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P.01. P.3.3, Miranda and P.x.x, Cologne: The noninteracting Anderson model.
The Hamiltonian of the noninteracting Anderson model (resonant level model) for spinless elec-
trons is given by

H =
∑
k

εkc
†
kck + Eff

†f +
∑
k

(
V ∗k f

†ck + V ∗k c
†
kf
)
, (1)

where f† creates a localized electron at the impurity site r = 0 and c†k creates a conduction
electron with momentum k. Recall that the Green’s function operator is defined as

(Ω−H)Ĝ = 1, with Ω = ω − iη. (2)

(a) Consider the operator (2) and the single-particle states |k〉 = c†k|0〉 and |f〉 = f†|0〉, where
|0〉 is the vacuum state, and derive the following set of equations for the impurity Gf,f (Ω)
and the conduction electron Gk,p(Ω) Green’s functions:

(Ω− Ef )Gf,f (Ω) = 1 +
∑
k

V ∗kGk,f (Ω), (3)

(Ω− εk)Gk,f (Ω) = VkGf,f (Ω), (4)

(Ω− εk)Gk,p(Ω) = δk,p + VkGf,p(Ω), (5)

(Ω− Ef )Gf,p(Ω) =
∑
k

V ∗kGk,p(Ω). (6)

Here Gα,β(Ω) = 〈α|Ĝ(Ω)|β〉 = 〈0|cαĜ(Ω)c†β |0〉, with |α〉, |β〉 = |k〉 and |f〉. Notice that
the impurity breaks translation invariance, and therefore, momentum is no longer a good
quantum number.

(b) Solve the set of equations (3)–(6), and determine the impurity Gf,f (Ω) and the conduction
electron Gk,p(Ω) Green’s functions.

(c) The density of states at the impurity level is given by

ρf (ω) =
∑
n

δ(ω − En)|〈n|f〉|2,

where |n〉 are eigenstates of the total Hamiltonian (1), i.e., H|n〉 = En|n〉. Show that ρf (ω)
can be written as

ρf (ω) =
1

π
Im [Gf,f (ω − iη)] = − 1

π
Im [Gf,f (ω + iη)] .
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(d) Assume that the (hybridization) potential Vk = V is constant and that the density of states
of the conduction electrons is constant,

ρc(ω) =
∑
k

δ (ω − εk) = ρ0, −D < ω < D.

Show that the density of states of the impurity level ρf (ω) is approximately a Lorentzian
centered around Ef with a width Γ = πρ0V

2. Consider that |Ef | and Γ� D.

(e) Show that the conduction electron Green’s function Gk,p(Ω) can be written as

Gk,p(Ω) = δk,pG
0
k,k(Ω) +G0

k,k(Ω)Tk,p(Ω)G0
k,k(Ω)

or, in the operator form,

Ĝ(Ω) = Ĝ0(Ω) + Ĝ0(Ω)T̂ (Ω)Ĝ0(Ω), (7)

and determine the matrix element Tk,p(Ω) = 〈k|T |p〉 of the so-called T̂ matrix in terms
of the (hybridization) potential Vk. Here G0

k,k(Ω) = (Ω − εk)−1 indicates the conduction
electron Green’s function in the absence of impurity.

(f) In scattering theory, the S-matrix is defined in terms of the phase shit δ(ω) and the T -matrix
is related to the S-matrix [see Eq.(20.12), Merzbacher]:

S(ω) = e2iδ(ω) and S(ω) = 1− 2πiρ(ω)T (ω + iη),

where ρ(ω) is the density of states. Consider the conduction electrons and the assumptions
of item (d) and show that the phase shift

δ(ω) = tan−1
(

Γ

Ef − ω

)
,

which indicates a scattering resonance, see Sec.13.6 from Merzbacher for details.

02. P.4.1, Fetter and Walecka: Hartree-Fock approximation.
A uniform spin-S Fermi system has a spin-independent interaction potential V (r) = (V0/r)e

−r/a,
where V0 and a are constants.

