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P.01. Matsubara frequency summation.

(a) Show that

S1 =
1

βh̄

∑
n

G(0)(p, iωn)G(0)(p + q, iωn + iνm) =
f(ξp)− f(ξp+q)

iνm + ξp/h̄− ξp+q/h̄
,

S2 = − 1

βh̄

∑
n

G(0)(p, iωn)G(0)(q− p, iνm − iωn) =
1− f(ξp)− f(ξq−p)

iνm − ξp/h̄− ξq−p/h̄
,

S3 = − 1

βh̄

∑
m

D(0)(q, iνm)G(0)(p + q, iωn + iνm) =
n(ωq) + f(ξp+q)

iωn + ωq − ξp+q/h̄

+
1 + n(ωq)− f(ξp+q)

iωm − ωq − ξp+q/h̄
,

where νm = 2mπ/βh̄, G(0)(p, iωn) = (iωn−ξp/h̄)−1 is the Matsubara Green’s function for
free fermions, D(0)(p, iωn) is the Matsubara Green’s function for free phonons, h̄ωq is the
phonon energy, n(x) is the Bose-Einstein function, and f(x) is the Fermi-Dirac function.

(b) Express the Matsubara Green’s functions for fermions G(p, iωn) and for phonons D(q, iνn)
in terms of the respectives spectral functions, i.e,

G(p, iωn) =

∫ ∞
−∞

dω

2π

A(p, ω)

iωn − ω
and D(q, iνm) =

∫ ∞
−∞

dω′

2π

B(q, ω′)

iνm − ω′
,

and determine the Matsubara frequency summation

S4 = − 1

βh̄

∑
m

D(q, iνm)G(p + q, iωn + iνm).
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P.02. P.5.2, Miranda: Electron-phonon interaction.
Consider a system of free fermions interacting with the (bosonic) lattice vibrations (phonons).
The Hamiltonian of the system is given by

H = He +Hph +He−ph, (1)

where

He =
∑
kσ

ξkc
†
kσckσ, ξk = εk − µ = h̄2k2/(2m)− µ, (2)

Hph =
∑
q

ωqa
†
qaq, ωq = cq < cq0 = ωD, (3)

He−ph =
1

V 1/2

∑
kq

Mqc
†
k+qck

(
a†−q + aq

)
, Mq = gq

√
q = M∗−q. (4)

Here c†kσ (ckσ) creates (annihilates) an electron with momentum k and spin σ, a†q and aq are
boson operators associated with acoustic phonons, ωD = cq0 � EF is the Debye frequency with
EF = h̄2k2

F /2m being the Fermi energy and q0 being a momentum cutoff, and µ is the chemical
potential for the electrons (recall that, for phonons, µ = 0 since they are not conserved). Let us
assume that the electron-phonon coupling Mq = g

√
q, with g being a constant.

(a) The Matsubara Green’s function for phonons is defined as

D(q, τ) = −
〈
Tτ

[(
a−q(τ) + a†q(τ)

)(
aq(0) + a†−q(0)

)]〉
.

Determine the Matsubara Green’s function D(0)(q, νn) for the system of free phonons.
Notice that D(0)(q, νn) ∝ θ(q0 − q).

(b) Determine the self-energy Σ
(2)
σ (k, ωn) for the electrons in second-order perturbation theory,

i.e., up to order g2.

(c) Performe an analytic continuation on Σ
(2)
σ (k, ωn) and show that the advanced self-energy

for the electrons is given by

ΣA(k, ω) =

∫
d3p

(2π)3
λp

[
1 + n(ωp)− f(ξk−p)

ω − ξk−p − ωp − iη
+

n(ωp) + f(ξk−p)

ω − ξk−p + ωp − iη

]
, (5)

where λp = |Mp|2θ(q0 − p) and n(x) and f(x) are the Bose-Einstein and Fermi-Dirac
distribution functions, respectively.
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(d) From now on, consider the T = 0 limit. Assume that q0 = kF (since they are of the same
order) and show that∣∣∣∣∣ 1

vF

∂

∂k
Re
[
ΣA(k, 0)

]∣∣∣∣
k=kF

∣∣∣∣∣�
∣∣∣∣ ∂∂ωRe

[
ΣA(kF , ω)

]∣∣∣∣
ω=0

∣∣∣∣ , (6)

where vF = kF /m � c. Condition (6) indicates that the dependence of the self-energy
with momentum can be neglected.
Hint: Use the fact that (k− p)2 = k2 + p2 − 2kpµ, where µ = cos θ.

