
FI 002 – Mecânica Quântica II – Lista 2

P.01. Constant perturbation slowly turned on: A given system is perturbed by the potential

V (t) = V0e
ηt, 0 < η � 1,

where V0 is a constant. Consider that the system is initially (t0 → −∞) in the state |a〉 and apply first-
order perturbation theory to determine the transition probability Wba(t) to a state |b〉 at the instant t.
Determine the transition rate w (transition probability per unit time) and then consider the limit η → 0.

P.02. P.19.1, Merzbacher:
Calculate the cross section for the emission of a photoelectron ejected when linearly polarized monochro-
matic light of frequency ω is incident on a complex atom. Simulate the initial state of the atomic electron
by the ground state wave function of an isotropic three-dimensional harmonic oscillator (angular fre-
quency ω0) and the final state by a plane wave. Obtain the angular distribution as a function of the
angle of emission.
Hints: P.5.40, Sakurai and Sec. 19.6, Merzbacher.

03. P.19.2, Merzbacher:
Calculate the total cross section for photoemission from the K shell as a function of the frequency
of the incident light and the frequency of the K-shell absorption edge, assuming that h̄ω is much
larger than the ionization potential but that nevertheless the photon momentum is much less than the
momentum of the ejected electron. Use a hydrogenic wave function for the K shell and plane waves
for the continuum states.
Hint: Sec. 19.6, Merzbacher.

P.04. Ex.19.2, Merzbacher:
Apply first-order perturbation theory to a forced linear harmonic oscillator [Eq. (14.105)] which is ini-
tially (t0 → −∞) in the ground state. Determine the probability Won to a transition to an excited state
|n〉 when t→ +∞ and compare with the exact result [Eq. (14.146)]. Calculate the energy transfer to
the oscillator exactly and also in perturbation theory. Explain the agreement.
Finally, assume that Q(t) = E0e−η|t| cosω0t and P (t) = 0, determine Won and then consider the limit
η → 0.

P.05. P.5.30, Sakurai:
Consider a two-level system described by the Hamiltonian H0 such that H0|n〉 = En|n〉, with n = 1, 2
and E1 < E2. There is a time-dependent potential V (t) that connects the two levels as follows:

V11 = V22 = 0, V12 = γeiωt, V21 = γe−iωt,

where γ is a real number.

a) Consider that |ψ(t)〉 =
∑
n cn(t)e−iEnt/h̄|n〉 and show that the coefficients cn(t) satisfy coupled
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differential equations

ih̄ċk =

2∑
n=1

Vkn(t)eiωkntcn, k = 1, 2.

b) At t = 0, it is known that only the lower level is populated, that is, C1(0) = 1 and C2(0) = 0.
Find |C1(t)|2 and |C2(t)|2 for t > 0 exactly solving the coupled differential equations determined
in item (a).

c) Do the same problem using time-dependent perturbation theory to lowest non-vanishing order.
Compare the two approaches for small values of γ. Treat the following two cases separately: (i)
ω very different from ω21 and (ii) ω close to ω21.

P.06. P.5.37, Sakurai:
Consider a neutron in a magnetic field, fixed at an angle θ with respect to the z-axis, but rotating
slowly in the φ-direction

B(t) = B (sin θ cosφx̂+ sin θ sinφŷ + cos θẑ) ,

where φ = φ(t) = ωt, with ω � 1, i.e., the tip of the magnetic field traces out a circle on the surface
of the sphere at ”latitude” π − θ.

a) Consider that the Hamiltonian of the system is

H(t) = −~µ ·B = −1

2
h̄ω1σ̂ · B̂(t)

where σ̂ = (σx, σy, σz) with σi being a Pauli matrix and determine the instantaneous basis χ+(t)
and χ−(t), i.e, solve the eigenvalue problem

H(t)χn(t) = En(t)χ(t), n = ±,

for fixed t. Assume that Ψ(0) = χ+(0) and show that Ψ(t) = c+(t)χ+(t) + c−(t)χ−(t), where

c+(t) =

(
cos Ωt+ i

ω1 + ω cos θ

2Ω
sin Ωt

)
e−iωt/2, c+(t) =

(
iω

2Ω
sin Ωt

)
e−iωt/2,

and Ω = (ω2 +ω2
1 + 2ωω1 cos θ)1/2/2 [see Eq.(74.3), lecture notes]. Finally, consider that ω ≈ 0

(adiabatic condition) and determine the Berry phase γ+.

b) Alternative item (a): Explicitly calculate the Berry potential A for the spin-up state from (5.6.23),
take its curl, and determine Berry’s phase γ+· Thus, verify (5.6.42) for this particular example of
a curve C.
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P.07. P.5.29, Sakurai:
Consider a composite system made up of two spin−1/2. For t < 0, the Hamiltonian does not depend
on spin and can be taken to be zero by suitably adjusting the energy scale. For t > 0, the Hamiltonian
is given by

H =

(
4∆

h̄2

)
S1 · S2.

