FI 193 - Teoria Quântica de Sistemas de Muitos Corpos - Lista 4

P.01. Matsubara frequency summation.
(a) Show that

$$
\begin{aligned}
S_{1}=\frac{1}{\beta \hbar} \sum_{n} \mathcal{G}^{(0)}\left(\mathbf{p}, i \omega_{n}\right) \mathcal{G}^{(0)}\left(\mathbf{p}+\mathbf{q}, i \omega_{n}+i \nu_{m}\right) & =\frac{f\left(\xi_{\mathbf{p}}\right)-f\left(\xi_{\mathbf{p}+\mathbf{q}}\right)}{i \nu_{m}+\xi_{\mathbf{p}} / \hbar-\xi_{\mathbf{p}+\mathbf{q}} / \hbar}, \\
S_{2}=-\frac{1}{\beta \hbar} \sum_{n} \mathcal{G}^{(0)}\left(\mathbf{p}, i \omega_{n}\right) \mathcal{G}^{(0)}\left(\mathbf{q}-\mathbf{p}, i \nu_{m}-i \omega_{n}\right) & =\frac{1-f\left(\xi_{\mathbf{p}}\right)-f\left(\xi_{\mathbf{q}-\mathbf{p}}\right)}{i \nu_{m}-\xi_{\mathbf{p}} / \hbar-\xi_{\mathbf{q}-\mathbf{p}} / \hbar}, \\
S_{3}=-\frac{1}{\beta \hbar} \sum_{m} \mathcal{D}^{(0)}\left(\mathbf{q}, i \nu_{m}\right) \mathcal{G}^{(0)}\left(\mathbf{p}+\mathbf{q}, i \omega_{n}+i \nu_{m}\right) & =\frac{n\left(\omega_{\mathbf{q}}\right)+f\left(\xi_{\mathbf{p}+\mathbf{q}}\right)}{i \omega_{n}+\omega_{\mathbf{q}}-\xi_{\mathbf{p}+\mathbf{q}} / \hbar} \\
& +\frac{1+n\left(\omega_{\mathbf{q}}\right)-f\left(\xi_{\mathbf{p}+\mathbf{q}}\right)}{i \omega_{m}-\omega_{\mathbf{q}}-\xi_{\mathbf{p}+\mathbf{q}} / \hbar}
\end{aligned}
$$

where $\nu_{m}=2 m \pi / \beta \hbar, \mathcal{G}^{(0)}\left(\mathbf{p}, i \omega_{n}\right)=\left(i \omega_{n}-\xi_{\mathbf{p}} / \hbar\right)^{-1}$ is the Matsubara Green's function for free fermions, $\mathcal{D}^{(0)}\left(\mathbf{p}, i \omega_{n}\right)$ is the Matsubara Green's function for free phonons, $\hbar \omega_{\mathbf{q}}$ is the phonon energy, $n(x)$ is the Bose-Einstein function, and $f(x)$ is the Fermi-Dirac function.
(b) Express the Matsubara Green's functions for fermions $\mathcal{G}\left(\mathbf{p}, i \omega_{n}\right)$ and for phonons $\mathcal{D}\left(\mathbf{q}, i \nu_{n}\right)$ in terms of the respectives spectral functions, i.e,

$$
\mathcal{G}\left(\mathbf{p}, i \omega_{n}\right)=\int_{-\infty}^{\infty} \frac{d \omega}{2 \pi} \frac{A(\mathbf{p}, \omega)}{i \omega_{n}-\omega} \quad \text { and } \quad \mathcal{D}\left(\mathbf{q}, i \nu_{m}\right)=\int_{-\infty}^{\infty} \frac{d \omega^{\prime}}{2 \pi} \frac{B\left(\mathbf{q}, \omega^{\prime}\right)}{i \nu_{m}-\omega^{\prime}}
$$

and determine the Matsubara frequency summation

$$
S_{4}=-\frac{1}{\beta \hbar} \sum_{m} \mathcal{D}\left(\mathbf{q}, i \nu_{m}\right) \mathcal{G}\left(\mathbf{p}+\mathbf{q}, i \omega_{n}+i \nu_{m}\right)
$$

P.02. P.5.2, Miranda: Electron-phonon interaction.

