
Elements of Superconductivity 
 

A.   London theory of superconductivity 
 
Superconductivity is a property  common to several 
metals. Below a given transition temperature they 
present; 
 
i) transport of charge with no measurable resistance  
 
ii) perfect diamagnetism; Meissner effect 
 
 
 Phenomenologically these two effects can be 
described by the following equations: 
 



 
London equations 
 
 
 
 
Combined with the 
Maxwell equation 
 
 
Result in the equation 
that describes the 

Meissner effect 
 
where 
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If the external scalar 
potential is zero 
 
 
This implies that 
 
 
Choosing ( London gauge) 
 
 
London equation in the 
London gauge 



 
Bloch’s theorem for the 
ground state of the 
superconductor 
 
applied to the  system 
in a magnetic field 

yields 

and the London penetration 
depth is given by 



 For  the ground state wavefunction of the superconductor 

  In an external field it changes to 

 If the wave function is rigid 



Current - carrying wave function ( constant velocity) 

Generalization to position dependent velocity 

Number and current densities 



These imply in a current density 
with a number density 

Macroscopic  occupation of a single 
particle state or center-of-mass of a 
translationally invariant system 
 
Single particle wavefunction 

Non-ideal rigidity 



More generally, we can define the 1-particle reduced density 
operator  

n1(r ; r
0) = N

Z
dr2...drk...drN 0(r, ..., rk, ..., rN ) ⇤

0(r
0, ..., rk, ..., rN )

n(r) = n1(r ; r)

Ô1 ⌘
X
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O1(ri)

n(r) = N ⇤(r) (r)

From which 

Given general diagonal 1-body operator                                we 
can write 

hÔ1i = tr[n̂1Ô1] =

Z
drn1(r ; r)O1(r)

For a bosonic ground state given by a product state of single 
particle wave functions  (r)
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Z
dr1...dri...drj ...drN V (ri � rj) | 0(r1, ..., ri, ..., rj , ..., rN )|2

=
N(N � 1)
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Z
dx dy dr3...drN V (x� y) | 0(x,y, r3, ..., rN )|2

Average of the effective inter-electronic interaction 

Defining the 2-particle reduced density operator 

n2(x,y;x
0,y0) ⌘ N(N � 1)

Z
dr3...drN 0(x,y, r3, ..., rN ) ⇤

0(x
0,y0, r3, ..., rN )

We can rewrite hV̂ i = 1

2

Z
dx dyn2(x,y ;x,y)V (x� y)



Ô2 ⌘ 1

2

X

i,j

O2(ri, rj)

hÔ2i = 1
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Z
dx dy n2(x,y ;x,y)O2(x,y)

n2(x,y ;x,y) = N(N � 1)�⇤(x,y)�(x,y)

r ⌘ 1

2
(x+ y) and u ⌘ x� y

For a general diagonal 2-body operator 

We have 

If the ground state is a properly anti-symmetrized product of 
single particle wave functions 

Using the center-of-mass and relative coordinates 



n1(r ; r
0) =

1

N � 1

Z
du n2(r,u ; r0,u)

�(r,u) =  (r)�(u)

n(r) ⌘ n1(r ; r) = N  ⇤(r) (r)

We have 

Assuming translation invariance  

and then 

as before, but with a new interpretation.   

Then                                         Finite temperature effects 
implies depletion of the condensate (two-fluid model) 

And also invalidate pure state description          density 
operators, ODLRO, order parameter etc.   



Flux Quantization 
Canonical momentum in an external 
field 

Integrated along an open path 

Along a closed path 
deep into a super- 
conductor  

Multiply connected region 

Flux quantization 



Josephson Effect 

Decoupled superconductors 

Superconductors coupled 
by a junction 

Resulting equations for the 
phase and number  density 

Josephson relations where 



B. Superconducting devices  
 
Superconducting Quantum Interference Devices (SQUIDs) 
 
Superconducting ring closed by a Josephson junction 



Modification of the flux quantization rule 

Then where 

and 

� = �
x

+ Li



Using that 

Electromagnetic potential 
energy 

Equation of motion for the 
Total flux in the ring 
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Current Biased Josephson Junction (CBJJs) 