(a) Evaluate the proper self-energy in the Hartree-Fock approximation. Hence find the excitation
spectrum εk and the Fermi energy εF = µ.

(b) Show that the exchange contribution to the Fermi energy εF is negligible for a long-range
interaction (kFa� 1), but that the direct and exchange terms are comparable for a short-
range interaction (kFa� 1).

(c) In this approximation, prove that the effective mass m∗ is determined solely by the exchange
contribution. Compute m∗, and discuss the limiting cases kFa� 1 and kFa� 1.

(d) What is the relation between the limit a → ∞ of this model and the electron gas in a
uniform positive background?
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P.03. P.4.1 and P.4.2, Bruus and Flensberg: Hartree-Fock approximation.
A system of interacting fermions is described by the Hamiltonian

H = H0 + V =
∑
α

εαc
†
αcα +

1

2

∑
αβµν

Vαβ;νµc
†
αc
†
βcµcν . (8)

Consider that the expectation values n̄αβ = 〈c†αcβ〉 6= 0 and that c†αcβ ≈ 〈c†αcβ〉, i.e., the
deviations

(
c†αcν − 〈c†αcν〉

)
≡ dαν can be seen as small parameters. In this case, we consider

the expectation values n̄αβ as mean-field parameters. Importantly, such a choice is not unique,
it should be based on physical arguments, and it depends on the system and/or phase to be
described.

(a) Assuming that β 6= ν, we have c†αc
†
βcµcν = c†αcνc

†
βcµ. The operator c†αcν can be written in

terms of the deviation dαν as

c†αcν = 〈c†αcν〉+
(
c†αcν − 〈c†αcν〉

)
. (9)

Write the operator c†βcµ as in Eq. (9), and show that the interaction term V is approximately
given by

V Hartree =
1

2

∑
αβµν

Vαβ;νµ

(
n̄βµc

†
αcν + n̄ανc

†
βcµ − n̄αν n̄βµ

)
. (10)

Such a term is known as the Hartree approximation for the interaction term.

(b) Assume that β 6= µ, and write the interaction term V in terms of the operators c†αcµ and

c†βcν . Then, show that the interaction term V can be approximately written as

V Fock = −1

2

∑
αβµν

Vαβ;νµ

(
n̄αµc

†
βcν + n̄βνc

†
αcµ − n̄αµn̄βν

)
, (11)

which is known as the Fock term. Notice that, within the approximations (10) and (11),
the Hamiltonian (8) assumes the form

HHF = H0 + V Hartree + V Fock, (12)

i.e., within the Hartree-Fock (mean-field) approximation, the interacting problem (8) is
reduced to a single-particle problem. In principle, the mean-field Hamiltonian (12) can be
diagonalized and the single-particle energy levels can be determined, once the mean-field
parameters n̄αβ are self-consistently determined.

(c) Consider now the homogeneous electron gas [see Eq. (3.25), Fetter]. Due to translation

invariance, the expectation value 〈c†kαcqα〉 is diagonal, i.e., the mean-field parameters nkα =

δk,q〈c†kαcqα〉. In this case, show that, in principle, the Hartree-Fock Hamiltonian (12)
assumes the form

HHF = E0 +
∑
kα

εHF
kαc

†
kαckα, (13)
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where E0 is a constant to be determined and

εHF
kα = εk + nU(0)− 1

V

∑
q

U(p− k)npα = εk + nV (0) + VHF(k), (14)

with the number of particles N =
∑

k,α nkα, the particle density n = N/V , and U(q) =

4πe2/q2. Recall that, due to the positively charged background, the direct term U(0) is
absent and only the exchange term VHF(k) is finite. Finally, determine the self-consistent
equation that allow us to calculate the mean-field parameters nkα.

(d) Consider the system at temperature T = 0. Assume that nkα = Θ(kF − k) and show that

VHF(k) = −e
2kF
π

(
1 +

k2F − k2

2kF k
ln

∣∣∣∣k + kF
k − kF

∣∣∣∣) .
Plot VHF(k) in terms of k/kF and, based on the behaviour of VHF(k), argue that the choice
nkα = Θ(kF − k) is indeed the correct solution of the self-consistent equation determined
in item (c).

