Elements of Superconductivity
A. London theory of superconductivity
Superconductivity is a property common to several
metals. Below a given transition temperature they
present;
i) transport of charge with no measurable resistance
ii) perfect diamagnetism; Meissner effect

Phenomenologically these two effects can be
described by the following equations:



London equations

Combined with the
Maxwell equation

Result in the equation
that describes the
Meissner effect

where A =4dn)\;*/c?

VxB=—J,
C
B
VQB:—2
)‘L




/\

— N —

H.(T)
B(x)

Normal region Superconducting region




If the external scalar F= _—(AJ.)= ——

potential is zero ot (AJ:) c Ot
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This implies that Js = _c_A(A — Ao)
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Choosing ( London gauge) Js1 = _AAO =0
C
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London gauge S cA




Bloch’ s theorem for the

ground state of the (p) =0
superconductor
applied to the system i e é
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and the London penetration me2 1/2
depth is given by AL =



For the ground state wavefunction of the superconductor
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Current - carrying wave function ( constant velocity)

UK (ry, ..., ...,Ty) = expit Z K- ri}Uo(ry,...;Tp, ..., TN ).
k

Generalization to position dependent velocity

U(ry,...,Cg,...,IN) = exp {zZH(rk)} Uo(ry, ..., Tpyoery TN ).
k
Number and current densities

n(r) = Z/drl...drk...drN(S(r — 1)V (ry, .., Thy s tN)W(Ty, oo Ty oy T ),
k

UV — UV, 0" | 0(r —ry).
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J(r) = Z/drl...drk...drN%
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These imply in a current density =) J(r) = 6—n(r)V@

with a number density m

!

n(r) :N/drg...drk...drN\If*(r,...,rk,...,rN)\I’(r,...,rk,...,rN),

Macroscopic occupation of a single
particle state or center-of-mass of a mmp n(r) = N¢Y™(r)¥(r),
translationally invariant system

Single particle wavefunction ~ mmp ¢ (r) = n(r)ew(r).

Non-ideal rigidity  mm) J(r) = ens(r)vs(r) + eny(r)vn(r),



More generally, we can define the 1-particle reduced density
operator

ni(r;r’) = N/drg...drk...drN\Ifg(r,...,rk,...,rN)\IIS(r’,...,rk,...,rN)
From which n(r) =ni(r;r)

Given general diagonal 1-body operator O; = Z O1(r;) we
can write i

A A

(O71) = tr[n1 0] = /drnl(r;r)(’)l(r)

For a bosonic ground state given by a product state of single
particle wave functions (r)

n(r) = Ny (r)yp(r)



Average of the effective inter-electronic interaction
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Defining the 2-particle reduced density operator

na(x,y;x,y') = N(N — 1) /drg...drN\Ifo(X,y,rg, )P (X Y T3, TN

A

We can rewrite (V) = / dx dyna(X,y;x,y) V(x—y)
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For a general diagonal 2-body operator
A 1
02 p— 5 Z 02(1‘7;, I'j)
©,J

. 1 A 1
We have (O3) = §t1’[’fl2(92] = 2 /dx dy n2(x,y ;%,y)O02(x,y)

If the ground state is a properly anti-symmetrized product of
single particle wave functions

na(X,y;x,y) = N(N —1) 9" (x,y)9(x,y)

Using the center-of-mass and relative coordinates

r=—-(x+y)andu=x-—y
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We have

1

ni(r;r') = m/du na(r,u;r’,u)

Assuming translation invariance ¢(r,u) = ¥ (r)x(u)
and then n(r) =ny(r;r) = NyY*(r)Y(r)
as before, but with a new interpretation.

Then %(r) = /n(r)e?®™) . Finite temperature effects
implies depletion of the condensate (two-fluid model)

¥

J(r) = eng(r)vs(r) + enn(r)vy(r),

And also invalidate pure state description » density
operators, ODLRO, order parameter etc.



Flux Quantization
Canonical momentum in an external AV = mv +eA/c

field

2
Integrated along an open path /1 (m" + ZA> dr = N(0z — 01)

Along a closed path . .
deep into a super- j{ (mv + EA) dr = . 7{ (cAJ + A) dr = 2mnh
conductor

Multiply connected region % (AJ + A) dr = - 2mhe ngo

Flux quantization > j{A-dr = / B.ds = ngo




Josephson Effect

Decoupled superconductors

Superconductors coupled
by a junction

Resulting equations for the
phase and number density

Josephson relations =) J
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B. Superconducting devices
Superconducting Quantum Interference Devices (SQUIDs)

Superconducting ring closed by a Josephson junction




Modification of the flux quantization rule
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Using that V=—¢ ==

Electromagnetic potential
energy

Equation of motion for the
Total flux in the ring
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Current Biased Josephson Junction (CB]J]s)

Phase-flux relation ¢ = —f—; Af = S—; v
SQUID ring such that L — 00, ¢, — 00 but ¢, /L = I,
Washboard potential U(p) = —1I, p — iy cos
Equation of motion for the %0 B+ P U'(p) =0
phase 27 2R

