Lista de exercícios 4:

Problemas 1-4: Questões 1, 2, 3 e 4 do Cap. IV do Cohen-Tannoudji.
Problemas 5-7: Questões 1, 2, e 3 do Cap. V do Cohen-Tannoudji.
Problemas 8-10: Questões 1, 2, e 3 do Cap. VI do Cohen-Tannoudji.

Problema 11:

(a) Calculate the expectation value of the operator \hat{X}^{4} in the N-representation with respect to the state $|n\rangle$ (i.e., $\langle n| \hat{X}^{4}|n\rangle$).
(b) Use the result of (a) to calculate the energy E_{n} for a particle whose Hamiltonian is $\hat{H}=\hat{P}^{2} /(2 m)+\frac{1}{2} m \omega^{2} \hat{X}^{2}-\lambda \hat{X}^{4}$.

Problema 12:

(a) Show that $\Delta J_{x} \Delta J_{y}=\hbar^{2}\left[j(j+1)-m^{2}\right] / 2$, where $\Delta J_{x}=\sqrt{\left\langle\hat{J}_{x}^{2}\right\rangle-\left\langle\hat{J}_{x}\right\rangle^{2}}$ and the same for ΔJ_{y}.
(b) Show that this relation is consistent with $\Delta J_{x} \Delta J_{y} \geq(\hbar / 2)\left|\left\langle\hat{J}_{z}\right\rangle\right|=\hbar^{2} m / 2$.

Problema 13:

Consider a particle of total angular momentum $j=1$. Find the matrix for the component of \vec{J} along a unit vector with arbitrary direction \vec{n}. Find its eigenvalues and eigenvectors.

