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01. P.1.8, Schwabl: Number operator.
A system of N interacting particles is described by the Hamiltonian

H =
∑

i,j

〈i|T |j〉a†iaj +
1

2

∑

i,j,k,l

〈i j|V |k l〉a†ia†jalak.

(a) For a system of N interacting bosons, show that the Hamiltonian H commutes with the

total particle-number operator N̂ =
∑
i a
†
iai.

(b) For a system of N interacting fermions, show that [H, N̂ ] = 0.

Hint: Identity [AB,CD] = [A,C]BD+A[B,C]D+C[A,D]B +CA[B,D] and the equivalent
in terms of anticommutators.

P.02. P.1.2, Miranda: Boson coherent states:
For the one-dimensional harmonic oscillator, the so-called coherent states |φ〉 are defined as the
eigenvectors of the non-Hermitian lowering operator a, (see, e.g., Sec. 10.7 from Merzbacher for
a review)

a|φ〉 = φ|φ〉, φ ∈ C.

Similarly, one can also define coherent states for bosons. Let us consider boson operators a†i
and ai that, respectively, creates and annihilates a particle in the single-particle state |i〉, with
i = 1, 2, . . .. A boson coherent state is defined as

ai|φ〉 = φi|φ〉, φi ∈ C, i = 1, 2, . . . .

(a) It is interesting to expand a boson coherent state in the occupation number representation,

|φ〉 =
∑

n1,n2,...

C(n1, n2, . . .)|n1 n2 . . .〉,

where the vectors

|n1 n2 . . .〉 =
(a†1)n1

√
n1!

(a†2)n2

√
n2!

. . . |0〉,

with |0〉 being the vacuum state, form an orthonormal basis for the Fock space. Show that
the coefficients C(n1, n2, . . .) are given by

C(n1, n2, . . .) =
(φ1)n1

√
n1!

(φ2)n2

√
n2!

. . . =
∏

i

1√
ni!

(φi)
ni .
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(b) Show that a boson coherent state assumes the form

|φ〉 = exp(
∑

i

φia
†
i )|0〉.

(c) Show that the action of the creation operator a†i on a boson coherent state is given by

a†i |φ〉 =
∂

∂φi
|φ〉.

(d) Show that the overlap between two boson coherent states |φ〉 and |θ〉 = exp(
∑
i θia

†
i )|0〉 is

given by

〈θ|φ〉 = exp(
∑

i

θ∗i φi).

(e) Show that the closure relation assumes the form

1

π

∫ ∏

i

dReφi d Imφi e
−
∑

i
φ∗i φi |φ〉〈φ| = 1̂, (1)

where 1̂ is the unit operator in the Fock space. The closure relation (1) indicates that,
indeed, the boson coherent states form an overcomplete basis for the Fock space.

(f) For a given operator A, show that

TrA =
∑

n1,n2,...

〈n1 n2 . . . |A|n1 n2 . . .〉 =
1

π

∫ ∏

i

dReφi d Imφi e
−
∑

i
φ∗i φi〈φ|A|φ〉.

(g) Consider an operator A(a†i , ai) that is expand in terms of the creation and annihilation
operators and that is in normal order. Show that the matrix element between two boson
coherent states |φ〉 and |θ〉 assumes the form

〈φ|A(a†i , ai)|θ〉 = A (φ∗i , θi) e
∑

i
φ∗i θi .

Obs.: It is possible to introduce coherent states for fermion operators. In this case, the eigenval-
ues of the annihilation operators are not complex numbers, but Grassmann numbers. For more
details, see, e.g., Sec. 4.1 from Altland and Simons and Sec. 1.5 from Negele and Orland.
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03. P.1.4, Mahan: Diagonalization of a bosonic Hamiltonian.
Consider a system of bosons described by the Hamiltonian

H = E0a
†a+ F

(
a+ a†

)
,

where E0 and F are constants and a and a† are boson operators. The Hamiltonian H can be
diagonalized with the aid of the transformation

H̄ = eSHe−S and S = λ
(
a− a†

)
,

where λ is a constant.

