
FI 193 – Teoria Quântica de Sistemas de Muitos Corpos – Lista 2

P.01. P.3.3, Miranda: Jordan-Wigner representation for spin-1/2 operators.
Consider a one-dimensional system of N localized spins-1/2 described by the Heisenberg model

H =
∑
j

(
JxS

x
j S

x
j+1 + JyS

y
j S

y
j+1 + JzS

z
j S

z
j+1

)
, (1)

where Sαj is the α component of a spin operator associated with a spin S = 1/2 localized at
site j of the (one-dimensional) spin chain, Jα are the exchange constants with α = x, y, z. The
Heisenberg model (1) can be studied with the aid of the Jordan-Wigner representation, where
spin-1/2 operators are expanded in terms of fermions operators d and d†,

dj = eiφjS−j , d†j = e−iφjS+
j , where φj = π

j−1∑
l=−∞

(
1

2
+ Szl

)
. (2)

The operator eiφj is the so-called string operator.

(a) Show that the fermion operators dj defined in Eq. (2) satisfy the anticommutation algebra
of fermions. Note that the string operator provides the appropriated algebra for the fermion
operators dj .

(b) Show that the number operator for the fermions dj is given by

n̂j = d†jdj =
1

2
+ Szj . (3)

Note that Eq. (3) allow us to identify the states | ↑〉j ≡ d†j |0〉 and | ↓〉 ≡ |0〉, where |0〉 is
the vacuum state for the fermions d. Moreover, note that the string operator can be written
in terms of the number operators n̂l.

(c) Determine the inverse of the representation (2) (note that a spin = fermion × string) and
express the Hamiltonian (1) in terms of the fermions dj . Note that the spin Hamiltonian is
mapped into an interacting model for spinless fermions.

(d) Consider now the Heisenberg model (1) with Jx 6= 0, Jy 6= 0, and Jz = 0, the so-called
XY -model, and determine the excitation spectrum. Moreover, comment on the particular
cases (i) Jx = Jy (XX-model) and (ii) Jx 6= 0 and Jy = 0 (Ising model).
Hint: It is useful to perform a gauge transformation before the diagonalization of the
fermionic Hamiltonian via a canonical transformation.
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02. P.3.3, Fetter and Walecka: Two-particle Green’s function.
Define the two-particle Green’s function by

Gαβ;γλ(r1 t1, r2 t2; r′1 t
′
1, r
′
2 t
′
2) = (−i)2

〈Ψ0|T
[
ψα(r1, t1)ψα(r2, t2)ψ†λ(r′2, t

′
2)ψ†γ(r′1, t

′
1)
]
|Ψ0〉

〈Ψ0|Ψ0〉
.

Prove that the expectation value of the two-body interaction in the exact ground state is given
by

〈V̂ 〉 = −1

2

∫
d3r d3r′ Vµ′λ′,µλ(r, r′)Gλλ′;µµ′(r′ t, r t; r′ t+, r t+).

03. P.3.4, Fetter and Walecka: Equation of motion for single-particle Green’s function.
Consider a many-body system in the presence of an external potential U(r) with a spin-independent
interaction potential V (r − r′). Show that the exact one-particle Green’s function obeys the
equation of motion[

ih̄
∂

∂t1
+
h̄2

2m
∇2

1 − U(r1)

]
Gαβ(r1 t1, r

′
1 t
′
1)

±i
∫
d3r2 V (r1 − r2)Gαγ;βγ(r1 t1, r2 t2; r′1 t

′
1, r2 t

+
1 ) = h̄δ(r1 − r′1)δ(t1 − t′1)δαβ ,

where the upper (lower) sign refers to bosons (fermions) and the two-particle Green’s function
is defined in Prob. 3.3, Fetter and Walecka.