Consider a system of free fermions interacting with the (bosonic) lattice vibrations (phonons).
The Hamiltonian of the system is given by

$$
\begin{equation*}
H=H_{e}+H_{\mathrm{ph}}+H_{\mathrm{e}-\mathrm{ph}} \tag{1}
\end{equation*}
$$

where

$$
\begin{array}{ll}
H_{e}=\sum_{\mathbf{k} \sigma} \xi_{\mathbf{k}} c_{\mathbf{k} \sigma}^{\dagger} c_{\mathbf{k} \sigma}, & \xi_{\mathbf{k}}=\epsilon_{\mathbf{k}}-\mu=\hbar^{2} k^{2} /(2 m)-\mu \\
H_{\mathrm{ph}}=\sum_{\mathbf{q}} \omega_{\mathbf{q}} a_{\mathbf{q}}^{\dagger} a_{\mathbf{q}}, & \omega_{\mathbf{q}}=c q<c q_{0}=\omega_{D} \\
H_{\mathrm{e}-\mathrm{ph}}=\frac{1}{V^{1 / 2}} \sum_{\mathbf{k} \mathbf{q}} M_{\mathbf{q}} c_{\mathbf{k}+\mathbf{q}}^{\dagger} c_{\mathbf{k}}\left(a_{-\mathbf{q}}^{\dagger}+a_{\mathbf{q}}\right), \quad M_{\mathbf{q}}=g_{\mathbf{q} \sqrt{q}}=M_{-\mathbf{q}}^{*} \tag{4}
\end{array}
$$

Here $c_{\mathbf{k} \sigma}^{\dagger}\left(c_{\mathbf{k} \sigma}\right)$ creates (annihilates) an electron with momentum \mathbf{k} and spin $\sigma, a_{\mathbf{q}}^{\dagger}$ and $a_{\mathbf{q}}$ are boson operators associated with acoustic phonons, $\omega_{D}=c q_{0} \ll E_{F}$ is the Debye frequency with $E_{F}=\hbar^{2} k_{F}^{2} / 2 m$ being the Fermi energy and q_{0} being a momentum cutoff, and μ is the chemical potential for the electrons (recall that, for phonons, $\mu=0$ since they are not conserved). Let us assume that the electron-phonon coupling $M_{\mathbf{q}}=g \sqrt{q}$, with g being a constant.
(a) The Matsubara Green's function for phonons is defined as

$$
\mathcal{D}(\mathbf{q}, \tau)=-\left\langle T_{\tau}\left[\left(a_{-\mathbf{q}}(\tau)+a_{\mathbf{q}}^{\dagger}(\tau)\right)\left(a_{\mathbf{q}}(0)+a_{-\mathbf{q}}^{\dagger}(0)\right)\right]\right\rangle .
$$

Determine the Matsubara Green's function $\mathcal{D}^{(0)}\left(\mathbf{q}, \nu_{n}\right)$ for the system of free phonons. Notice that $\mathcal{D}^{(0)}\left(\mathbf{q}, \nu_{n}\right) \propto \theta\left(q_{0}-q\right)$.
(b) Determine the self-energy $\Sigma_{\sigma}^{(2)}\left(\mathbf{k}, \omega_{n}\right)$ for the electrons in second-order perturbation theory, i.e., up to order g^{2}.
(c) Performe an analytic continuation on $\Sigma_{\sigma}^{(2)}\left(\mathbf{k}, \omega_{n}\right)$ and show that the advanced self-energy for the electrons is given by

$$
\begin{equation*}
\Sigma^{A}(\mathbf{k}, \omega)=\int \frac{d^{3} p}{(2 \pi)^{3}} \lambda_{\mathbf{p}}\left[\frac{1+n\left(\omega_{\mathbf{p}}\right)-f\left(\xi_{\mathbf{k}-\mathbf{p}}\right)}{\omega-\xi_{\mathbf{k}-\mathbf{p}}-\omega_{\mathbf{p}}-i \eta}+\frac{n\left(\omega_{\mathbf{p}}\right)+f\left(\xi_{\mathbf{k}-\mathbf{p}}\right)}{\omega-\xi_{\mathbf{k}-\mathbf{p}}+\omega_{\mathbf{p}}-i \eta}\right] \tag{5}
\end{equation*}
$$