(a) Show that λ = λ∗ in order that H̄ is Hermitian.

(b) Determine H̄ with the aid of the Baker-Hausdorff identity and show that only a few terms
of the series are finite.

(c) Determine the constant λ in terms of the E0 and F in order to reduce H to a diagonal
form. Also, determine the ground state energy EGS in terms of E0 and F .

(d) Show that the ground state of the Hamiltonian is a boson coherent state |φ〉, where
a|φ〉 = φ|φ〉.

P.04. P.1.3, Mahan: Canonical transformation for bosons I.
Consider a system of bosons described by the Hamiltonian

H = εa†a+
1

2
∆
(
a†a† + aa

)
,

where ε and ∆ are constants and a and a† are boson operators.

(a) Show that the Hamiltonian H can be written as

H = E0 +
1

2
ε
(
a†a+ aa†

)
+

1

2
∆
(
a†a† + aa

)
(2)

and determine the constant E0 in terms of the parameter ε.

(b) Express the boson operator a in terms of new bosons operators b and b†,

a = ub+ vb† and a† = ub† + vb, (3)

where u and v are real constants. Determine the condition that the constants u and v should
satisfy in order that the new boson operators b and b† satisfy the commutation algebra of
bosons. Such a condition indicates that the relation (3) is a canonical transformation. Note
also that such condition allows us to write u = cosh ξ and v = sinh ξ.

(c) Substitute the transformation (3) into the Hamiltonian (2) and determine the constants u
and v in terms of ε and ∆ such that H is now diagonal.
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(d) Determine the condition that ground state of the system |Ψ0〉 should satisfy. Determine the
ground state energy EGS and the energy ω of the boson b in terms of ε and ∆.

(e) Show also that |Ψ0〉 can be written as

|Ψ0〉 = eαa
†a† |0〉,

where |0〉 is the vacuum state for the boson a, i.e., a|0〉 = 0, and α is a constant to be
determined.

P.05. P.1.6, Miranda: Canonical transformation for bosons II.
A system of bosons is described by the following Hamiltonian

H = ε
(
a†a+ b†b

)
+ ∆

(
a†b† + ba

)
,

where ε and ∆ are constants and a and b are boson operators.

(a) Consider the transformation

c = ua+ vb†

d† = va+ ub†, (4)

where u and v are real constants. Determine the condition that the constants u and v should
satisfy in order that the new operators c and d satisfy the commutation algebra of bosons.
Such a condition indicates that the relation (4) is indeed a canonical transformation. Note
also that this condition allows us to write u = cosh ξ and v = sinh ξ.

(b) Show that the Hamiltonian H can be written as

H = E0 + ε
(
a†a+ b b†

)
+ ∆

(
a†b† + ba

)
(5)

and determine the constant E0 in terms of the parameter ε.

(c) Determine the inverse of the transformation (4). Substitute the inverse transformation into
the Hamiltonian (5) and determine the constants u and v in terms of ε and ∆ such that H
is now diagonal.

(d) Determine the condition that ground state of the system |Ψ0〉 should satisfy. Also, determine
the ground state energy EGS and the energies ωc = ωd = ω of the new bosons c and d in
terms of ε and ∆.
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(e) Show that the canonical transformation (4) and the Hamiltonian (5) can be written in a
matrix form,

Ψ = UΦ and H = E0 + Φ†hΦ,

where U and h are 2× 2 matrices, and

Φ =

(
a
b†

)
and Ψ =

(
c
d†

)
.

Determine the matrix U in terms of the coefficients u and v and the matrix h in terms of
the parameters ε and ∆.

(f) Determine the coefficients λi of the expansion of the 2× 2 matrix h in terms of the identity

matrix 1 and the Pauli matrices σ1, σ2, and σ3, i.e., h = λ01 +
∑3
i=1 λiσi.

(g) Show that the matrix U satisfy the relation U†σ3U = σ3 → U†σ3 = σ3U
−1.

For further details about the diagonalization of bosonic Hamiltonians, see
J. H. P. Colpa, Physica A 93, 327 (1978).

