Lista de exercícios 2:

Problemas 1-6: Questões 1, 2, 4, 6, 8 e 9 do Cap. II do Cohen-Tannoudji.

7) Usando a representação do operador P como

$$P = -i\hbar \frac{\partial}{\partial x},$$

mostre que

a) [X, f(X)] = 0b) [P, g(P)] = 0c) $[P, f(x)] = -i\hbar \frac{\partial f}{\partial x}$

d)
$$\left[P, X^k\right] = -i\hbar k X^{k-1}$$

8)

Consider the states $|\psi\rangle = 9i |\phi_1\rangle + 2 |\phi_2\rangle$ and $|\chi\rangle = -\frac{i}{\sqrt{2}} |\phi_1\rangle + \frac{1}{\sqrt{2}} |\phi_2\rangle$, where the two vectors $|\phi_1\rangle$ and $|\phi_2\rangle$ form a complete and orthonormal basis.

(a) Calculate the operators $|\psi\rangle\langle\chi|$ and $|\chi\rangle\langle\psi|$. Are they equal?

(b) Find the Hermitian conjugates of $|\psi\rangle$, $|\chi\rangle$, $|\psi\rangle\langle\chi|$, and $|\chi\rangle\langle\psi|$.

(c) Calculate Tr($|\psi\rangle\langle\chi|$) and Tr($|\chi\rangle\langle\psi|$). Are they equal?

(d) Calculate $|\psi\rangle\langle\psi|$ and $|\chi\rangle\langle\chi|$ and the traces Tr($|\psi\rangle\langle\psi|$) and Tr($|\chi\rangle\langle\chi|$). Are they projection operators?

9)

(a) Show that the sum of two projection operators cannot be a projection operator unless their product is zero.

(b) Show that the product of two projection operators cannot be a projection operator unless they commute.

10)

Consider the matrices $A = \begin{pmatrix} 7 & 0 & 0 \\ 0 & 1 & -i \\ 0 & i & -1 \end{pmatrix}$ and $B = \begin{pmatrix} 1 & 0 & 3 \\ 0 & 2i & 0 \\ i & 0 & -5i \end{pmatrix}$.

(a) Are A and B Hermitian? Calculate AB and BA and verify that Tr(AB) = Tr(BA); then calculate [A, B] and verify that Tr([A, B]) = 0.

(b) Find the eigenvalues and the normalized eigenvectors of A. Verify that the sum of the eigenvalues of A is equal to the value of Tr(A) calculated in (a) and that the three eigenvectors form a basis.

(c) Verify that $U^{\dagger}AU$ is diagonal and that $U^{-1} = U^{\dagger}$, where U is the matrix formed by the normalized eigenvectors of A.

(d) Calculate the inverse of $A' = U^{\dagger}AU$ and verify that ${A'}^{-1}$ is a diagonal matrix whose eigenvalues are the inverse of those of A'.

11)

Consider a particle whose Hamiltonian matrix is $H = \begin{pmatrix} 2 & i & 0 \\ -i & 1 & 1 \\ 0 & 1 & 0 \end{pmatrix}$.

(a) Is
$$|\lambda\rangle = \begin{pmatrix} i \\ 7i \\ -2 \end{pmatrix}$$
 an eigenstate of *H*? Is *H* Hermitian?

(b) Find the energy eigenvalues, a_1 , a_2 , and a_3 , and the normalized energy eigenvectors, $|a_1\rangle$, $|a_2\rangle$, and $|a_3\rangle$, of H.

(c) Find the matrix corresponding to the operator obtained from the ket-bra product of the rst eigenvector $P = |a_1\rangle\langle a_1|$. Is P a projection operator? Calculate the commutator [P, H]rstly by using commutator algebra and then by using matrix products.

12)

Consider the matrices
$$A = \begin{pmatrix} 0 & 0 & i \\ 0 & 1 & 0 \\ -i & 0 & 0 \end{pmatrix}$$
 and $B = \begin{pmatrix} 2 & i & 0 \\ 3 & 1 & 5 \\ 0 & -i & -2 \end{pmatrix}$.

(a) Check if A and B are Hermitian and nd the eigenvalues and eigenvectors of A. Any degeneracies?

- (b) Verify that $\operatorname{Tr}(AB) = \operatorname{Tr}(BA)$, $\det(AB) = \det(A)\det(B)$, and $\det(B^{\dagger}) = (\det(B))^*$.
- (c) Calculate the commutator [A, B] and the anticommutator $\{A, B\}$.
- (d) Calculate the inverses A^{-1} , B^{-1} , and $(AB)^{-1}$. Verify that $(AB)^{-1} = B^{-1}A^{-1}$.

13)

Consider the matrices
$$A = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$
 and $B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}$.

(a) Find the eigenvalues and normalized eigenvectors of A and B. Denote the eigenvectors of A by $|a_1\rangle$, $|a_2\rangle$, $|a_3\rangle$ and those of B by $|b_1\rangle$, $|b_2\rangle$, $|b_3\rangle$. Are there any degenerate eigenvalues?

(b) Show that each of the sets $|a_1\rangle$, $|a_2\rangle$, $|a_3\rangle$ and $|b_1\rangle$, $|b_2\rangle$, $|b_3\rangle$ forms an orthonormal and complete basis, i.e., show that $\langle a_j | a_k \rangle = \delta_{jk}$ and $\sum_{j=1}^3 |a_j\rangle\langle a_j | = I$, where *I* is the 3 × 3 unit matrix; then show that the same holds for $|b_1\rangle$, $|b_2\rangle$, $|b_3\rangle$.

(c) Find the matrix U of the transformation from the basis $\{|a\rangle\}$ to $\{|b\rangle\}$. Show that $U^{-1} = U^{\dagger}$. Verify that $U^{\dagger}U = I$. Calculate how the matrix A transforms under U, i.e., calculate $A' = UAU^{\dagger}$.