where $\lambda_{\mathbf{p}}=\left|M_{\mathbf{p}}\right|^{2} \theta\left(q_{0}-p\right)$ and $n(x)$ and $f(x)$ are the Bose-Einstein and Fermi-Dirac distribution functions, respectively.
(d) From now on, consider the $T=0$ limit. Assume that $q_{0}=k_{F}$ (since they are of the same order) and show that

$$
\begin{equation*}
\left.\left.\left|\frac{1}{v_{F}} \frac{\partial}{\partial k} \operatorname{Re}\left[\Sigma^{A}(\mathbf{k}, 0)\right]\right|_{k=k_{F}}|\ll| \frac{\partial}{\partial \omega} \operatorname{Re}\left[\Sigma^{A}\left(k_{F}, \omega\right)\right]\right|_{\omega=0} \right\rvert\, \tag{6}
\end{equation*}
$$

where $v_{F}=k_{F} / m \gg c$. Condition (6) indicates that the dependence of the self-energy with momentum can be neglected.
Hint: Use the fact that $(\mathbf{k}-\mathbf{p})^{2}=k^{2}+p^{2}-2 k p \mu$, where $\mu=\cos \theta$.
(e) From

$$
\left.\frac{\partial}{\partial \omega} \operatorname{Re}\left[\Sigma^{A}\left(k_{F}, \omega\right)\right]\right|_{\omega=0}
$$

determine the renormalized Fermi velocity and the quasiparticule residue Z due to the electron-phonon interaction. See Sec. 15.4, Bruus for details.
(f) Determine the quasiparticle decay rate $\operatorname{Im}\left[\Sigma_{\sigma}^{(2 A)}\left(k_{F}, \omega\right)\right]$ as a function of the frequency for $0<\omega<\omega_{D}$. Show that it obeys the condition $\operatorname{Im}\left[\Sigma_{\sigma}^{(2 A)}\left(k_{F}, \omega\right)\right] \ll \omega$ when $\omega \rightarrow 0$ (recall Fermi liquid theory).
(g) Consider the so-called Migdal function

$$
\alpha^{2} F(\nu, \hat{\mathbf{k}}) \equiv \int \frac{d S_{\hat{\mathbf{p}}}}{(2 \pi)^{3} v_{\hat{\mathbf{p}}}}\left|M_{\mathbf{k}-\mathbf{p}}\right|^{2} \theta\left(q_{0}-|\mathbf{k}-\mathbf{p}|\right) \delta\left(\nu-\omega_{\mathbf{k}-\mathbf{p}}\right),
$$

where $d S_{\hat{\mathbf{p}}}$ is a area element of the Fermi surface in the $\hat{\mathbf{p}}$ direction, $v_{\hat{\mathbf{p}}} \nabla \xi_{\mathbf{p}}$ is the Fermi velocity in the $\hat{\mathbf{p}}$ direction, and the momenta \mathbf{k} and \mathbf{p} are on the Fermi surface. Show that (5) is approximately given by

$$
\Sigma^{A}\left(k_{F}, \omega\right)=\int_{0}^{\infty} d \nu \int_{-\infty}^{\infty} d \xi \alpha^{2} F(\nu, \hat{\mathbf{k}})\left[\frac{1+n(\nu)-f(\xi)}{\omega-\xi-\nu-i \eta}+\frac{n(\nu)+f(\xi)}{\omega-\xi+\nu-i \eta}\right]
$$

Consider the $T=0$ limit and show that

$$
\begin{aligned}
\Sigma^{A}\left(k_{F}, \omega\right) & =\int_{0}^{\infty} d \nu \alpha^{2} F(\nu, \hat{\mathbf{k}}) \ln \left(\frac{\omega-\nu-i \eta}{\omega+\nu-i \eta}\right) \\
-\left.\frac{\partial}{\partial \omega} \operatorname{Re}\left[\Sigma^{A}\left(k_{F}, \omega\right)\right]\right|_{\omega=0} & =2 \int_{0}^{\infty} d \nu \frac{\alpha^{2} F(\nu, \hat{\mathbf{k}})}{\nu}, \\
\operatorname{Im}\left[\Sigma^{A}\left(k_{F}, \omega\right)\right] & =\pi \int_{0}^{\omega} d \nu \alpha^{2} F(\nu, \hat{\mathbf{k}})
\end{aligned}
$$