P.06. P.1.5, Miranda and P.3.2, Coleman: Canonical transformation for fermions.
A system of fermions is described by the following Hamiltonian

H = ε
(
a†a+ b†b

)
+ ∆

(
a†b† + ba

)
,

where ε and ∆ are constants and a and b are fermion operators.

(a) Consider the transformation

c = ua+ vb†

d† = −va+ ub†, (6)

where u and v are real constants. Determine the condition that the constants u and v
should satisfy in order that the new operators c and d satisfy the anticommutation algebra
of fermions. Such a condition indicates that the relation (4) is indeed a canonical transfor-
mation. Note also that this condition allows us to write u = cos ξ and v = sin ξ.

(b) Show that the Hamiltonian H can be written as

H = E0 + ε
(
a†a+ b b†

)
+ ∆

(
a†b† + ba

)
(7)

and determine the constant E0 in terms of the parameter ε.

(c) Determine the inverse of the transformation (6). Substitute the inverse transformation into
the Hamiltonian (7) and determine the constants u and v in terms of ε and ∆ such that H
is now diagonal.
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(d) Determine the condition that ground state of the system |Ψ0〉 should satisfy. Also, determine
the ground state energy EGS and the energies ωc = ωd = ω of the new fermions c and d in
terms of ε and ∆.

(e) Show that the inverse of the canonical transformation (6) and the Hamiltonian (7) can be
written in a matrix form (Nambu spinor formulation),

Ψ = UΦ and H = E0 + Φ†hΦ,

where U and h are 2× 2 matrices, and the Nambu spinors are defined as

Φ =

(
a
b†

)
and Ψ =

(
c
d†

)
.

Determine the matrix U in terms of the coefficients u and v and the matrix h in terms of
the parameters ε and ∆. Also, determine the coefficients λi of the expansion of the 2 × 2
matrix h in terms of the identity matrix 1 and the Pauli matrices σ1, σ2, and σ3.

(f) Show that the matrix U is unitary, i.e., the canonical transformation (6) is unitary.

(g) Show that

H = E0 + Ψ†UhU†Φ ≡ E0 + Ψ†h′Φ.

Determine the matrix h′ in terms of ε, ∆, and the coefficients u and v and verify that h′ is
diagonal once the conditions determined in item (c) are satisfied.

For further details about the diagonalization of bosonic Hamiltonians, see
J. H. P. Colpa, Physica A 93, 327 (1978).

07. P.1.6, Mahan: Tight-binding model I.
Consider a system of Ne = N free spinless electrons hopping on the sites of a square lattice and
described by the tight-binding model

H = −t
∑

〈i,j〉

(
c†i cj + c†jci

)
= −t

∑

i,δ

(
c†i ci+δ + c†i+δci

)
,

where t is the nearest-neighbor hopping energy, c†i and ci respectively creates and destroys an
electron on site i of the square lattice, and δ = ax̂ and aŷ are the nearest-neighbor vectors with
a being the lattice spacing.

(a) Show that the fermion operators c†k and ck, defined via the Fourier transform

c†i =
1

N
1/2
s

∑

k∈BZ
e−ik·Ric†k,

where NS = N is the number of sites of the square lattice and Ri is a vector of the square
lattice, obey fermion anticommutation algebra.
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(b) Show that the Hamiltonian H can be diagonalized with the aid of the above Fourier trans-
form, i.e.,

H =
∑

k

εkc
†
kck,

and determine the energy εk of the electrons.
Hint: Identity

∑
i e
−ik·Ri = Nsδk,0.

P.08. P.1.6, Mahan: Tight-binding model for graphene.
Graphene is a single atomic layer of carbon arranged in a two-dimensional honeycomb lattice. The
primitive vectors of the underline triangular lattice are a1 = a(

√
3, 0) and a2 = a

√
3/2(−1,

√
3),

where the carbon-carbon distance a = 0.142 nm, and the hexagonal unit cell [see dashed lines
in the Fig. below] has two carbon atoms. In this atomic arrangement, the carbon atoms are
connected by strong covalent σ-bonds, derived from the sp2 hybridization of the atomic orbitals.
The remaining pz orbitals (perpendicular to the plane) have a weak overlap and form a narrow
band, the so-called π-band, which crosses the Fermi level.

