Lista de exercícios 2:

Problemas 1-6: Questões 1, 2, 4, 6, 8 e 9 do Cap. II do Cohen-Tannoudji.
7) Usando a representação do operador P como

$$
P=-i \hbar \frac{\partial}{\partial x}
$$

mostre que
a) $[X, f(X)]=0$
b) $[P, g(P)]=0$
c) $[P, f(x)]=-i \hbar \frac{\partial f}{\partial x}$
d) $\left[P, X^{k}\right]=-i \hbar k X^{k-1}$
8)

Consider the states $|\psi\rangle=9 i\left|\phi_{1}\right\rangle+2\left|\phi_{2}\right\rangle$ and $|\chi\rangle=-\frac{i}{\sqrt{2}}\left|\phi_{1}\right\rangle+\frac{1}{\sqrt{2}}\left|\phi_{2}\right\rangle$, where the two vectors $\left|\phi_{1}\right\rangle$ and $\left|\phi_{2}\right\rangle$ form a complete and orthonormal basis.
(a) Calculate the operators $|\psi\rangle\langle\chi|$ and $|\chi\rangle\langle\psi|$. Are they equal?
(b) Find the Hermitian conjugates of $|\psi\rangle,|\chi\rangle,|\psi\rangle\langle\chi|$, and $|\chi\rangle\langle\psi|$.
(c) Calculate $\operatorname{Tr}(|\psi\rangle\langle\chi|)$ and $\operatorname{Tr}(|\chi\rangle\langle\psi|)$. Are they equal?
(d) Calculate $|\psi\rangle\langle\psi|$ and $|\chi\rangle\langle\chi|$ and the traces $\operatorname{Tr}(|\psi\rangle\langle\psi|)$ and $\operatorname{Tr}(|\chi\rangle\langle\chi|)$. Are they projection operators?
9)
(a) Show that the sum of two projection operators cannot be a projection operator unless their product is zero.
(b) Show that the product of two projection operators cannot be a projection operator unless they commute.
10)

Consider the matrices $A=\left(\begin{array}{ccc}7 & 0 & 0 \\ 0 & 1 & -i \\ 0 & i & -1\end{array}\right)$ and $B=\left(\begin{array}{ccc}1 & 0 & 3 \\ 0 & 2 i & 0 \\ i & 0 & -5 i\end{array}\right)$.
(a) Are A and B Hermitian? Calculate $A B$ and $B A$ and verify that $\operatorname{Tr}(A B)=\operatorname{Tr}(B A)$; then calculate $[A, B]$ and verify that $\operatorname{Tr}([A, B])=0$.
(b) Find the eigenvalues and the normalized eigenvectors of A. Verify that the sum of the eigenvalues of A is equal to the value of $\operatorname{Tr}(A)$ calculated in (a) and that the three eigenvectors form a basis.
(c) Verify that $U^{\dagger} A U$ is diagonal and that $U^{-1}=U^{\dagger}$, where U is the matrix formed by the normalized eigenvectors of A.
(d) Calculate the inverse of $A^{\prime}=U^{\dagger} A U$ and verify that $A^{\prime-1}$ is a diagonal matrix whose eigenvalues are the inverse of those of A^{\prime}.
11)

Consider a particle whose Hamiltonian matrix is $H=\left(\begin{array}{ccc}2 & i & 0 \\ -i & 1 & 1 \\ 0 & 1 & 0\end{array}\right)$.
(a) Is $|\lambda\rangle=\left(\begin{array}{c}i \\ 7 i \\ -2\end{array}\right)$ an eigenstate of H ? Is H Hermitian?
(b) Find the energy eigenvalues, a_{1}, a_{2}, and a_{3}, and the normalized energy eigenvectors, $\left|a_{1}\right\rangle,\left|a_{2}\right\rangle$, and $\left|a_{3}\right\rangle$, of H.
(c) Find the matrix corresponding to the operator obtained from the ket-bra product of the rst eigenvector $P=\left|a_{1}\right\rangle\left\langle a_{1}\right|$. Is P a projection operator? Calculate the commutator [P, H] rstly by using commutator algebra and then by using matrix products.
12)

Consider the matrices $A=\left(\begin{array}{ccc}0 & 0 & i \\ 0 & 1 & 0 \\ -i & 0 & 0\end{array}\right)$ and $B=\left(\begin{array}{ccc}2 & i & 0 \\ 3 & 1 & 5 \\ 0 & -i & -2\end{array}\right)$.
(a) Check if A and B are Hermitian and nd the eigenvalues and eigenvectors of A. Any degeneracies?
(b) Verify that $\operatorname{Tr}(A B)=\operatorname{Tr}(B A), \operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$, and $\operatorname{det}\left(B^{\dagger}\right)=(\operatorname{det}(B))^{*}$.
(c) Calculate the commutator $[A, B]$ and the anticommutator $\{A, B\}$.
(d) Calculate the inverses A^{-1}, B^{-1}, and $(A B)^{-1}$. Verify that $(A B)^{-1}=B^{-1} A^{-1}$.

13)

Consider the matrices $A=\left(\begin{array}{ccc}0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0\end{array}\right)$ and $B=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1\end{array}\right)$.
(a) Find the eigenvalues and normalized eigenvectors of A and B. Denote the eigenvectors of A by $\left|a_{1}\right\rangle,\left|a_{2}\right\rangle,\left|a_{3}\right\rangle$ and those of B by $\left|b_{1}\right\rangle,\left|b_{2}\right\rangle,\left|b_{3}\right\rangle$. Are there any degenerate eigenvalues?
(b) Show that each of the sets $\left|a_{1}\right\rangle,\left|a_{2}\right\rangle,\left|a_{3}\right\rangle$ and $\left|b_{1}\right\rangle,\left|b_{2}\right\rangle,\left|b_{3}\right\rangle$ forms an orthonormal and complete basis, i.e., show that $\left\langle a_{j} \mid a_{k}\right\rangle=\delta_{j k}$ and $\sum_{j=1}^{3}\left|a_{j}\right\rangle\left\langle a_{j}\right|=I$, where I is the 3×3 unit matrix; then show that the same holds for $\left|b_{1}\right\rangle,\left|b_{2}\right\rangle,\left|b_{3}\right\rangle$.
(c) Find the matrix U of the transformation from the basis $\{|a\rangle\}$ to $\{|b\rangle\}$. Show that $U^{-1}=U^{\dagger}$. Verify that $U^{\dagger} U=I$. Calculate how the matrix A transforms under U, i.e., calculate $A^{\prime}=U A U^{\dagger}$.

