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That is, the expectation value of an observable is obtained by adding all permissible eigenvalues
an , with each an multiplied by the corresponding probability Pn .
The relation (3.34), which is valid for discrete spectra, can be extended to a continuous

distribution of probabilities P a as follows:

A
a a 2da

a 2da
a dP a (3.35)

The expectation value of an observable can be obtained physically as follows: prepare a very
large number of identical systems each in the same state . The observable A is then mea-
sured on all these identical systems; the results of these measurements are a1, a2, , an , ;
the corresponding probabilities of occurrence are P1, P2, , Pn , . The average value of all
these repeated measurements is called the expectation value of A with respect to the state .
Note that the process of obtaining different results when measuring the same observable

on many identically prepared systems is contrary to classical physics, where these measure-
ments must give the same outcome. In quantum mechanics, however, we can predict only the
probability of obtaining a certain value for an observable.

Example 3.4
Consider a system whose state is given in terms of a complete and orthonormal set of  ve
vectors 1 , 2 , 3 , 4 , 5 as follows:
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where n are eigenstates to the system’s Hamiltonian, H n n 0 n with n 1 2 3 4 5,
and where 0 has the dimensions of energy.
(a) If the energy is measured on a large number of identical systems that are all initially in

the same state , what values would one obtain and with what probabilities?
(b) Find the average energy of one such system.

Solution
First, note that is not normalized:
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(3.36)

since j k jk with j , k 1 2 3 4 5.
(a) Since En n H n n 0 (n 1 2 3 4 5), the various measurements of the

energy of the system yield the values E1 0, E2 2 0, E3 3 0, E4 4 0, E5 5 0 with
the following probabilities:
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(3.37)
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if the value of the action of a system is too large compared to h, this system can be accurately
described by means of classical physics. Otherwise, the use of a quantal description becomes
unavoidable. One should recall that, for microscopic systems, the size of action variables is of
the order of h; for instance, the angular momentum of the hydrogen atom is L nh, where n
is  nite.
Another equivalent way of de ning the classical limit is by means of "length." Since

h p the classical domain can be speci ed by the limit 0. This means that, when the de
Broglie wavelength of a system is too small compared to its size, the system can be described
accurately by means of classical physics.
In summary, the classical limit can be described as the limit h 0 or, equivalently, as the

limit 0. In these limits the results of quantum mechanics should be similar to those of
classical physics:

lim
h 0

Quantum Mechanics Classical Mechanics (3.137)

lim
0
Quantum Mechanics Classical Mechanics (3.138)

Classical mechanics can thus be regarded as the short wavelength limit of quantum mechanics.
In this way, quantum mechanics contains classical mechanics as a limiting case. So, in the limit
of h 0 or 0, quantum dynamical quantities should have, as proposed by Bohr, a one-to-
one correspondence with their classical counterparts. This is the essence of the correspondence
principle.
But how does one reconcile, in the classical limit, the probabilistic nature of quantum me-

chanics with the determinism of classical physics? The answer is quite straightforward: quan-
tum  uctuations must become negligible or even vanish when h 0, for Heisenberg’s un-
certainty principle would acquire the status of certainty; when h 0, the  uctuations in the
position and momentum will vanish, x 0 and p 0. Thus, the position and momentum
can be measured simultaneously with arbitrary accuracy. This implies that the probabilistic as-
sessments of dynamical quantities by quantum mechanics must give way to exact calculations
(these ideas will be discussed further when we study the WKB method in Chapter 9).
So, for those cases where the action variables of a system are too large compared to h

(or, equivalently, when the lengths of this system are too large compared to its de Broglie
wavelength), quantum mechanics gives the same results as classical mechanics.
In the rest of this text, we will deal with the various applications of the Schrödinger equation.

We start, in Chapter 4, with the simple case of one-dimensional systems and later on consider
more realistic systems.

3.9 Solved Problems

Problem 3.1
A particle of mass m, which moves freely inside an in nite potential well of length a, has the
following initial wave function at t 0:
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where A is a real constant.
(a) Find A so that x 0 is normalized.
(b) If measurements of the energy are carried out, what are the values that will be found and

what are the corresponding probabilities? Calculate the average energy.
(c) Find the wave function x t at any later time t .
(d) Determine the probability of  nding the system at a time t in the state x t
2 a sin 5 x a exp i E5t h ; then determine the probability of  nding it in the state
x t 2 a sin 2 x a exp i E2t h .

Solution
Since the functions
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(3.139)

are orthonormal,
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it is more convenient to write x 0 in terms of n x :
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(a) Since n m nm the normalization of x 0 yields
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or A 6 5; hence
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(b) Since the second derivative of (3.139) is given by d2 n x dx2 n2 2 a2 n x ,
and since the Hamiltonian of a free particle is H h2 2m d2 dx2, the expectation value of
H with respect to n x is

En n H n
h2

2m

a

0
n x

d2 n x
dx2
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n2 2h2

2ma2
(3.144)

If a measurement is carried out on the system, we would obtain En n2 2h2 2ma2 with
a corresponding probability of Pn En n

2. Since the initial wave function (3.143)
contains only three eigenstates of H , 1 x , 3 x , and 5 x , the results of the energy mea-
surements along with the corresponding probabilities are
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(3.145)
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(3.147)
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Now, taking the divergence of (3.161), we end up with

J x t
d J x t
dx
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(3.163)

The addition of (3.162) and (3.163) con rms the conservation of probability:

t
J x t 0 (3.164)

Problem 3.3
Consider a one-dimensional particle which is con ned within the region 0 x a and whose
wave function is x t sin x a exp i t .
(a) Find the potential V x .
(b) Calculate the probability of  nding the particle in the interval a 4 x 3a 4.

Solution
(a) Since the  rst time derivative and the second x derivative of x t are given by
x t t i x t and 2 x t x2 2 a2 x t , the Schrödinger equa-

tion (3.68) yields

ih i x t
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x t V x t x t (3.165)

Hence V x t is time independent and given by V x h h2 2 2ma2 .
(b) The probability of  nding the particle in the interval a 4 x 3a 4 can be obtained

from (3.4):
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Problem 3.4
A system is initially in the state 0 [ 2 1 3 2 3 4 ] 7, where n are
eigenstates of the system’s Hamiltonian such that H n n2E0 n .
(a) If energy is measured, what values will be obtained and with what probabilities?
(b) Consider an operator A whose action on n is de ned by A n n 1 a0 n . If

A is measured, what values will be obtained and with what probabilities?
(c) Suppose that a measurement of the energy yields 4E0. If we measure A immediately

afterwards, what value will be obtained?

Solution
(a) A measurement of the energy yields En n H n n2E0, that is

E1 E0 E2 4E0 E3 9E0 E4 16E0 (3.167)

Since 0 is normalized, 0 0 2 3 1 1 7 1, and using (3.2), we can write the
probabilities corresponding to (3.167) as P En n 0

2
0 0 n 0

2; hence,