τ
1

τ
2

τ3

a

a
B

A

KK’
Γ

M

2

1

Consider that the kinetic energy of the π-electrons on the honeycomb lattice is described by the
tight-binding model

H =
∑

i

(
εAa
†
iai + εBb

†
i bi

)
+ t
∑

i

∑

τ

(
a†i bi+τ + b†i+τai

)
, (8)

where ai and bj are electron operators respectively associated with (triangular) sublattices A and
B, t is the nearest-neighbor hopping amplitude, εA and εB are on-site energies of the sublattices
A and B, respectively, and the index τ indicates the nearest-neighbor vectors τ 1, τ 2, and τ 3.
[For more details, see, e.g., Goerbig, Rev. Mod Phys. 83, 1193 (2011) and Kotov et al., Rev.
Mod. Phys. 84, 1067 (2012)].
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(a) Show that, after a Fourier transformation,

a†i =
1

N
1/2
A

∑

q∈BZ
e−iq·Ria†q and b†i =

1

N
1/2
B

∑

q∈BZ
e−iq·Rib†q,

where the number of sites of the sublattices A and B are NA = NB = N , the Hamiltonian
(8) assumes the form

H =
∑

q

(
a†q b

†
q

)( εA γq
γ∗q εB

)(
aq
b†q

)
, (9)

with γq ≡
∑
τ exp(ik · τ ).

(b) The Hamiltonian (9) can be diagonalized with the aid of the following transformation

aq = u†qcq + vqd and bq = v†qcq − uqd, (10)

where the coefficients uq and vq are complex quantities. Determine the condition that
the coefficients uq and vq should satisfy in order that the operators c and d satisfy the
anticommutation algebra of fermions.

(c) Instead of the Hamiltonian (9), let us consider a general 2× 2 fermionic Hamiltonian,

H =
∑

q

Φ†qhqΦq, Φ†q =
(
a†q b†q

)
, hq = λ0,q1 +

3∑

i=1

λi,qσi, (11)

with 1 being the identity matrix and σ1, σ2, and σ3 being the Pauli matrices. Show that
the Hamiltonian (11) can be diagonalized by the canonical transformation (10) once the
coefficients uq and vq are given by

|uq|2, |vq|2 =
1

2

(
1± λ̂3(q)

)
, uqv

†
q =

1

2

(
λ̂1(q) + iλ̂2(q)

)
,

with λ̂i(q) = λi(q)/
√
λ21(q) + λ22(q) + λ23(q). Determine the energies ωc(q) and ωd(q) of

the fermions c and c in terms of the coefficients λi(q).
Hint: It is useful to employ the matrix formalism discussed in Problem 06.

(d) Considering εA = εB = 0, determine the energies ωc(q) and ωd(q) of the π-electrons in
graphene. Expand the dispersion relation in the vicinity of the K and K ′ points of the first
Brioullin zone, show that ωc,d(K + q) ≈ ±vF q, and determine the Fermi-velocity vF in
terms of t and a. Here,

τ 1 = a(0, 1), τ 2 =
a

2
(−
√

3,−1), τ 3 =
a

2
(
√

3,−1),

K,K ′ =
4π

(3
√

3a)
(±1, 0).
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09. P.2.x, Altland and Simons: Su-Shrieffer-Heeger (SSH) model for polyacetylene.
Polyacetylene consists of bonded CH groups forming an isomeric long chain polymer. According
to molecular orbital theory, the carbon atoms are expected to be sp2 hybridized suggesting a
planar configuration of the molecule. An unpaired electron is expected to occupy a single π-
orbital which is oriented perpendicular to the plane. The weak overlap of the π-orbitals delocalize
the electrons into a narrow conduction band. According to the nearly free electron theory, one
might expect the half-filled conduction band of a polyacetylene chain to be metallic. However,
the energy of a half-filled band of a one-dimensional system can always be lowered by imposing a
periodic lattice distortion known as the Peierls instability. The aim of this problem is to explore
such instability.86 Second quantization

(c)

(a) (b)

Figure 2.15 (a) An sp2-hybridized polymer chain. (b) One of the configurations of the Peierls
distorted chain. The double bonds represent the short links of the lattice. (c) A topological defect
separating two domains of the ordered phase.