P.04. P.3.8, Fetter and Walecka: Density-density correlation function.
Derive the Lehmann representation for D(k, ω), which is the Fourier transform of

iD(x, y) =
〈Ψ0|T [ñH(x)ñH(y)] |Ψ0〉

〈Ψ0|Ψ0〉
,

with the density fluctuation operator defined by

ñ(r) ≡ ψ†α(r)ψα(r)− 〈Ψ0|ψ†α(r)ψα(r)|Ψ0〉
〈Ψ0|Ψ0〉

.

Show that D(k, ω) is a meromorphic function with poles in the second and fourth quadrant
of the complex ω plane. Introduce the corresponding retarded and advanced functions, and
construct a Lehmann representation for their Fourier transforms. Discuss the analytic properties
and derive the dispersion relations analogous to Eq. (7.70), Fetter and Walecka.
Hint: See Eqs. (223.2) and (224.1) from the lecture notes.
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P.05. P.3.11, Fetter and Walecka and P.4.2, Miranda: Free fermions on a external potential.
Consider a system of noninteracting spin-1/2 fermions in an external static potential with a
Hamiltonian

Hex =
∑
α,β

∫
d3r ψ†αVαβ(r)ψβ(r).

(a) Use Wick’s theorem to find the Feynman rules (in coordinate spaces) for the single-particle
Green’s function in the presence of an external potential.

(b) Show that Dyson’s equation becomes

Gexαβ(x, y) = G0
αβ(x− y) +

1

h̄

∑
µ,ν

∫
d4z G0

αµ(x− z)Vµν(z)Gexνβ(z, y).

(c) Consider a spin independent potential,

Vαβ(r) = δαβV (r),

and derive the Dyson equation in momentum space. In this case, the Fourier transform of
the Green’s function Gex(x, x′) assumes the form

Gex(x, x′) =

∫
d3k d3q dω

(2π)7
eik·re−iq·r

′
e−iω(t−t′)Gex(k,q, ω),

since spatial translation invariance is broken due to the external potential. Show that

Gex(k,q, ω) = G(0)(k, ω)δk,q +G(0)(k, ω)T (k,q, ω)G(0)(q, ω)

where T (k,q, ω) is the T -matrix for the scattering potential, and determine an equation for
T (k,q, ω).

(d) Consider the local potential

V (r) = Uδ(d)(r)

in d-dimensions and determine the T -matrix, which, in this particular case, is momentum
independent. For d ≤ 2 and U < 0, show that there is a bound state, regardless the value
of U .
Hint: In order to calculate the momentum integrals, it is necessary to introduce a cut-off
k < Λ; recall that the energy spectrum is related to the poles of the T -matrix.
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P.06. P.3.12, Fetter and Walecka: Second-order contributions to the self-energy.
Consider a uniform system of spin-1/2 fermions with spin-independent interactions.

(a) Use the Feynman rules in momentum space to write out the second-order contributions to
the proper self-energy; evaluate the frequency integrals (some of them will vanish).

(b) Hence show that the second-order contribution to the ground-state energy can be written
as [see Eq. (9.38), Fetter and Walecka]

E(2)

V
=

2m

h̄2

∫
d3k d3p d3q d3q′

(2π)9
δ(k + p− q− q′)

×
[
2V (q− k)2 − V (q− k)V (p− q)

]
×θ(kF − p)θ(kF − k)θ(q′ − kF )θ(q − kF )

p2 + k2 − q2 − q′2 + iη
.

(c) Specialize to an electron gas and rederive the results of Prob. 1.4, Fetter and Walecka.

P.07. P.3.14, Fetter and Walecka: Poles of the single-particle Green’s function.
From the expression of the exact single-particle Green’s function,

Gαβ(k, ω) =
1

ω − ε0k/h̄− Σ∗(k, ω)
δαβ ,

show that the energy εk and the damping |γk| of the long-lived single-particle excitations are
given by

εk = ε0k + Re h̄Σ∗(k, εk/h̄)

and

γk =

[
1− ∂

∂ω
Re Σ∗(k, ω)|εk/h̄

]−1

Im Σ∗(k, εk/h̄).
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08. P.x.x, Cologne: From the Hubbard to the t-J model
Let us consider the single-band Hubbard model