Hint: For the integral over ξ, assume that $-D<\xi<D$, where $\omega, \nu \ll D$.
(h) Since $d S_{\hat{\mathbf{p}}}=k_{F}^{2} d \Omega_{\hat{\mathbf{p}}}$ and $v_{\hat{\mathbf{p}}}=v_{F}$, show that

$$
\begin{equation*}
\alpha^{2} F(\nu)=\frac{\rho_{F} g^{2}}{2 c}\left(\frac{\nu}{\omega_{D}}\right)^{2} \theta(\nu) \theta\left(\omega_{D}-\nu\right), \tag{7}
\end{equation*}
$$

where $\rho_{F}=m k_{F}^{2} /\left(2 \pi^{2}\right)$ is the electron density (per spin) on the Fermi surface. Rederive the results of itens (e) and (f) from Eq. (7).
(i) Consider the self-energy (5) at finite temperatures and the Migdal function (7). Determine $\operatorname{Im}\left[\Sigma^{A}\left(k_{F}, 0\right)\right]$ as a function of temperature for $T \ll \omega_{D}$.
03. P.7.3, Fetter and Walecka:

Assuming a uniform system of spin- $1 / 2$ fermions at temperature T, and using the Feynman rules in momentum space:
(a) Write out the second-order contributions to the proper self-energy in the case of a spinindependent interaction;
(b) Evaluate the frequency sums.
04. P.7.4, Fetter and Walecka: Free fermions on a external potential.

Consider a system of noninteracting particles in an external static potential with a Hamiltonian

$$
H^{e x}=\int d^{3} r \psi_{\alpha}^{\dagger} V_{\alpha \beta}(\mathbf{r}) \psi_{\beta}(\mathbf{r})
$$

(a) Use Wick's theorem to evaluate the temperature Green's to second order in $H^{e x}$. Hence, deduce the Feynman rules for $\mathcal{G}_{\alpha \beta}^{e x}\left(\mathbf{r} \tau, \mathbf{r}^{\prime} \tau^{\prime}\right)$ to all orders.
(b) Define the Fourier transform

$$
\mathcal{G}^{e x}\left(\mathbf{r} \tau, \mathbf{r}^{\prime} \tau^{\prime}\right)=\frac{1}{\beta \hbar} \sum_{n} \int \frac{d^{3} k d^{3} q}{(2 \pi)^{6}} e^{i \mathbf{k} \cdot \mathbf{r}} e^{-i \mathbf{q} \cdot \mathbf{r}^{\prime}} e^{-i \omega_{n}\left(\tau-\tau^{\prime}\right)} \mathcal{G}_{\alpha \beta}^{e x}\left(\mathbf{k}, \mathbf{q} ; \omega_{n}\right)
$$

Find $\mathcal{G}_{\alpha \beta}^{e x}\left(\mathbf{k}, \mathbf{q} ; \omega_{n}\right)$ to second order, and hence obtain the corresponding Feynman rules in momentum space.
(c) Show that Dyson's equation becomes

$$
\begin{aligned}
\mathcal{G}_{\alpha \beta}^{e x}\left(\mathbf{k}, \mathbf{q} ; \omega_{n}\right) & =(2 \pi)^{3} \delta(\mathbf{k}-\mathbf{q}) \mathcal{G}_{\alpha \beta}^{0}\left(\mathbf{k} ; \omega_{n}\right) \\
& +\frac{1}{(2 \pi)^{3} \hbar} \int d^{3} p \mathcal{G}_{\alpha \lambda}^{0}\left(\mathbf{k} ; \omega_{n}\right) V_{\lambda \lambda^{\prime}}(\mathbf{k}-\mathbf{p}) \mathcal{G}_{\lambda^{\prime} \beta}^{e x}\left(\mathbf{p}, \mathbf{q} ; \omega_{n}\right) .
\end{aligned}
$$

(d) Express the internal energy and thermodynamic potential in a form analogous to Eqs. (23.15) and (23.22) from Fetter and Walecka.
05. P.7.5, Fetter and Walecka: Spin-1/2 fermions under a magnetic field.

