
Lista	  de	  exercícios	  2:	  

Problemas	  1-‐6:	  Questões	  1,	  2,	  4,	  6,	  8	  e	  9	  do	  Cap.	  II	  do	  Cohen-‐Tannoudji.

7) Usando	  a	  representação	  do	  operador	  P	  como	  

 
P = −i ∂

∂x
,

mostre	  que

a)	   X, f (X)[ ] = 0

b)	   P,g(P)[ ] = 0

c)	  
 
P, f (x)[ ] = −i ∂ f

∂x

d)	   P,X
k⎡⎣ ⎤⎦ = −ikXk−1
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functions. The complexity we encounter in solving the differential equation depends entirely on
the form of the potential; the simpler the potential the easier the solution. Exact solutions of the
Schrödinger equation are possible only for a few idealized systems; we deal with such systems
in Chapters 4 and 6. However, exact solutions are generally not possible, for real systems do not
yield themselves to exact solutions. In such cases one has to resort to approximate solutions.
We deal with such approximate treatments in Chapters 9 and 10; Chapter 9 deals with time-
independent potentials and Chapter 10 with time-dependent potentials.
Before embarking on the applications of the Schrödinger equation, we need  rst to lay down

the theoretical foundations of quantum mechanics. We take up this task in Chapter 3, where
we deal with the postulates of the theory as well as their implications; the postulates are the
bedrock on which the theory is built.

2.9 Solved Problems

Problem 2.1
Consider the states 9i 1 2 2 and i

2 1
1
2 2 , where the two

vectors 1 and 2 form a complete and orthonormal basis.
(a) Calculate the operators and . Are they equal?
(b) Find the Hermitian conjugates of , , , and .
(c) Calculate Tr and Tr . Are they equal?
(d) Calculate and and the traces Tr and Tr . Are they

projection operators?

Solution
(a) The bras corresponding to 9i 1 2 2 and i 1 2 2 2

are given by 9i 1 2 2 and i
2 1

1
2 2 , respectively. Hence we

have

1
2
9i 1 2 2 i 1 2

1
2

9 1 1 9i 1 2 2i 2 1 2 2 2

(2.355)

1
2

9 1 1 2i 1 2 9i 2 1 2 2 2 (2.356)

As expected, and are not equal; they would be equal only if the states
and were proportional and the proportionality constant real.
(b) To  nd the Hermitian conjugates of , , , and , we need simply

to replace the factors with their respective complex conjugates, the bras with kets, and the kets
with bras:

† 9i 1 2 2
† 1

2
i 1 2 (2.357)
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Problem 2.2
(a) Find a complete and orthonormal basis for a space of the trigonometric functions of the

form N
n 0 an cos n .

(b) Illustrate the results derived in (a) for the case N 5;  nd the basis vectors.

Solution
(a) Since cos n 1

2 e
in e in , we can write N

n 0 an cos n as

1
2

N

n 0
an ein e in 1

2

N

n 0
anein

0

n N
a nein

N

n N
Cnein (2.368)

where Cn an 2 for n 0, Cn a n 2 for n 0, and C0 a0. Since any trigonometric
function of the form x N

n 0 an cos n can be expressed in terms of the functions
n ein 2 , we can try to take the set n as a basis. As this set is complete, let us
see if it is orthonormal. The various functions n are indeed orthonormal, since their scalar
products are given by

m n m n d
1
2

ei n m d nm (2.369)

In deriving this result, we have considered two cases: n m and n m. First, the case n m
is obvious, since n n

1
2 d 1. On the other hand, when n m we have

m n
1
2

ei n m d
1
2
ei n m e i n m

i n m
2i sin n m
2i n m

0

(2.370)
since sin n m 0. So the functions n ein 2 form a complete and orthonor-
mal basis. From (2.368) we see that the basis has 2N 1 functions n ; hence the dimension
of this space of functions is equal to 2N 1.
(b) In the case where N 5, the dimension of the space is equal to 11, for the basis

has 11 vectors: 5 e 5i 2 , 4 e 4i 2 , , 0 1 2 , ,
4 e4i 2 , 5 e5i 2 .