Phase-flux relation 

SQUID ring such that 

Washboard potential 

Equation of motion for the 
phase  

Josephson coupling energy 



Washboard potential 

V x I carachteristic of the 
CBJJ 
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Cooper Pair Boxes (CPBs) 

Charging energy If  

“ Nearly free-electron model ”  for the phase in a periodic 
potential 

Bloch´s theorem 

where q(t) = q0 +Q
x
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Hqun(') =
(Q+ q)2

2C
un(') + U(')un(') = En(q)un(')

where Q = �2ie
@

@'

New Schrödinger equation (adiabatic approximation) 

with un('+ 2⇡) = un(')

Band structure of the CPB 



C.   Vortices in superconductors 
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-4πM 
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H 



New charactristic length,  the coherence length  ⇠ = ⇠(T )

⇠0 = ⇠(0) is basically the radius of the Cooper pair 

Estimate of  this radius: 

Energy cost to create an excitation in a metal is zero, but in a 
superconductor 

EF �� <
p2

2m
< EF +�

� << EF �p = 2�/vF

Uncertainty principle 
�x / ~

�p

=
~vF
2�

⇠0 =
~vF
⇡�



Temperature dependence is the same for             and     ⇠(T ) �(T )

What matters is                . From the Ginzburg-Landau theory  �L/⇠0

�L/⇠0 < 1/
p
2

�L/⇠0 > 1/
p
2

Pure metals  

Alloys  

Type I superconductors 
Pippard theory 

Type II superconductors 
London theory 

The supercurrent             is obtained from an average of            
Over a region such that                        in the Pippard theory 

Js(r) A(r0)
|r� r0| < ⇠0



Order parameter and penetration depth change abruptly at a  
surface   

If not  

FN � FS =
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Condensation energy 
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In a cylinder the EM field penetrates the sample in tubes:  
vortices. Creation of as many vortices as possible to reduce the 
superconducting free energy. It is halted by vortex-vortex 
interaction. 



Vortices 

Energy per unit length of a vortex in a type II superconductor    
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For a distorted vortex tube with u(z) = [u
x

(z), u
y

(z)]



Vortices  

2⇡⇠2N(EF )�✏ �✏ ' ~vF /⇡⇠

N(EF ) = mekF /2⇡
2~2

me�✏/EF

ml =
2

⇡3
mekF

Fraction of electrons per unit length localized within the  flux  
tube                             where                          and    

Change of the confined mass of electrons within the core 

Linear density of mass of the vortex line is 

This linear density can also be of other origins  



Vortex-vortex interaction  

h(r) = h1(r) + h2(r)
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r2h1(r2)

Field produced at a given position by vortices 1 and 2 

Vortex pair energy per unit length 

Vortex pair interaction energy per unit length 

Vortex field 

and 
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Force on a vortex 

In general, Lorentz force  

Magnus force due to the motion relative to the superfluid  
velocity  

Dissipative and Hall effects on a stiff 
line 

Elastic line 
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With the following 
replacements on  the 
magnetic wall motion 

We have the potential energy functional: 
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Phase slip  
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If one vortex crosses the junction: 

If N vortices cross the junction: 



D.   Macroscopic Quantum Phenomena 

Metastable configuration of the SQUID 
corresponds  to a state of the condensate  
that carries zero current 
 
Stable configuration carries a finite current 
 
Total decaying state (caution) 

Another possibility is a bistable coherent oscillation between  
states carrying different currents 



 They are both Schrödinger - cat like states 

that differ from either a macroscopically occupied single 
particle state (the condensate wavefunction) or a Josephson 
Effect – like wavefunction 

 where 

�C = a�N
1 + b�N

2 �J = (a�1 + b�2)
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 Symbolically 
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Phase slip (phase representation)  
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|0i = |e, 0iL ⌦ |� e, 0iR

|1i = |e,�2eiL ⌦ |� e, 2eiR

|±i = |0i± |1i

Phase slip (charge representation)  