Apply the theory of Prob. 7.4, Fetter and Walecka, to a system of spin- $1 / 2$ fermions in a uniform magnetic field, where $V_{\alpha \beta}=-\mu_{0} \mathbf{H} \cdot \boldsymbol{\sigma}_{\alpha \beta}$.
(a) Express the magnetization \mathbf{M} (magnetic moment per unit volume) in terms of $G^{e x}$ and $\mathcal{G}^{e x}$ respectively for $T=0$ and $T \geq 0$.
(b) Solve Dyson's equation in each case and find \mathbf{M}; hence obtain the following limits

$$
\begin{array}{ll}
\chi_{P}=\frac{3 \mu^{2} n_{0}}{3 \epsilon_{F}} & \text { as } T \rightarrow 0
\end{array} \text { Pauli paramagnetism, }
$$

where n is the particle density.
(c) Why does the zero-temperature formalism give the wrong answer?
06. P.2.2, Mahan: Electron-phonon interaction.

For the phonon Green's fumction $D\left(\mathbf{q}, t-t^{\prime}\right)$, let $V(t)$ be the electron-phonon interaction and evaluate all the $n=2$ diagrams. Which are connected, and which are disconnected? Draw the Feynman graphs for each term.
P.07. P.x.x, Cologne: Slave-boson approximation for the Kondo model.

The idea of this problem is to study the Kondo model within the so-called slave-boson approximation.
Let us consider the Kondo model

$$
\begin{equation*}
\hat{H}=\hat{H}_{0}+\hat{H}_{1}=\sum_{\mathbf{k} \alpha} \varepsilon_{\mathbf{k}} c_{\mathbf{k} \alpha}^{\dagger} c_{\mathbf{k} \alpha}+J \mathbf{S} \cdot \mathbf{s}_{0} \tag{8}
\end{equation*}
$$

where $c_{\mathbf{k} \alpha}^{\dagger}\left(c_{\mathbf{k} \alpha}\right)$ creates (annihilates) a conduction electron with momentum \mathbf{k} and $\operatorname{spin} \alpha=\uparrow, \downarrow$, $\varepsilon_{\mathbf{k}}$ is the fermion dispersion, J is the Kondo coupling, \mathbf{S} is the impurity spin- $1 / 2$ operator, and s_{0} is the conduction electron spin operator at the impurity site, i.e.,

$$
\mathbf{s}_{0}=\frac{1}{2} \sum_{\mathbf{k}, \mathbf{p}} \sum_{\alpha, \beta} c_{\mathbf{k} \alpha}^{\dagger} \hat{\tau}_{\alpha, \beta} c_{\mathbf{p} \beta}
$$

with $\hat{\tau}=\left(\sigma_{x}, \sigma_{y}, \sigma_{z}\right)$ being the vector of Pauli matrices.
(a) It is convenient to write the impurity spin operator \mathbf{S} in terms of auxiliary fermion operators f_{σ} (the so-called Abrikosov fermions), i.e., $\mathbf{S}=1 / 2 \sum_{\mu, \nu} f_{\mu}^{\dagger} \hat{\tau}_{\mu, \nu} f_{\nu}$. In order to preserve the size of the Hilbert space, we need a constraint, $\sum_{\alpha} f_{\alpha}^{\dagger} f_{\alpha}=1$. Show that, apart from a constant, \hat{H}_{1} assumes the form

$$
\begin{equation*}
\hat{H}_{1}=-\sum_{\alpha, \beta} \frac{J}{2} f_{\alpha}^{\dagger} c_{\alpha} c_{\beta}^{\dagger} f_{\beta} \tag{9}
\end{equation*}
$$

where $c_{\alpha} \equiv c_{\alpha}(\mathbf{r}=0)=\sum_{\mathbf{k}} c_{\mathbf{k} \alpha}$ is the conduction electron operator at the impurity site.
(b) Consider the four-fermion term $(J / 2) f^{\dagger} c c^{\dagger} f$ within a Hartree-Fock (mean field) approximation by replacing the bosonic operator $c^{\dagger} f$ by its average value. Introduce a Lagrange multiplier λ to enforce the occupation constraint on the impurity site and assume that λ is constant. Show that, apart from a constant, the Hamiltonian (8) assumes the form

