## Lista de exercícios 3:

Problemas 1-8 : Questões 1, 2, 3, 4, 6, 7, 8, 12 e 14 do Cap. III do Cohen-Tannoudji.

## Problema 9:

Consider a system whose state is given in terms of a complete and orthonormal set of ve vectors $\left|\phi_{1}\right\rangle,\left|\phi_{2}\right\rangle,\left|\phi_{3}\right\rangle,\left|\phi_{4}\right\rangle,\left|\phi_{5}\right\rangle$ as follows:

$$
|\psi\rangle=\frac{1}{\sqrt{19}}\left|\phi_{1}\right\rangle+\frac{2}{\sqrt{19}}\left|\phi_{2}\right\rangle+\sqrt{\frac{2}{19}}\left|\phi_{3}\right\rangle+\sqrt{\frac{3}{19}}\left|\phi_{4}\right\rangle+\sqrt{\frac{5}{19}}\left|\phi_{5}\right\rangle,
$$

where $\left|\phi_{n}\right\rangle$ are eigenstates to the system's Hamiltonian, $\hat{H}\left|\phi_{n}\right\rangle=n \varepsilon_{0}\left|\phi_{n}\right\rangle$ with $n=1,2,3,4,5$, and where $\varepsilon_{0}$ has the dimensions of energy.
(a) If the energy is measured on a large number of identical systems that are all initially in the same state $|\psi\rangle$, what values would one obtain and with what probabilities?
(b) Find the average energy of one such system.

## Problema 10:

A particle of mass $m$, which moves freely inside an in nite potential well of length $a$, has the following initial wave function at $t=0$ :

$$
\psi(x, 0)=\frac{A}{\sqrt{a}} \sin \left(\frac{\pi x}{a}\right)+\sqrt{\frac{3}{5 a}} \sin \left(\frac{3 \pi x}{a}\right)+\frac{1}{\sqrt{5 a}} \sin \left(\frac{5 \pi x}{a}\right),
$$

where $A$ is a real constant.
(a) Find $A$ so that $\psi(x, 0)$ is normalized.
(b) If measurements of the energy are carried out, what are the values that will be found and what are the corresponding probabilities? Calculate the average energy.
(c) Find the wave function $\psi(x, t)$ at any later time $t$.
(d) Determine the probability of nding the system at a time $t$ in the state $\varphi(x, t)=$ $\sqrt{2 / a} \sin (5 \pi x / a) \exp \left(-i E_{5} t / \hbar\right)$; then determine the probability of nding it in the state $\chi(x, t)=\sqrt{2 / a} \sin (2 \pi x / a) \exp \left(-i E_{2} t / \hbar\right)$.

Problema 11:

A system is initially in the state $\left|\psi_{0}\right\rangle=\left[\sqrt{2}\left|\phi_{1}\right\rangle+\sqrt{3}\left|\phi_{2}\right\rangle+\left|\phi_{3}\right\rangle+\left|\phi_{4}\right\rangle\right] / \sqrt{7}$, where $\left|\phi_{n}\right\rangle$ are eigenstates of the system's Hamiltonian such that $\hat{H}\left|\phi_{n}\right\rangle=n^{2} \mathcal{E}_{0}\left|\phi_{n}\right\rangle$.
(a) If energy is measured, what values will be obtained and with what probabilities?
(b) Consider an operator $\hat{A}$ whose action on $\left|\phi_{n}\right\rangle$ is de ned by $\hat{A}\left|\phi_{n}\right\rangle=(n+1) a_{0}\left|\phi_{n}\right\rangle$. If $A$ is measured, what values will be obtained and with what probabilities?
(c) Suppose that a measurement of the energy yields $4 \mathcal{E}_{0}$. If we measure $A$ immediately afterwards, what value will be obtained?

