau_{r}}{1+\omega_{0}^{2} \tau_{r}^{2}} \\
& \alpha_{l}=\frac{\phi_{0}}{c} \rho_{s} \frac{\omega_{0}^{2} \tau_{r}^{2}}{1+\omega_{0}^{2} \tau_{r}^{2}}
\end{aligned}
$$

Elastic line

$$
m_{l} \frac{\partial^{2} \mathbf{u}(z, t)}{\partial t^{2}}+\eta_{l} \frac{\partial \mathbf{u}(z, t)}{\partial t}+\alpha_{l} \frac{\partial \mathbf{u}(z, t)}{\partial t} \times \hat{\mathbf{z}}-\epsilon_{l} \frac{\partial^{2} \mathbf{u}(z, t)}{\partial z^{2}}+\frac{\partial V_{p i n}(\mathbf{u}(z, t))}{\partial \mathbf{u}(z, t)}=\mathbf{f}_{l}
$$

With the following

$$
y \rightarrow z, u(y, t) \rightarrow \mathbf{u}(z, t), c_{s} \rightarrow \epsilon_{l} / m_{l}
$$ replacements on the magnetic wall motion $\tilde{V}_{\text {pin }} \rightarrow V_{p i n} / \epsilon_{l}$ and $-\left(H / H_{c}\right) 1 / \zeta \rightarrow \mathbf{f}_{L}$

We have the potential energy functional:
$\mathcal{H}[\mathbf{u}(z, t)]=\int_{-\infty}^{+\infty} d z\left[\frac{\epsilon_{l}}{2}\left(\frac{\partial \mathbf{u}(z, t)}{\partial z}\right)^{2}+V_{\text {pin }}(z, \mathbf{u}(z, t))-\mathbf{f}_{L} \cdot \mathbf{u}(z, t)\right]$

Phase slip

If one vortex crosses the junction:

$$
\begin{gathered}
\oint \nabla \theta \cdot d \mathbf{l}=\int_{1}^{2}(\nabla \theta)_{l} \cdot d \mathbf{l}+\int_{2}^{1}(\nabla \theta)_{u} \cdot d \mathbf{l}=2 \pi \\
\left(\theta_{1}-\theta_{2}\right)_{u}-\left(\theta_{1}-\theta_{2}\right)_{l} \equiv \Delta \theta_{u}-\Delta \theta_{l}=2 \pi
\end{gathered}
$$

If N vortices cross the junction:

$$
\frac{d \Delta \theta}{d t}=2 \pi \frac{d N}{d t} \longrightarrow V=\phi_{0} \frac{d N}{d t} \quad \longrightarrow \quad V=\phi_{0} n_{v} v_{L} d
$$

D. Macroscopic Quantum Phenomena

Metastable configuration of the SQUID $\quad\left|\Phi_{i}\right\rangle=\left|A_{i}\right\rangle\left|\psi_{i}\right\rangle$ corresponds to a state of the condensate that carries zero current

Stable configuration carries a finite current $\quad\left|\Phi_{f}\right\rangle=\left|A_{f}\right\rangle\left|\psi_{f}\right\rangle$
Total decaying state (caution)

$$
\left|\Phi_{D}(t)\right\rangle \approx e^{-\frac{\gamma t}{2}}\left|A_{i}\right\rangle\left|\psi_{i}\right\rangle+\sqrt{\left(1-e^{-\gamma t}\right)}\left|A_{f}\right\rangle\left|\psi_{f}\right\rangle
$$

Another possibility is a bistable coherent oscillation between states carrying different currents

$$
\left|\Phi_{B}(t)\right\rangle \approx a(t)\left|A_{i}\right\rangle\left|\psi_{i}\right\rangle+b(t)\left|A_{f}\right\rangle\left|\psi_{f}\right\rangle
$$

They are both Schrödinger - cat like states

$$
\Phi_{B}\left(\mathbf{r}, \mathbf{r}_{1}, \ldots, \mathbf{r}_{N}, t\right)=a(t) A_{i}(\mathbf{r}) \psi_{i}\left(\mathbf{r}, \mathbf{r}_{1}, \ldots, \mathbf{r}_{N}\right)+b(t) A_{f}(\mathbf{r}) \psi_{f}\left(\mathbf{r}, \mathbf{r}_{1}, \ldots, \mathbf{r}_{N}\right)
$$

that differ from either a macroscopically occupied single particle state (the condensate wavefunction) or a Josephson Effect - like wavefunction

$$
\varphi\left(\mathbf{x}_{1}, \mathbf{y}_{1}, \mathbf{x}_{2}, \mathbf{y}_{2}, \ldots, \mathbf{x}_{N / 2}, \mathbf{y}_{N / 2}\right)=\prod_{i=1}^{N / 2}\left[a_{R}^{(i)} \varphi_{R}\left(\mathbf{x}_{i}, \mathbf{y}_{i}\right)+a_{L}^{(i)} \varphi_{L}\left(\mathbf{x}_{i}, \mathbf{y}_{i}\right)\right]
$$

where $\varphi\left(\mathbf{x}_{i}, \mathbf{y}_{i}\right)=a_{R}^{(i)} \varphi_{R}\left(\mathbf{x}_{i}, \mathbf{y}_{i}\right)+a_{L}^{(i)} \varphi_{L}\left(\mathbf{x}_{i}, \mathbf{y}_{i}\right)$
Symbolically

$$
\phi_{C}=a \phi_{1}^{N}+b \phi_{2}^{N} \quad \phi_{J}=\left(a \phi_{1}+b \phi_{2}\right)^{N / 2}
$$

Phase slip (phase representation)

Phase slip (charge representation)
a)

$$
|0\rangle=|e, 0\rangle_{L} \otimes|-e, 0\rangle_{R}
$$

b)

a)

b)

