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P.01. Matsubara frequency summation.

(a) Show that
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where v,, = 2mn/Bh, GO (p,iw,) = (iw, —&p/h) ! is the Matsubara Green's function for
free fermions, D) (p,iwy) is the Matsubara Green's function for free phonons, hwq is the
phonon energy, n(x) is the Bose-Einstein function, and f(x) is the Fermi-Dirac function.

(b) Express the Matsubara Green's functions for fermions G(p, iw,,) and for phonons D(q, iv,,)
in terms of the respectives spectral functions, i.e,
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and determine the Matsubara frequency summation
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P.02. P.5.2, Miranda: Electron-phonon interaction.
Consider a system of free fermions interacting with the (bosonic) lattice vibrations (phonons).
The Hamiltonian of the system is given by

H:H€+th+He—ph, (1)
where
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Here cfw (¢, ) creates (annihilates) an electron with momentum k and spin o, ail and a, are
boson operators associated with acoustic phonons, wp = ¢qg < EF is the Debye frequency with
Er = h2k%/2m being the Fermi energy and go being a momentum cutoff, and p is the chemical
potential for the electrons (recall that, for phonons, = 0 since they are not conserved). Let us

assume that the electron-phonon coupling My = g./q, with g being a constant.

(a) The Matsubara Green's function for phonons is defined as
D(a,7) = = (T; | (a—a(r) + a}y(7)) (aa(0) + 0l )] ).

Determine the Matsubara Green's function D(9)(q,v,,) for the system of free phonons.
Notice that D) (q, v,) x 0(qo — q).

(b) Determine the self-energy P (k,wy,) for the electrons in second-order perturbation theory,
i.e., up to order g2.

(c) Performe an analytic continuation on Z,(f)(k, wy,) and show that the advanced self-energy
for the electrons is given by

ZA(k,w)z/(dsp A {H”(“’p)_f(fk—phr n(wp) + f(éx—p) -
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where A\, = |My|?0(qo — p) and n(z) and f(x) are the Bose-Einstein and Fermi-Dirac
distribution functions, respectively.



(d) From now on, consider the T' = 0 limit. Assume that ¢y = kr (since they are of the same
order) and show that
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where vp = kp/m > c. Condition (6) indicates that the dependence of the self-energy
with momentum can be neglected.

Hint: Use the fact that (k — p)? = k% + p? — 2kppu, where i = cos .

(e) From

d
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determine the renormalized Fermi velocity and the quasiparticule residue Z due to the
electron-phonon interaction. See Sec. 15.4, Bruus for details.

(f) Determine the quasiparticle decay rate Im [ZS,ZA)(kF, w)} as a function of the frequency for

0 < w < wp. Show that it obeys the condition Im [E((TQA)(kEw)} < w when w — 0 (recall
Fermi liquid theory).

(g) Consider the so-called Migdal function
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where dSp is a area element of the Fermi surface in the p direction, vp V&g is the Fermi
velocity in the p direction, and the momenta k and p are on the Fermi surface. Show that
(5) is approximately given by
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Consider the T' = 0 limit and show that
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Hint: For the integral over &, assume that —D < £ < D, where w, v < D.



(h) Since dSp = k%dS2p and vp = v, show that
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where pp = mk%/(2m?) is the electron density (per spin) on the Fermi surface. Rederive
the results of itens (e) and (f) from Eq. (7).

(i) Consider the self-energy (5) at finite temperatures and the Migdal function (7). Determine
Im [£4(kp,0)] as a function of temperature for T < wp.

03. P.7.3, Fetter and Walecka:
Assuming a uniform system of spin-1/2 fermions at temperature T', and using the Feynman rules
in momentum space:

(a) Write out the second-order contributions to the proper self-energy in the case of a spin-
independent interaction;

(b) Evaluate the frequency sums.

04. P.7.4, Fetter and Walecka: Free fermions on a external potential.
Consider a system of noninteracting particles in an external static potential with a Hamiltonian

Her = / 1] Vs (1) (x).

(a) Use Wick's theorem to evaluate the temperature Green's to second order in H**. Hence,

deduce the Feynman rules for G5% (r 7,1 7') to all orders.

(b) Define the Fourier transform

er /1 1 dSkdsq ikr —iqr’  —iwn(T—7") pex
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Find ijé(k, q;wy,) to second order, and hence obtain the corresponding Feynman rules in
momentum space.

(c) Show that Dyson's equation becomes
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(d) Express the internal energy and thermodynamic potential in a form analogous to Egs. (23.15)
and (23.22) from Fetter and Walecka.



05. P.7.5, Fetter and Walecka: Spin—1/2 fermions under a magnetic field.

Apply the theory of Prob. 7.4, Fetter and Walecka, to a system of spin-1/2 fermions in a uniform

magnetic field, where Vo3 = —puoH - 043.

(a) Express the magnetization M (magnetic moment per unit volume) in terms of G°* and G*

respectively for T'=0 and 7" > 0.

(b) Solve Dyson's equation in each case and find M; hence obtain the following limits

3 2
Xp = g "0 asT — 0 Pauli paramagnetism,
€Er
pgn
= as T — oo Curie's law,
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where n is the particle density.

(c) Why does the zero-temperature formalism give the wrong answer?

06. P.2.2, Mahan: Electron-phonon interaction.

For the phonon Green's fumction D(q,t — t'), let V(¢) be the electron-phonon interaction and
evaluate all the n = 2 diagrams. Which are connected, and which are disconnected? Draw the

Feynman graphs for each term.