(e) Determine the ground state energy E0
HF within the Hartree-Fock approximation (it is not nec-

essary to evaluate the momentum integrals). Compare the obtained result with Eqs. (3.30)
and (3.31) from Fetter and notice that E0

HF is equal to the ground state energy of the
electron gas determined within first-order perturbation theory.

(f) Show that the density of states determined from Eq. (14) diverges at the Fermi level. Such
a result contradicts both experiments and the Fermi liquid theory. It also warns us that
the single-particle energies derived form a mean-field Hamiltonian are not necessary a good
approximation for the excitation energies of the system, even if the mean-field approach
gives a good estimate for the ground state energy.

P.04. P.x.x, Bruus and Flensberg: The Stoner model of metallic ferromagnets.
Transition metals, where the conduction bands are formed by narrow d or f orbitals, may display
metallic magnetism. The interaction between two particles in these orbitals is stronger than
the one between electrons occupying the more spread s or p orbitals, and therefore, correlation
effects are stronger in the former than in the latter. Typical metals, where correlations between
conduction band electrons are important, are Fe and Ni. Due to the fact that the short range
part of the interaction is the most important ingredient, such (itinerant) metallic systems can
be described by the Hubbard model, whose Hamiltonian in momentum space is given by

H =
∑
kα

ξkc
†
kαckα +

1

2V
U
∑
kqp

∑
αβ

c†k+qαc
†
p−q βcp βckα, (15)

where ξk = εk − µ = h̄2k2/2m − µ, U > 0, and V is the system volume. In the following, we
consider the Hubbard model within the Hartree-Fock approximation.
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(a) Consider the spin-dependent mean-field parameters 〈c†kαcqα〉 = δk,qn̄kα, and show that,
within the Hartree-Fock approximation, the Hamiltonian (15) assumes the form

HHF =
∑
kα

ξHF
k,αc

†
kαckα −

1

2V
U
∑
αβ

n̄αn̄β +
1

2V
U
∑
α

n̄2α,

where

ξHF
k,α = εk − µ+ U (n̄↑ + n̄↓ − n̄α) and n̄α =

1

V

∑
k

〈c†kαckα〉.

(b) The self-consistent equation that allows us to determine the mean-field parameters n̄α is
given by

n̄α =
1

V

∑
k

〈c†kαckα〉 =
1

V

∑
k

nFD
(
ξHF
k,α

)
, (16)

where nFD(x) = 1/[exp(βx) + 1] is the Fermi-Dirac function. Consider the self-consistent
condition (16) at temperature T = 0 and determine the relation between the Fermi wavevec-
tor kF,α and n̄α, for α =↑ and ↓. Then, using the fact that ξHF

kF ,α
= 0, show that

h̄2

2m

(
6π2n̄↑

)2/3
+ Un̄↓ = µ and

h̄2

2m

(
6π2n̄↓

)2/3
+ Un̄↑ = µ,

which are indeed the self-consistent equations to be solved.

(c) Define the variables

λ =
n̄↑ − n̄↓

n̄
, γ =

2mU

h̄2

(
1

3π2

)2/3

n̄1/3, where n̄ = n̄↑ + n̄↓,

and show that

γλ = (1 + λ)
2/3 − (1 + λ)

2/3 ≡ f(λ). (17)

Plot f(λ) and f ′(0)λ for 0 ≤ λ ≤ 1, and determine the values of γ which corresponds to
(i) the normal state phase (λ = 0),
(ii) the weak ferromagnet phase (0 < λ < 1), and
(iii) the strong ferromagnet phase (λ = 1).
Obs.: The three possible solutions of Eq. (17) are illustrated in Fig. 4.5, Bruus.