Problem 2.3
(a) Show that the sum of two projection operators cannot be a projection operator unless

their product is zero.
(b) Show that the product of two projection operators cannot be a projection operator unless

they commute.

Solution
Recall that an operator P is a projection operator if it satis es P† P and P2 P .
(a) If two operators A and B are projection operators and if AB BA, we want to show

that A B † A B and that A B 2 A B. First, the hermiticity is easy to ascertain
since A and B are both Hermitian: A B † A B. Let us now look at the square of
A B ; since A2 A and B2 B, we can write

A B 2 A
2

B2 AB BA A B AB BA (2.371)
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where the commutator [Xk P] is given by (2.396). Thus, we have

F X P ih
k
kak Xk 1 ih

d k ak Xk

dX
ih
dF X
dX

(2.405)

A much simpler method again consists in applying the commutator F X P on some

wave function x . Since F X x F x x , we have

F X P x F X P x ih
d
dx

F x x

F X P x ih
d x
dx

F x ih
dF x
dx

x

F X P x F X P x ih
dF x
dx

x

ih
dF x
dx

x (2.406)

Since F X P x ih dF xdx x we see that F X P ih dF X
dX

.

Problem 2.9

Consider the matrices A
7 0 0
0 1 i
0 i 1

and B
1 0 3
0 2i 0
i 0 5i

.

(a) Are A and B Hermitian? Calculate AB and BA and verify that Tr AB Tr BA ; then
calculate [A B] and verify that Tr [A B] 0.
(b) Find the eigenvalues and the normalized eigenvectors of A. Verify that the sum of the

eigenvalues of A is equal to the value of Tr A calculated in (a) and that the three eigenvectors
form a basis.
(c) Verify thatU†AU is diagonal and thatU 1 U†, whereU is the matrix formed by the

normalized eigenvectors of A.
(d) Calculate the inverse of A U†AU and verify that A 1 is a diagonal matrix whose

eigenvalues are the inverse of those of A .

Solution
(a) Taking the Hermitian adjoints of the matrices A and B (see (2.188))

A†
7 0 0
0 1 i
0 i 1

B†
1 0 i
0 2i 0
3 0 5i

(2.407)

we see that A is Hermitian and B is not. Using the products

AB
7 0 21
1 2i 5
i 2 5i

BA
7 3i 3
0 2i 2
7i 5 5i

(2.408)
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We can also show that U†U 1:

1 0 0
0 1

2 2 2
i 2 1
2 2 2

0 1
2 2 2

i 1 2
2 2 2

1 0 0
0 1

2 2 2
1

2 2 2

0 i 2 1
2 2 2

i 1 2
2 2 2

1 0 0
0 1 0
0 0 1

(2.415)
This implies that the matrix U is unitary: U† U 1. Note that, from (2.413), we have
det U i 1.
(d) Using (2.414) we can verify that the inverse of A U†AU is a diagonal matrix whose

elements are given by the inverse of the diagonal elements of A :

A
7 0 0
0 2 0
0 0 2

A 1

1
7 0 0
0 1

2
0

0 0 1
2

(2.416)

Problem 2.10

Consider a particle whose Hamiltonian matrix is H
2 i 0
i 1 1
0 1 0

.

(a) Is
i
7i
2

an eigenstate of H? Is H Hermitian?

(b) Find the energy eigenvalues, a1, a2, and a3, and the normalized energy eigenvectors,
a1 , a2 , and a3 , of H .
(c) Find the matrix corresponding to the operator obtained from the ket-bra product of the

 rst eigenvector P a1 a1 . Is P a projection operator? Calculate the commutator [P H ]
 rstly by using commutator algebra and then by using matrix products.

Solution
(a) The ket is an eigenstate of H only if the action of the Hamiltonian on is of the

form H b , where b is constant. This is not the case here:

H
2 i 0
i 1 1
0 1 0

i
7i
2

7 2i
1 7i
7i

(2.417)

Using the de nition of the Hermitian adjoint of matrices (2.188), it is easy to ascertain that H
is Hermitian:

H†
2 i 0
i 1 1
0 1 0

H (2.418)

(b) The energy eigenvalues can be obtained by solving the secular equation

0
2 a i 0
i 1 a 1
0 1 a

2 a [ 1 a a 1] i i a

a 1 a 1 3 a 1 3 (2.419)
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Problem 2.11

Consider the matrices A
0 0 i
0 1 0
i 0 0

and B
2 i 0
3 1 5
0 i 2

.