P.07. P.x.x, Cologne: Slave-boson approximation for the Kondo model.

The idea of this problem is to study the Kondo model within the so-called slave-boson approxi-
mation.

Let us consider the Kondo model

H:ﬁ0+ﬁ1:Z€kCLaCka+JS'SQ, (8)
ka

where ¢f (¢, .,) creates (annihilates) a conduction electron with momentum k and spin @ =, |,

ex is the fermion dispersion, .J is the Kondo coupling, S is the impurity spin-1/2 operator, and
So is the conduction electron spin operator at the impurity site, i.e.,
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with 7 = (04, 0y,0.) being the vector of Pauli matrices.

(a) It is convenient to write the impurity spin operator S in terms of auxiliary fermion operators
fo (the so-called Abrikosov fermions), i.e., S=1/2%" fi#0f, - In order to preserve the
size of the Hilbert space, we need a constraint, Za fj;f(y = 1. Show that, apart from a
constant, H; assumes the form

H,

J
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where ¢, = co(r =0) = >, ¢, is the conduction electron operator at the impurity site.

(b) Consider the four-fermion term (J/2)fTccl f within a Hartree-Fock (mean field) approxi-
mation by replacing the bosonic operator c!f by its average value. Introduce a Lagrange
multiplier A to enforce the occupation constraint on the impurity site and assume that \ is
constant. Show that, apart from a constant, the Hamiltonian (8) assumes the form

S SRS » (TR O REY D07 ) P
ko o «@

with

b= 23 ek f). ()

o

Notice that b is in general a complex number.
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The Hamiltonian (10) is bilinear in fermion operators and is thus solvable. It is useful to
introduce a propagator G, ¢(7) for the f fermions and a mixed propagator G f.(7), i.e.,

Gop(1) = —(Tr fo (1) fL(0)) and  Ga fe(r) = —(T7 fo(7)c(0)).

Show that

_ _ L 1
Gyiwn) = Go,ypliv,) = T = A = PG (i)’ (12)
Greliw,) = Ga peliwn) = —b Gy (iw,)GO(iwy), (13)

where G%(iw,) = G°(r = 0,iw,) = >_; (iw, — k) ™! is the local Green's function for the
conduction electrons.
Hint: Recall the discussion about the noninteracting Anderson model.

From now on, let us assume that b is real. The assumption made in item (b), that X is
constant, implies that the constraint ) flf., = 1is fulfilled only on average, i.e.,

Sty =1 (14)
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Rewrite Eqgs. (11) and (14) in terms of the Green's functions (12) and (13). Notice that the
two derived equations together with Eq. (12) form a set of self-consistent equations. Once
the density of states of the conduction electrons pg(w) and J are known, the equations can
be solved for a fixed temperature.

Use the results of item (d), convert the Matsubara sums into integrals over real frequencies,
and show that Eq. (11) can be written as

1> pow) |, B*GO(w+in) |
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for b — 0. Here the spectral density (density of states) po(w) = —ImG°(w + in)/7 and

npp(x) = 1/[exp(Bx) + 1] is the Fermi function.
Hint: The identity (1/8h)3,, G(iw,) = [dwp(w)ns(w), where p(w) is the spectral
density related to G(w + in), might be useful.

Assume that po(w) = po is constant for —D < w < D, where D is the bandwidth of the
conduction electrons, and discuss the solutions of the mean field equations. Show that it
is possible to derive the correct (one-loop) expression for the Kondo temperature Tk from
these equations.

Obs.: The slave-boson approximation introduces an artificial phase transition at Tk .



08. P.x.x, Cologne: Fermionic Green's function for a chain.
Consider a one-dimensional fermionic system described by the Hamiltonian

N
H=Hy+V = Z [ el 5 Cir1 + cTch) uc}cz} + ZA (ciciﬂ + c;rHc;r) , (17)
i=1 i=1

where ¢! (¢;) creates (annihilates) an electron at site i of the chain, ¢ is the nearest-neighbor
hopping energy, and 1 and A are constants.

(a) Calculate the Green's function Gy(q,iw,,) for the noninteracting system.
Hint: Perform a Fourier transform.

(b) Calculate now the Green's function for the interacting system with the help of Dyson's equa-
tion. Why does the self-energy only involve even powers of V7

09. P.7.1, Cologne: Specific heat of a d-wave BCS superconductor.
The electronic specific heat of a superconductor is given by

CS_T— ZE afK (18)

Here fx = 1/(exp(Ex/T) + 1) is the Fermi-Dirac distribution function and the second equality
follows from the fact that the entropy for a Fermi gas can be written as

S = *Z[(l — fi)In(1 — fi) + ficln fi].
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Let us consider a d-wave BCS theory in a 2D square lattice. In this case, the energy of the
elementary excitations are given by Eyx = /& + AZ, with & = —2t(cos ky, + cosky) — p and
Ay = 2A¢(cos kg — cosky). Show that Eq.(18) can be written as
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and that for the d-wave case Cg ~ T2 in the limit T — 0.

Hint: The important contributions come from the gapless region at the nodal points.

Obs. 1: Notice that, in the derivation of the second equality in Eq. (18), we neglected the fact
that A = A(T). This procedure is justified in the limit of very low-T" because in this case the
T-dependence of the gap provides subleading corrections to the specific heat. Recall that in the
BCS theory A(T) — A(T = 0) ~ T?

Obs. 2: Recall that for the s-wave case, C's ~ (T,./T)%/2e=2(T=0)/T