(d) At T = 0, show that the critical Hubbard coupling Uc above with a (strong) ferromagnetic
phase sets in is given by

Uc
3V

ρ(0) = 1,

where ρ(0) is the density of states at the Fermi energy.
Obs.: See Fig. 13.1, Coleman for the behaviour of Uc in terms of the temperature.
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P.05. P.x.x, Bruus and Flensberg: The random phase approximation (RPA).
Consider the interacting electron gas (spinless fermions) whose Hamiltonian is given by

H = H0 + Vint =
∑
k

ξkc
†
kck +

1

2V

∑
kpq 6=0

U(q)c†k+qc
†
p−qcpck, (18)

where ξk = εk − µ = h̄2k2/2m− µ and the q = 0 component is excluded from the interaction
term due to the presence of the positively charged background. The idea is to derive the retarded
density-density correlation function in the RPA for the interacting electron gas within the equation
of motion technique. Recall that the retarded density-density correlation function is defined as
(h̄ = 1)

χR (q, t− t′) = −iθ (t− t′) 1

V
〈
[
ρ(q, t), ρ(−q, t′)

]
〉 where ρ(q) =

∑
k

c†kck+q.

In particular, for the free-electron gas (spinless fermions), we have

χR0 (q, ν) =
1

V

∑
k

nk − nk+q

ν + ξk − ξk+q + iη
,

where 〈c†kcq〉 = δk,qnk.

(a) It is interesting to consider the auxiliary correlation function

χR (k,q, t− t′) = −iθ (t− t′) 〈
[
ρ̄(k,q, t), ρ(−q, t′)

]
〉.

where

ρ̄(k,q, t) = eiHtρ̄(k,q)e−iHt = eiHtc†kck+qe
−iHt.

Note that χR(q, t− t′) = (1/V )
∑

k χ
R (k,q, t− t′). Show that the equation of motion for

the correlation function χR (k,q, t− t′) is given by

i∂tχ
R (k,q, t− t′) = δ (t− t′) 〈[ρ̄(k,q, t), ρ(−q, t′)]〉

− iθ (t− t′) 〈
[
[H, ρ̄(k,q, t)] , ρ(−q, t′)

]
〉.

(b) Determine the commutators

[ρ̄(k,q), ρ(q)] , [H0, ρ̄(k,q)] , [Vint, ρ̄(k,q)] .

(c) Consider the commutator [Vint, ρ̄(k,q)] within a mean-field approximation: Replace the

operators c†kcq by its expectation values 〈c†kcq〉 = δk,qnk; consider only the direct terms
(Hartree approximation) as done in item (a) from Problem 03; then, show that[

Vint, c
†
kck+q

]
≈ 1

V
U(q) (nk+q − nk)

∑
p

c†p−qcp.
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(d) Consider the equation of motion for the correlation function χR (k,q, t− t′) in the frequency
domain and show that

χRRPA(q, ν) =
χR0 (q, ν)

1− U(q)χR0 (q, ν)
.

P.06. P.6.4 and P.6.5, Bruus and Flensberg: conductivity homogenous system.
In this problem, we consider the conductivity of a translation- and rotational-invariant system.
In this case, the conductivity σ(r, r′) = σ(r − r′) and the conductivity tensor is diagonal with
identical diagonal components (see Sec. 6.2, Bruus for details).

(a) Show that in the Fourier domain, Eq. (6.15) from Bruus assumes the form

Je(q, ω) = σ(q, ω)E(q, ω).

(b) Find the relation between the conductivity σ(q, ω) and the correlation function

Cα(q, t) = 〈[Jα(q, t), Jα(−q, t)]〉,

where J(q) is the particle current operator in momentum space.

(c) Consider the noninteracting electron gas in the long-wavelength limit q → 0. Derive the
expression for the particle current operator in this limit,

J(0, t) =
1

m

∑
k,α

kc†kα(t)ckα(t),

and show that it is time-independent in the Heisenberg picture. Then, show that the
conductivity

σα,β(q→ 0, ω) = iδα,β
ne2

ωm
.

How does this fit with the Drude result [Eq. (13.42), Bruus] in the clean limit, where the
impurity induced scattering time τ is such that ωτ →∞?

(d) How does the conclusions from the previous item change for an interacting translation-
invariant system?
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