Su–Shrieffer–Heeger model of a conducting polymer chain

Polyacetylene consists of bonded CH groups forming an isomeric long-chain polymer. According to

molecular orbital theory, the carbon atoms are expected to be sp2-hybridized suggesting a planar config-

uration of the molecule. An unpaired electron is expected to occupy a single π-orbital which is oriented

perpendicular to the plane. The weak overlap of the π-orbitals delocalizes the electrons into a narrow

conduction band. According to the nearly free electron theory, one might expect the half-filled con-

duction band of a polyacetylene chain to be metallic. However, the energy of a half-filled band of a

one-dimensional system can always be lowered by imposing a periodic lattice distortion known as a

Peierls instability (see Fig. 2.15). The aim of this problem is to explore the instability.

(a) At its simplest level, the conduction band of polyacetylene can be modeled by a simple

(arguably over-simplified) microscopic Hamiltonian, due to Su, Shrieffer, and Heeger,26

in which the hopping matrix elements of the electrons are modulated by the lattice

distortion of the atoms. By taking the displacement of the atomic sites to be un, and

treating their dynamics as classical, the effective Hamiltonian can be cast in the form

Ĥ = −t
N∑

n=1

(1 + un)
[
c†
nσcn+1σ + h.c.

]
+

N∑

n=1

ks

2
(un+1 − un)

2
,

where, for simplicity, the boundary conditions are taken to be periodic, and summation

over the spins σ is assumed. The first term describes the hopping of electrons between

neighboring sites with a matrix element modulated by the periodic distortion of the

bond-length, while the last term represents the associated increase in the elastic energy.

Taking the lattice distortion to be periodic, un = (−1)nα, and the number of sites to

be even, bring the Hamiltonian to diagonal form. (Hint: Note that the lattice distortion

lowers the symmetry of the lattice. The Hamiltonian is most easily diagonalized by

distinguishing the two sites of the sublattice – i.e. doubling the size of the elementary

unit cell.) Show that the Peierls distortion of the lattice opens a gap in the spectrum at

the Fermi level of the half-filled system.

(b) By estimating the total electronic and elastic energy of the half-filled band (i.e. an

average of one electron per lattice site), show that the one-dimensional system is always

unstable towards the Peierls distortion. To complete this calculation, you will need

26 W. P. Su, J. R. Schrieffer, and A. J. Heeger, Solitons in polyacetylene, Phys. Rev. Lett. 42 (1979), 1698–701.

(a) At its simplest level, the conduction band of the polyacetylene chain can be modelled by a
simple Hamiltonian (SSH model), where the hopping matrix elements of the electrons are
modulated by the lattice distortion of the atoms. Taking the displacement for the atomic
sites to be un, and treating their dynamics as classical, the effective Hamiltonian takes the
form

Ĥ = −t
N∑

n=1

(1 + un)
[
c†nσcn+1σ + h.c.

]
+

N∑

n=1

ks
2

(un+1 − un)
2
,

where, for simplicity, the boundary conditions are taken to be periodic, and summation
over the spins σ is assumed. The first term describes the hopping of electrons between
neighbouring sites with a matrix element modulated by the periodic distortion of the bond-
length. The last term represents the associated increase in the elastic energy. Taking the
lattice distortion to be periodic, un = (−1)nα, the Hamiltonian assumes the form

Ĥ = −t
N∑

n=1

(1 + (−1)nα)
[
c†nσcn+1σ + h.c.

]
+
Nksα

2

2
.

Considering the number of sites to be even, diagonalize the Hamiltonian. Show that the
Peierls distortion of the lattice opens a gap in the spectrum at the Fermi level of the half-
filled system.
Hint: The Hamiltonian is most easily diagonalized by distinguishing the two sites of the
sublattice, i.e., doubling the size of the elementary unit cell.