$$
\begin{equation*}
H^{M F}=\sum_{\mathbf{k} \alpha} \varepsilon_{\mathbf{k}} c_{\mathbf{k} \alpha}^{\dagger} c_{\mathbf{k} \alpha}-\sum_{\alpha}\left(b f_{\alpha}^{\dagger} c_{\alpha}+b^{\dagger} f_{\alpha} c_{\alpha}^{\dagger}\right)+\lambda\left(\sum_{\alpha} f_{\alpha}^{\dagger} f_{\alpha}-1\right) \tag{10}
\end{equation*}
$$

with

$$
\begin{equation*}
b=\frac{J}{2} \sum_{\sigma}\left\langle c_{\sigma}^{\dagger} f_{\sigma}\right\rangle \tag{11}
\end{equation*}
$$

Notice that b is in general a complex number.
(c) The Hamiltonian (10) is bilinear in fermion operators and is thus solvable. It is useful to introduce a propagator $G_{\alpha, f}(\tau)$ for the f fermions and a mixed propagator $G_{\alpha, f c}(\tau)$, i.e.,

$$
G_{\alpha, f}(\tau)=-\left\langle T_{\tau} f_{\alpha}(\tau) f_{\alpha}^{\dagger}(0)\right\rangle \quad \text { and } \quad G_{\alpha, f c}(\tau)=-\left\langle T_{\tau} f_{\alpha}(\tau) c_{\alpha}^{\dagger}(0)\right\rangle
$$

Show that

$$
\begin{align*}
G_{f}\left(i \omega_{n}\right) & \equiv G_{\alpha, f}\left(i \omega_{n}\right)=\frac{1}{i \omega_{n}-\lambda-|b|^{2} G^{0}\left(i \omega_{n}\right)}, \tag{12}\\
G_{f c}\left(i \omega_{n}\right) & \equiv G_{\alpha, f c}\left(i \omega_{n}\right)=-b G_{f}\left(i \omega_{n}\right) G^{0}\left(i \omega_{n}\right), \tag{13}
\end{align*}
$$

where $G^{0}\left(i \omega_{n}\right) \equiv G^{0}\left(\mathbf{r}=0, i \omega_{n}\right)=\sum_{k}\left(i \omega_{n}-\varepsilon_{\mathbf{k}}\right)^{-1}$ is the local Green's function for the conduction electrons.
Hint: Recall the discussion about the noninteracting Anderson model.
(d) From now on, let us assume that b is real. The assumption made in item (b), that λ is constant, implies that the constraint $\sum_{\alpha} f_{\alpha}^{\dagger} f_{\alpha}=1$ is fulfilled only on average, i.e.,

$$
\begin{equation*}
\sum_{\alpha}\left\langle f_{\alpha}^{\dagger} f_{\alpha}\right\rangle=1 \tag{14}
\end{equation*}
$$

Rewrite Eqs. (11) and (14) in terms of the Green's functions (12) and (13). Notice that the two derived equations together with Eq. (12) form a set of self-consistent equations. Once the density of states of the conduction electrons $\rho_{0}(\omega)$ and J are known, the equations can be solved for a fixed temperature.
(e) Use the results of item (d), convert the Matsubara sums into integrals over real frequencies, and show that Eq. (11) can be written as

$$
\begin{equation*}
\frac{1}{J}=-\int_{-\infty}^{\infty} d \omega n_{F D}(\omega) \frac{\rho_{0}(\omega)}{\omega-\lambda}\left|1-\frac{b^{2} G^{0}(\omega+i \eta)}{\omega-\lambda}\right|^{-2} \tag{15}
\end{equation*}
$$

for small $b \neq 0$ and

$$
\begin{equation*}
\frac{1}{J}=-\int_{-\infty}^{\infty} d \omega n_{F D}(\omega)\left(\frac{\rho_{0}(\omega)}{\omega-\lambda}+\operatorname{Re} G^{0}(\omega+i \eta) \delta(\omega-\lambda)\right) \tag{16}
\end{equation*}
$$