Poto

Josephson coupling energy E; = o




A <Gmmm Washboard potential

V x I carachteristic of the

CBJ] =D




Cooper Pair Boxes (CPBs)

Charging energy Ec=— If Ec>LE;

“ Nearly free-electron model ” for the phase in a periodic
potential

_ @ _ d
Hy = — 4+ U(yp) where Q= _Zhd(gbggo/Qw)

2C
Bloch’s theorem wnq(sﬁ) = €XP {@ (2%3) 90} Un(SO)

with  un(p + 27m) = un(p)
t

where  ¢(t) = qo + Q. (1) and Q.(t) = /dt’]m(t’)

to



New Schrédinger equation (adiabatic approximation)

Haun(9) = L0 () + U(@hunl) = Bula)un(i)
where Q = —22’6%

with  un (4 27) = uy (@)

Band structure of the CPB
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C. Vortices in superconductors
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New charactristic length, the coherence length & = £(T)

€0 = £(0) is basically the radius of the Cooper pair

Estimate of this radius:

Energy cost to create an excitation in a metal is zero, but in a

superconductor

2

EF—A<;;<EF+A
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A << Ep wmp Op=2A/vp

Uncertainty principle mmmp OJx % _ ZUTAF _ hop



Temperature dependence is the same for £(7T') and A(T)

What mattersis Ay, /& . From the Ginzburg-Landau theory

Pure metals A7, /& < 1/v/2 mmmp  Type I superconductors
Pippard theory

Alloys AL / o> 1 / \/5 mm) Type Il superconductors
London theory

The supercurrent Jg(r) is obtained from an average of A(r')
Over a region such that |r — r'| < £ in the Pippard theory



Condensation energy

Order parameter and penetration depth change abruptly at a

surface 1

H2
Fy — Fg = —°
ST
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If not ) FN—F5:8;—I—8;( Vf)
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In a cylinder the EM field penetrates the sample in tubes:
vortices. Creation of as many vortices as possible to reduce the
superconducting free energy. It is halted by vortex-vortex
interaction.



Vortices

Energy per unit length of a vortex in a type Il superconductor

q= o [ dS(R IV x h(o) + ()
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For a distorted vortex tube with u(z) = |u,(2), u,(2)]
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Vortices

Fraction of electrons per unit length localized within the flux
tube 27¢*N(Er)ée where de ~ hvp/m¢ and

N(Er) = mekr /27%R°

Change of the confined mass of electrons within the core

mede/Ep

Linear density of mass of the vortex line is

2
m; = —Smekp
7

This linear density can also be of other origins



Vortex-vortex interaction
Field produced at a given position by vortices 1 and 2
h(r) = hi(r) + hy(r)

Vortex pair energy per unit length

IS —g:? lh1(ry1) + hi(r2) + ha(ry) + ho(r2)]
Vortex pair interaction energy per unit length AFE; = jf_o hi(rz)
T
. 9o r
Vortex field h(r) = 5\ Ky (X)
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Force on a vortex f(ry) = Ji(rp) x —

In general, Lorentz force fr(r) = J4(r) x —

Magnus force due to the motion relative to the superfluid
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With the fOHOWiI’Ig Yy — z, u(y’ t) — u(z7 iﬁ)7 Cs — el/ml,
replacements on the ~
magnetic wall motion Voin = Vpin/€r and — (H/He)1/¢ = f1

We have the potential energy functional:
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Phase slip

1] |»2

If one vortex crosses the junction:
1
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]{Vé’-dl:/(VQ)l-dlnL/(Vé’)u-d1:27r
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((91 — 92)11, — ((91 — (92)1 = A@u — A@l = 27
If N vortices cross the junction:
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D. Macroscopic Quantum Phenomena

Metastable configuration of the SQUID @) = |Ai) i)
corresponds to a state of the condensate
that carries zero current

Stable configuration carries a finite current  |®;) = |A;) |¢)

Total decaying state (caution)

() ~ e A [1hi) + /(1 —e=70) [Ay) o)

Another possibility is a bistable coherent oscillation between
states carrying different currents

[@5(1) ~ alt)[Ai) [vi) + b(t) |Af) [¢)



They are both Schrédinger - cat like states

Pp(r,r1,..,rn,t) = a(t) Ai(r) Yi(r,r1, ..., vn) + b(t) Af(r) Yy (r,r1, ..., TN)

that ditfer from either a macroscopically occupied single
particle state (the condensate wavefunction) or a Josephson
Effect - like wavefunction

@<X1,Y1,X2,YQ,---,XN/Q,YN/Q H [GJR QOR XmYz ‘|‘CL(L) @L(Xzayz)}

where o(x;,y:) = a' or(xs, yi) + o' or (i, y0)

Symbolically

bc = ady +bod b7 = (ady + Do)/



Phase slip (phase representation)

U(p)




Phase slip (charge representation)
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