(e) From

∂

∂ω
Re
[
ΣA(kF , ω)

]∣∣∣∣
ω=0

,

determine the renormalized Fermi velocity and the quasiparticule residue Z due to the
electron-phonon interaction. See Sec. 15.4, Bruus for details.

(f) Determine the quasiparticle decay rate Im
[
Σ

(2A)
σ (kF , ω)

]
as a function of the frequency for

0 < ω < ωD. Show that it obeys the condition Im
[
Σ

(2A)
σ (kF , ω)

]
� ω when ω → 0 (recall

Fermi liquid theory).

(g) Consider the so-called Migdal function

α2F (ν, k̂) ≡
∫

dSp̂

(2π)3vp̂
|Mk−p|2θ (q0 − |k− p|) δ (ν − ωk−p) ,

where dSp̂ is a area element of the Fermi surface in the p̂ direction, vp̂∇ξp is the Fermi
velocity in the p̂ direction, and the momenta k and p are on the Fermi surface. Show that
(5) is approximately given by

ΣA(kF , ω) =

∫ ∞
0

dν

∫ ∞
−∞

dξα2F (ν, k̂)

[
1 + n(ν)− f(ξ)

ω − ξ − ν − iη
+

n(ν) + f(ξ)

ω − ξ + ν − iη

]
.

Consider the T = 0 limit and show that

ΣA(kF , ω) =

∫ ∞
0

dνα2F (ν, k̂) ln

(
ω − ν − iη
ω + ν − iη

)
,

− ∂

∂ω
Re
[
ΣA(kF , ω)

]∣∣∣∣
ω=0

= 2

∫ ∞
0

dν
α2F (ν, k̂)

ν
, 0 < ω < ωD,

Im
[
ΣA(kF , ω)

]
= π

∫ ω

0

dνα2F (ν, k̂).

Hint: For the integral over ξ, assume that −D < ξ < D, where ω, ν � D.
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(h) Since dSp̂ = k2
F dΩp̂ and vp̂ = vF , show that

α2F (ν) =
ρF g

2

2c

(
ν

ωD

)2

θ(ν)θ(ωD − ν), (7)

where ρF = mk2
F /(2π

2) is the electron density (per spin) on the Fermi surface. Rederive
the results of itens (e) and (f) from Eq. (7).

(i) Consider the self-energy (5) at finite temperatures and the Migdal function (7). Determine
Im
[
ΣA(kF , 0)

]
as a function of temperature for T � ωD.

03. P.7.3, Fetter and Walecka:
Assuming a uniform system of spin-1/2 fermions at temperature T , and using the Feynman rules
in momentum space:

(a) Write out the second-order contributions to the proper self-energy in the case of a spin-
independent interaction;

(b) Evaluate the frequency sums.

04. P.7.4, Fetter and Walecka: Free fermions on a external potential.
Consider a system of noninteracting particles in an external static potential with a Hamiltonian

Hex =

∫
d3r ψ†αVαβ(r)ψβ(r).

(a) Use Wick’s theorem to evaluate the temperature Green’s to second order in Hex. Hence,
deduce the Feynman rules for Gexαβ(r τ, r′ τ ′) to all orders.

(b) Define the Fourier transform

Gex(r τ, r′ τ ′) =
1

βh̄

∑
n

∫
d3k d3q

(2π)6
eik·re−iq·r

′
e−iωn(τ−τ ′)Gexαβ(k,q;ωn).

Find Gexαβ(k,q;ωn) to second order, and hence obtain the corresponding Feynman rules in
momentum space.

(c) Show that Dyson’s equation becomes

Gexαβ(k,q;ωn) = (2π)3δ(k− q)G0
αβ(k;ωn)

+
1

(2π)3h̄

∫
d3pG0

αλ(k;ωn)Vλλ′(k− p)Gexλ′β(p,q;ωn).