(b) By estimating the total electronic energy of the half filled band (which is just the sum over
the eigenvalues of the first part, i.e.,

∑
k εk ∼

∫
dk εk) and its elastic energy, show that

the one-dimensional system is always unstable towards the Peierls distortion. To complete

this calculation, you will need the approximate formula
∫ π/2
−π/2 dk

√
1− (1− α2) sin2 k '

2 + (a1− b1 lnα2)α2 +O(α2 lnα2), where a1 and b1 are (unspecified) numerical constants.
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10. P.1.16, Mahan: Spin-wave theory for a Heisenberg ferromagnet.
Consider a ferromagnetic system of N localized spins S described by the Heisenberg model

H = −J
∑

〈i,j〉
Si · Sj ,

where Si is a spin operator associated with a spin S localized at site i of the lattice, the
exchange constant J > 0, and 〈i, j〉 indicates that the sum is restricted to nearest-neighbor
sites. The ferromagnetic Heisenberg model can be studied with the aid of the so-called the
Holstein-Primakoff transformation,

S+
i = (2S − n̂i)1/2 ai, S−i = a†i (2S − n̂i)1/2 , Szi = S − n̂i,

where S±i = Sxi ± iSyi and n̂i = a†iai.

(a) Show that the commutation relations for the spin operators,

[Szi , S
+
j ] = δi,jS

+
i , [Szi , S

−
j ] = −δi,jS−i , [S+

i , S
−
j ] = 2δi,jS

z
i ,

are satisfied by the above bosonic representation.

(b) Express the Heisenberg Hamiltonian in terms of the boson operators ai.

(c) At low temperatures, the Hamiltonian derived in item (b) can be simplified since ni =
〈n̂i〉 � 2S. Derive an approximate expression for the Hamiltonian up to second order in
terms of the boson operators ai (harmonic approximation).

(d) Show that the approximate Hamiltonian derived in item (c) can be diagonalized via a Fourier
transformation, i.e.,

H = E0 +
∑

k

ωka
†
kak,

and determine the constant E0 and the energy ωk of the bosons ak (magnons). Determine
the ground-state of the system |Ψ0〉 and the ground-state energy EGS .
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P.11. P.3.1, Miranda: Spin-wave theory for a Heisenberg antiferromagnet.
Consider a antiferromagnetic system of N localized spins S described by the Heisenberg model

H = J
∑

〈i,j〉
Si · Sj , (12)

where Si is a spin operator associated with a spin S localized at site i of a bipartite lattice (e.g.,
a square lattice), the exchange constant J > 0, and 〈i, j〉 indicates that the sum is restricted to
nearest-neighbor sites. Similarly to the ferromagnetic system, the Heisenberg model (12) can be
studied with the aid of the Holstein-Primakoff transformation.

(a) Let us consider the (semiclassical) Néel state as a reference state, where the spins S of the
A sublattice points in the +z direction while the ones of the B sublattice points in the −z
direction. It is interesting to introduce two Holstein-Primakoff transformations, one for each
sublattice,

S+
i A =

(
2S − a†iai

)1/2
ai, S−i A = a†i

(
2S − a†iai

)1/2
, SziA = S − a†iai,

(13)

S+
i B = b†i

(
2S − b†i bi

)1/2
, S−i B =

(
2S − b†i bi

)1/2
bi, SziB = −S + b†i bi,

where S±i = Sxi ± iSyi and ai and bi are two independent set of boson operators. For the
A sublattice, show that the algebra of the spin operators,

[Szi , S
+
j ] = δi,jS

+
i , [Szi , S

−
j ] = −δi,jS−i , [S+

i , S
−
j ] = 2δi,jS

z
i ,

is satisfied by the bosonic representation (13).

(b) With the aid of the representation (13), express the Hamiltonian (12) up to quadratic order
in the boson operators ai and bi.