for $b \rightarrow 0$. Here the spectral density (density of states) $\rho_{0}(\omega)=-\operatorname{Im} G^{0}(\omega+i \eta) / \pi$ and $n_{F D}(x)=1 /[\exp (\beta x)+1]$ is the Fermi function.
Hint: The identity $(1 / \beta \hbar) \sum_{i \omega_{n}} G\left(i \omega_{n}\right)=\int d \omega \rho(\omega) n_{f}(\omega)$, where $\rho(\omega)$ is the spectral density related to $G(\omega+i \eta)$, might be useful.
(f) Assume that $\rho_{0}(\omega)=\rho_{0}$ is constant for $-D<\omega<D$, where D is the bandwidth of the conduction electrons, and discuss the solutions of the mean field equations. Show that it is possible to derive the correct (one-loop) expression for the Kondo temperature T_{K} from these equations.
Obs.: The slave-boson approximation introduces an artificial phase transition at T_{K}.
08. P.x.x, Cologne: Fermionic Green's function for a chain.

Consider a one-dimensional fermionic system described by the Hamiltonian

$$
\begin{equation*}
H=H_{0}+V=\sum_{i=1}^{N}\left[t\left(c_{i}^{\dagger} c_{i+1}+c_{i+1}^{\dagger} c_{i}\right)-\mu c_{i}^{\dagger} c_{i}\right]+\sum_{i=1}^{N} \Delta\left(c_{i} c_{i+1}+c_{i+1}^{\dagger} c_{i}^{\dagger}\right) \tag{17}
\end{equation*}
$$

where $c_{i}^{\dagger}\left(c_{i}\right)$ creates (annihilates) an electron at site i of the chain, t is the nearest-neighbor hopping energy, and μ and Δ are constants.
(a) Calculate the Green's function $G_{0}\left(\mathbf{q}, i \omega_{n}\right)$ for the noninteracting system. Hint: Perform a Fourier transform.
(b) Calculate now the Green's function for the interacting system with the help of Dyson's equation. Why does the self-energy only involve even powers of V ?
09. P.7.1, Cologne: Specific heat of a d-wave BCS superconductor.

The electronic specific heat of a superconductor is given by

$$
\begin{equation*}
C_{S}=T \frac{\partial S}{\partial T}=\sum_{\mathbf{k} \sigma} E_{\mathbf{k}} \frac{\partial f_{K}}{\partial T} \tag{18}
\end{equation*}
$$

Here $f_{\mathbf{k}}=1 /\left(\exp \left(E_{\mathbf{k}} / T\right)+1\right)$ is the Fermi-Dirac distribution function and the second equality follows from the fact that the entropy for a Fermi gas can be written as

$$
S=-\sum_{\mathbf{k} \sigma}\left[\left(1-f_{\mathbf{k}}\right) \ln \left(1-f_{\mathbf{k}}\right)+f_{\mathbf{k}} \ln f_{\mathbf{k}}\right]
$$

Let us consider a d-wave BCS theory in a 2D square lattice. In this case, the energy of the elementary excitations are given by $E_{\mathbf{k}}=\sqrt{\xi_{\mathbf{k}}^{2}+\Delta_{\mathbf{k}}^{2}}$, with $\xi_{\mathbf{k}}=-2 t\left(\cos k_{x}+\cos k_{y}\right)-\mu$ and $\Delta_{\mathbf{k}}=2 \Delta_{0}\left(\cos k_{x}-\cos k_{y}\right)$. Show that Eq.(18) can be written as

$$
\begin{equation*}
C_{S} \sim \int_{-\infty}^{\infty} d \xi \int \frac{d \theta}{2 \pi} \sqrt{\xi^{2}+\Delta_{\mathbf{k}}^{2}} \frac{\partial}{\partial T}\left(\frac{1}{\exp \left(\sqrt{\xi^{2}+\Delta_{\mathbf{k}}^{2}}\right)+1}\right) \tag{19}
\end{equation*}
$$

and that for the d-wave case $C_{S} \sim T^{2}$ in the limit $T \rightarrow 0$.
Hint: The important contributions come from the gapless region at the nodal points.
Obs. 1: Notice that, in the derivation of the second equality in Eq. (18), we neglected the fact that $\Delta=\Delta(T)$. This procedure is justified in the limit of very low- T because in this case the T-dependence of the gap provides subleading corrections to the specific heat. Recall that in the BCS theory $\Delta(T)-\Delta(T=0) \sim T^{2}$
Obs. 2: Recall that for the s-wave case, $C_{S} \sim\left(T_{c} / T\right)^{5 / 2} e^{-\Delta(T=0) / T}$.