(d) Express the internal energy and thermodynamic potential in a form analogous to Eqs. (23.15)
and (23.22) from Fetter and Walecka.
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05. P.7.5, Fetter and Walecka: Spin−1/2 fermions under a magnetic field.
Apply the theory of Prob. 7.4, Fetter and Walecka, to a system of spin-1/2 fermions in a uniform
magnetic field, where Vαβ = −µ0H · σαβ .

(a) Express the magnetization M (magnetic moment per unit volume) in terms of Gex and Gex
respectively for T = 0 and T ≥ 0.

(b) Solve Dyson’s equation in each case and find M; hence obtain the following limits

χP =
3µ2n0

3εF
as T → 0 Pauli paramagnetism,

χC =
µ2

0n

KBT
as T →∞ Curie′s law,

where n is the particle density.

(c) Why does the zero-temperature formalism give the wrong answer?

06. P.2.2, Mahan: Electron-phonon interaction.
For the phonon Green’s fumction D(q, t− t′), let V (t) be the electron-phonon interaction and
evaluate all the n = 2 diagrams. Which are connected, and which are disconnected? Draw the
Feynman graphs for each term.
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P.07. P.x.x, Cologne: Slave-boson approximation for the Kondo model.
The idea of this problem is to study the Kondo model within the so-called slave-boson approxi-
mation.
Let us consider the Kondo model

Ĥ = Ĥ0 + Ĥ1 =
∑
kα

εkc
†
kαckα + JS · s0, (8)

where c†kα (ckα) creates (annihilates) a conduction electron with momentum k and spin α =↑, ↓,
εk is the fermion dispersion, J is the Kondo coupling, S is the impurity spin-1/2 operator, and
s0 is the conduction electron spin operator at the impurity site, i.e.,

s0 =
1

2

∑
k,p

∑
α,β

c†kατ̂α,βcpβ ,

with τ̂ = (σx, σy, σz) being the vector of Pauli matrices.

(a) It is convenient to write the impurity spin operator S in terms of auxiliary fermion operators
fσ (the so-called Abrikosov fermions), i.e., S = 1/2

∑
µ,ν f

†
µτ̂µ,νfν . In order to preserve the

size of the Hilbert space, we need a constraint,
∑
α f
†
αfα = 1. Show that, apart from a

constant, Ĥ1 assumes the form

Ĥ1 = −
∑
α,β

J

2
f†αcαc

†
βfβ , (9)

where cα ≡ cα(r = 0) =
∑

k ckα is the conduction electron operator at the impurity site.

(b) Consider the four-fermion term (J/2)f†cc†f within a Hartree-Fock (mean field) approxi-
mation by replacing the bosonic operator c†f by its average value. Introduce a Lagrange
multiplier λ to enforce the occupation constraint on the impurity site and assume that λ is
constant. Show that, apart from a constant, the Hamiltonian (8) assumes the form

HMF =
∑
kα

εkc
†
kαckα −

∑
α

(
b f†αcα + b† fαc

†
α

)
+ λ

(∑
α

f†αfα − 1

)
, (10)

with

b =
J

2

∑
σ

〈c†σfσ〉. (11)

Notice that b is in general a complex number.
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(c) The Hamiltonian (10) is bilinear in fermion operators and is thus solvable. It is useful to
introduce a propagator Gα,f (τ) for the f fermions and a mixed propagator Gα,fc(τ), i.e.,

Gα,f (τ) = −〈Tτfα(τ)f†α(0)〉 and Gα,fc(τ) = −〈Tτfα(τ)c†α(0)〉.

Show that

Gf (iωn) ≡ Gα,f (iωn) =
1

iωn − λ− |b|2G0(iωn)
, (12)

Gfc(iωn) ≡ Gα,fc(iωn) = −bGf (iωn)G0(iωn), (13)

where G0(iωn) ≡ G0(r = 0, iωn) =
∑
k(iωn − εk)−1 is the local Green’s function for the

conduction electrons.
Hint: Recall the discussion about the noninteracting Anderson model.