(a) Check if A and B are Hermitian and  nd the eigenvalues and eigenvectors of A. Any
degeneracies?
(b) Verify that Tr AB Tr BA , det AB det A det B , and det B† det B .
(c) Calculate the commutator [A B] and the anticommutator A B .
(d) Calculate the inverses A 1, B 1, and AB 1. Verify that AB 1 B 1A 1.
(e) Calculate A2 and infer the expressions of A2n and A2n 1. Use these results to calculate

the matrix of ex A.

Solution
(a) The matrix A is Hermitian but B is not. The eigenvalues of A are a1 1 and a2

a3 1 and its normalized eigenvectors are

a1
1
2

1
0
i

a2
1
2

1
0
i

a3
0
1
0

(2.429)

Note that the eigenvalue 1 is doubly degenerate, since the two eigenvectors a2 and a3
correspond to the same eigenvalue a2 a3 1.
(b) A calculation of the products AB and BA reveals that the traces Tr AB and Tr BA

are equal:

Tr AB Tr
0 1 2i
3 1 5
2i 1 0

1

Tr BA Tr
0 i 2i
5i 1 3i
2i i 0

1 Tr AB (2.430)

From the matrices A and B, we have det A i i 1, det B 4 16i . We can thus
write

det AB det
0 1 2i
3 1 5
2i 1 0

4 16i 1 4 16i det A det B (2.431)

On the other hand, since det B 4 16i and det B† 4 16i , we see that det B†
4 16i 4 16i det B .
(c) The commutator [A B] is given by

AB BA
0 1 2i
3 1 5
2i 1 0

0 i 2i
5i 1 3i
2i i 0

0 1 i 4i
3 5i 0 5 3i
4i 1 i 0

(2.432)
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Problem 2.12

Consider two matrices: A
0 i 2
0 1 0
i 0 0

and B
2 i 0
3 1 5
0 i 2

. Calculate A 1 B

and B A 1. Are they equal?

Solution
As mentioned above, a calculation similar to (2.200) leads to the inverse of A:

A 1
0 0 i
0 1 0
1 2 i 2 0

(2.442)

The products A 1 B and B A 1 are given by

A 1B
0 0 i
0 1 0
1 2 i 2 0

2 i 0
3 1 5
0 i 2

0 1 2i
3 1 5

1 3i 2 0 5i 2
(2.443)

BA 1
2 i 0
3 1 5
0 i 2

0 0 i
0 1 0
1 2 i 2 0

0 i 2i
5 2 1 5i 2 3i
1 0 0

(2.444)

We see that A 1 B and B A 1 are not equal.
Remark
We should note that the quotient B A of two matrices A and B is equal to the product BA 1

and not A 1B; that is:

B
A

BA 1

2 i 0
3 1 5
0 i 2
0 i 2
0 1 0
i 0 0

0 i 2i
5 2 1 5i 2 3i
1 0 0

(2.445)

Problem 2.13

Consider the matrices A
0 1 0
1 0 1
0 1 0

and B
1 0 0
0 0 0
0 0 1

.

(a) Find the eigenvalues and normalized eigenvectors of A and B. Denote the eigenvectors
of A by a1 , a2 , a3 and those of B by b1 , b2 , b3 . Are there any degenerate
eigenvalues?
(b) Show that each of the sets a1 , a2 , a3 and b1 , b2 , b3 forms an orthonormal

and complete basis, i.e., show that a j ak jk and 3
j 1 a j a j I , where I is the

3 3 unit matrix; then show that the same holds for b1 , b2 , b3 .
(c) Find the matrix U of the transformation from the basis a to b . Show that

U 1 U†. Verify that U†U I . Calculate how the matrix A transforms under U , i.e.,
calculate A U AU†.