Suppose the system is in | + −〉 for t ≤ 0. Find, as a function of time, the probability for its being
found in each of the following states | + +〉, | + −〉, | − +〉, and | − −〉: (a) By solving the problem
exactly. (b) By solving the problem assuming the validity of first-order time-dependent perturbation
theory with H as a perturbation switched on at t = 0. Under what condition does (b) give the correct
results?

08. P.5.38, Sakurai:
The ground state of a hydrogen atom (n = 1, l = 0) is subjected to a time-dependent potential as
follows:

V (r, t) = V0 cos(kz − ωt).

Using time-dependent perturbation theory, obtain an expression for the transition rate at which the
electron is emitted with momentum p. Show, in particular, how you may compute the angular distri-
bution of the ejected electron (in terms of θ and φ defined with respect to the z-axis). Discuss briefly
the similarities and the differences between this problem and the (more realistic) photoelectric effect.
Follow the assumptions of P.17.2, Messiah for the initial and final states.

09. P.17.1, Messiah:
Let |u1〉 and |u2〉 be two orthogonal eigenstates corresponding to a doubly degenerate level of the
Hamiltonian H0 of a system. The introduction of a constant perturbation V removes the degeneracy
and splits the level into two levels a distance ε apart. Suppose that the system is initially in the state
|u1〉 and that the perturbation V is introduced during a time T . If W1→2 is the probability of finding
the system in the state |u2〉 after the perturbation has been turned off, show that W1→2 is a periodic
function of T with angular frequency ε/h̄ and verify that in the limit when εT � h̄ we obtain the result
given by the first-order perturbation theory. What is necessary in order that W1→2 vanish whatever T?

P.10. P.17.2, Messiah:
A hydrogen atom is subject to an oscillating electric field ~E(t) = ~E0 cosωt whose circular frequency ω
is greater than its ionization frequency me4/2h̄3. If the atom is initially in its ground state, what is
the probability per unit time of a transition to an ionized state (suppose that we may use plane waves
to represent ionized states)? What is the angular distribution of the electron emitted in this excitation
process?
N.B. The process described here is that of the photoelectric effect for which one thus obtains a semi-
classical treatment in which the electromagnetic field is not quantized.
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11. P.12.1, Baym:
An electron is in the ground state of a three-dimensional isotropic harmonic oscillator (angular fre-

quency ω0). A uniform electric field, ~E(t) = ~E0 cosωt, is applied to the electron. Calculate the rate of
ionization of the electron as a function of the frequency ω.

12. P.17.10, Desai:
A harmonic oscillator (angular frequency ω0) is subjected to an electromagnetic field (laser) such that
the interaction Hamiltonian is given by

V (q, p, t) =
eE0

2

( p

mω
sinωt− q cosωt

)
,

for 0 < t <∞. Determine the probability W0→1(t) that at time t the oscillator will make a transition
from the ground state to the first excited state. Also obtain

w0→1(t) = lim
t→∞

dW0→1(t)

dt
.

P.13. P.17.15, Desai:
Consider a particle bound in a simple harmonic oscillator potential (angular frequency ω). Initially
(t < 0), it is in the ground state. At t = 0, a perturbation of the form

V (x, t) = Ax2e−t/τe−iΩt, τ > 0,

is switched on. Using time-dependent perturbation theory, calculate the probability that after a suffi-
ciently long time (t� τ), the system will have made a transition to a given excited state. Consider all
final states.

14. P.18.4, Desai:
To take into account spontaneous emission in radiative transitions in atoms one can resort to quantum
electrodynamics (QED) and start with designating the combined radiation and atomic states as |nk α〉,
where nk corresponds to the number of photons and the subscript k stands for the quantum numbers
(momentum, polarization, etc.) of the photon, while α indicates the state of the atom. Let the vector
potential be written as

A(r, t) = A0

∑
k

(
ake

i(k·r−ωt + a†ke
−i(k·r−ωt

)
where ak are operators on the states |nk α〉 and satisfy the same commutation relations as for the

harmonic oscillator case such that nk = a†kak and ak|nk α〉 =
√
nk|nk − 1α〉. Insert the A(r, t) in the

expression for the matrix element 〈b|A ·p|a〉. Show that the absorption term is proportional to nk while
the emission term is proportional to nk + 1. Identify the part of the emission term that corresponds to
stimulated emission and the part that corresponds to spontaneous emission.
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