Ĥ = T̂ + V̂ = −t
∑
〈i,j〉σ

c†i σcj σ + U
∑
i

n̂i ↑n̂i ↓, (4)

where c†i σ (ci σ) creates (annihilates) an electron with spin σ =↑, ↓ on a lattice site i, n̂i σ =

c†i σci σ is the electron density operator, t is the hopping energy, and U > 0 is the on-site repulsion
energy. Notice that U is the amount of energy that should be paid if two electrons are on the
same lattice site. We want to study the model (4) in the limit U � t. An effective Hamiltonian
(Ĥeff ), which describes the low-energy sector of the model (4), can be derived using second
order perturbation theory which can be implemented via a canonical transformation.

(a) The Hilbert space of the model (4) can be divided into two subspaces S and D, where the
former contains configurations in which there is either zero or one electron per lattice site,
while the latter contains at least one doubly occupied lattice site. Show that the hopping
term T̂ can be written as T̂ = T̂0 + T̂+ + T̂−, where

T̂0 = −t
∑
〈i,j〉σ

(1− n̂i−σ)c†i σcj σ(1− n̂j−σ) + n̂i−σc
†
i σcj σn̂j−σ,

T̂+ = −t
∑
〈i,j〉σ

n̂i−σc
†
i σcj σ(1− n̂j−σ), (5)

T̂− = −t
∑
〈i,j〉σ

(1− n̂i−σ)c†i σcj σn̂j−σ.

Here −σ =↑ if σ =↓ and vice-versa. What kind of process does each of the three terms in
Eq. (5) describe? Why can we treat Ĥ1 = T̂+ + T̂− as a perturbation to Ĥ0 = T̂0 + V̂ in
the limit U � t?

(b) In order to calculate the effective Hamiltonian Ĥeff described above, we perform the fol-
lowing canonical transformation

Ĥeff = eŜĤe−Ŝ = Ĥ + [Ŝ, Ĥ] +
1

2!
[Ŝ, [Ŝ, Ĥ]] + . . .

= Ĥ0 + Ĥ1 + [Ŝ, Ĥ0] + [Ŝ, Ĥ1] +
1

2!
[Ŝ, [Ŝ, Ĥ0]] + . . . , (6)

where the operator Ŝ is determined by imposing that the term linear in t in Eq. (6) vanishes,
i.e.,

Ĥ1 + [Ŝ, Ĥ0] = 0, (7)

The effective Hamiltonian then reads

Ĥeff = Ĥ0 +
1

2
[Ŝ, Ĥ1] +O(t3). (8)
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Show that the condition (7) is fullfiled in first order in t/U if we choose

Ŝ =
1

U

(
a+T̂+ + a−T̂−

)
. (9)

Calculate the constants a+ and a−. Verify that Ŝ is anti-hermitian.

(c) Before we continue, prove the following identity

∑
σ,σ′

c†i σc
†
j σ′ci σ′cj σ = −1

2
(n̂in̂j + 4Si · Sj) , i 6= j (10)

where the spin operator is defined as

Si =
1

2

∑
σ,σ′

c†i σ τ̂σ,σ′ci σ′ (11)

with τ̂ = (τx, τy, τz) a vector of Pauli matrices.

(d) Suppose that we are at half-filling, i.e., 〈n̂i〉 = 〈n̂i ↑ + n̂i ↓〉 = 1. Using the results of item

(b), calculate Ĥeff . Project the resulting Hamiltonian into the subspace S and explain why

some terms drop out after the projection. Use the identity (10) and show that Ĥeff can be
written as

Ĥeff = J
∑
〈i,j〉

(
Si · Sj −

1

4

)
, (12)

where the exchange constant J = 4t2/U .

(e) Suppose we now move away from half-filling by introducing some holes in the system. In
this case, Eq. (12) should be modified, i.e., some extras terms should be added to it. The
final result is the so-called t-J model, which is relevant for the description of the high-Tc
superconductors. Using the results of the previous items, derive the Hamiltonian of the t-J
model.

6