(c) Show that, after a Fourier transformation,

a†i =
1

N
1/2
A

∑

q∈BZ
e−iq·Ria†q and b†i =

1

N
1/2
B

∑

q∈BZ
e−iq·Rib†q,

where the number of sites of the sublattices A and B are NA = NB = N , the Hamiltonian
(12) assumes the form

H = E0 +
∑

q

(
a†q b

†
−q
)( 1 γq

γq 1

)(
aq
b†−q

)
. (14)

Here γq ≡ (1/z)
∑
δ exp(−ik ·δ), with the index δ indicating the z nearest-neighbor vectors

δ (e.g., for the square lattice, z = 4, since δ = ±ax̂, ±aŷ, with a being the lattice spacing).
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(d) Diagonalize the Hamiltonian (14) with the aid of a canonical transformation and show that
the energy of the excitations (spin waves) are given by

ωq = 2JSz(1− γ2q)1/2,

while the ground state energy assumes the form

EGS = −2NzJS(S + 1) + 2JSz
∑

q∈BZ
(1− γ2q)1/2.

Consider a cubic lattice (z = 6), and expand ωq for small qa, where a is the lattice spacing,
and compare the result with the equivalent for a ferromagnet.

(e) Determine the deviation of the maximum value of the sublattice magnetization,

∆Sza = NS − 〈Ψ0|
∑

i∈a
Szi a|Ψ0〉,

with a = A, B, for the ground state |Ψ0〉.
It is not necessary to calculate the sum, express ∆Sza as the ground state energy EGS .

(f) Consider a three-dimensional system at low temperatures and determine the behaviour of
the specific heat with the temperature T . In this case, it is interesting to replace the sum
by a continuous integral.

12. P.1.3, Fetter and Walecka:
Given a homogeneous system of spin-zero particles interacting through a potential V (r):

(a) Show that the expectation value of the Hamiltonian in the noninteracting ground state is

E(1)

N
=

1

2V
(N − 1)V (0) ≈ 1

2
nV (0), where V (q) =

∫
d3rV (r)e−iq·r

and V (0) means V (q = 0).

(b) Assume V (r) is central and spin independent. If V (|r1 − r2|) < 0 for all |r1 − r2| and∫
d3r|V (r)| <∞, prove that the system will collapse.

Hint: Start from E(1)/N as a function of density.

(c) Show that the second-order contribution to the ground state energy is

E(2)

N
= −N − 1

2V

∫
d3q

(2π)3
|V (q)|2
h̄2q2/m

≈ −n
2

∫
d3q

(2π)3
|V (q)|2
h̄2q2/m

.

Hint: see pg. 31, Fetter.
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P.13. P.1.4, Fetter and Walecka:
Show that the second-order contribution to the ground state energy of an electron gas is given
by

E(2) =
Ne2

2a0

(
εr2 + εb2

)
,

where

εr2 = − 3

8π5

∫
d3q

q4

∫

|k+q|>1

d3k

∫

|p+q|>1

d3p
θ(1− k)θ(1− p)
q2 + q · (k + p)

,

εb2 =
3

16π5

∫
d3q

q2

∫

|k+q|>1

d3k

∫

|p+q|>1

d3p
θ(1− k)θ(1− p)

(q + k + p)2[q2 + q · (k + p)]
.

Hint: see pg. 31, Fetter.

14. P.1.6, Fetter and Walecka:
Consider a polarized electron gas in which N+ and N− denote the number of electrons with
spin-up and spin-down, respectively.

(a) Find the ground-state energy to first order in the interaction potential as a function of
N = N+ +N− and the polarization ζ = (N+ −N−)/N .

(b) Prove that the ferromagnetic state (ζ = 1) represents a lower energy than the unmagnetized
state (ζ = 0) if rs > (2π/5)(9π/4)1/3(21/3 + 1) = 5.45. Explain why this is so.

(c) Show that ∂2(E/N)/∂ζ2|ζ=0 becomes negative for rs > (3π2/2)2/3 = 6.03.

(d) Discuss the physical significance of the two critical densities. What happens for
5.45 < rs < 6.03?
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