(d) From now on, let us assume that b is real. The assumption made in item (b), that λ is
constant, implies that the constraint

∑
α f
†
αfα = 1 is fulfilled only on average, i.e.,∑

α

〈f†αfα〉 = 1. (14)

Rewrite Eqs. (11) and (14) in terms of the Green’s functions (12) and (13). Notice that the
two derived equations together with Eq. (12) form a set of self-consistent equations. Once
the density of states of the conduction electrons ρ0(ω) and J are known, the equations can
be solved for a fixed temperature.

(e) Use the results of item (d), convert the Matsubara sums into integrals over real frequencies,
and show that Eq. (11) can be written as

1

J
= −

∫ ∞
−∞

dω nFD(ω)
ρ0(ω)

ω − λ

∣∣∣∣1− b2G0(ω + iη)

ω − λ

∣∣∣∣−2

, (15)

for small b 6= 0 and

1

J
= −

∫ ∞
−∞

dω nFD(ω)

(
ρ0(ω)

ω − λ
+ ReG0(ω + iη)δ(ω − λ)

)
, (16)

for b → 0. Here the spectral density (density of states) ρ0(ω) = −ImG0(ω + iη)/π and
nFD(x) = 1/[exp(βx) + 1] is the Fermi function.
Hint: The identity (1/βh̄)

∑
iωn

G(iωn) =
∫
dωρ(ω)nf (ω), where ρ(ω) is the spectral

density related to G(ω + iη), might be useful.

(f) Assume that ρ0(ω) = ρ0 is constant for −D < ω < D, where D is the bandwidth of the
conduction electrons, and discuss the solutions of the mean field equations. Show that it
is possible to derive the correct (one-loop) expression for the Kondo temperature TK from
these equations.
Obs.: The slave-boson approximation introduces an artificial phase transition at TK .
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08. P.x.x, Cologne: Fermionic Green’s function for a chain.
Consider a one-dimensional fermionic system described by the Hamiltonian

H = H0 + V =

N∑
i=1

[
t(c†i ci+1 + c†i+1ci)− µc

†
i ci

]
+

N∑
i=1

∆
(
cici+1 + c†i+1c

†
i

)
, (17)

where c†i (ci) creates (annihilates) an electron at site i of the chain, t is the nearest-neighbor
hopping energy, and µ and ∆ are constants.

(a) Calculate the Green’s function G0(q, iωn) for the noninteracting system.
Hint: Perform a Fourier transform.

(b) Calculate now the Green’s function for the interacting system with the help of Dyson’s equa-
tion. Why does the self-energy only involve even powers of V ?

09. P.7.1, Cologne: Specific heat of a d-wave BCS superconductor.
The electronic specific heat of a superconductor is given by

CS = T
∂S

∂T
=
∑
kσ

Ek
∂fK
∂T

. (18)

Here fk = 1/(exp(Ek/T ) + 1) is the Fermi-Dirac distribution function and the second equality
follows from the fact that the entropy for a Fermi gas can be written as

S = −
∑
kσ

[(1− fk) ln(1− fk) + fk ln fk] .

Let us consider a d-wave BCS theory in a 2D square lattice. In this case, the energy of the
elementary excitations are given by Ek =

√
ξ2
k + ∆2

k, with ξk = −2t(cos kx + cos ky) − µ and
∆k = 2∆0(cos kx − cos ky). Show that Eq.(18) can be written as

CS ∼
∫ ∞
−∞

dξ

∫
dθ

2π

√
ξ2 + ∆2

k

∂

∂T

(
1

exp(
√
ξ2 + ∆2

k) + 1

)
(19)

and that for the d-wave case CS ∼ T 2 in the limit T → 0.
Hint: The important contributions come from the gapless region at the nodal points.
Obs. 1: Notice that, in the derivation of the second equality in Eq. (18), we neglected the fact
that ∆ = ∆(T ). This procedure is justified in the limit of very low-T because in this case the
T -dependence of the gap provides subleading corrections to the specific heat. Recall that in the
BCS theory ∆(T )−∆(T = 0) ∼ T 2

Obs. 2: Recall that for the s-wave case, CS ∼ (Tc/T )5/2e−∆(T=0)/T .
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