F 415 - Mecânica Geral II - Lista 2

Center of mass and conservation theorems:

01. P.9.3, Marion

Find the center of mass of a uniformly solid cone of base diameter $2 a$ and height h and a solid hemisphere of radius a where the two bases are touching.

02. P.9.4, Marion:

Find the center of mass of a uniform wire that subtends an arc θ if the radius of the circular arc is a, as shown in Figure 9-A.

03. P.9.5, Marion:

The center of gravity of a system of particles is the point about which external gravitational forces exert no net torque. For a uniform gravitational force, show that the center of gravity is identical to the center of mass for the system of particles.

04. P.9.9, Marion:

A projectile is fired at an angle of 45° with initial kinetic energy E_{0}. At the top of its trajectory, the projectile explodes with additional energy E_{0}, into two fragments. One fragment of mass m_{1} travels straight down. What is the velocity (magnitude and direction) of the second fragment of mass m_{2} and the velocity of the first? What is the ratio of m_{1} / m_{2} when m_{1} is a maximum?
P.05. P.9.13 and P.9.26, Marion:
a) Even though the total force on a system of particles (Equation 9.9) is zero, the net torque may not be zero. Show that the net torque has the same value in any coordinate system.
b) The force of attraction between two particles is given by

$$
\mathbf{f}_{12}=k\left(\mathbf{r}_{2}-\mathbf{r}_{1}\right)-\frac{k r}{v_{0}}\left(\dot{\mathbf{r}}_{2}-\dot{\mathbf{r}}_{1}\right)
$$

where k is a constant, v_{0} is a constant velocity, and $r=\left|\mathbf{r}_{2}-\mathbf{r}_{1}\right|$. Calculate the internal torque for the system; why does this quantity not vanish? Is the system conservative?

Elastic and inelastic collisions:

06. P.9.23, Marion:

A particle of mass m_{1} and velocity u_{1} collides with a particle of mass m_{2} at rest. The two particles stick together. What fraction of the original kinetic energy is lost in the collision?

07. P.9.28, Marion and P.4.15, Symon:

A particle of mass m_{1} elastically collides with a particle of mass m_{2} at rest. What is the maximum fraction of kinetic energy loss for m_{1} ? Describe the reaction.
P.08. P.9.32, Marion:

A particle of mass m and velocity u_{1} makes a head-on collision with another particle of mass $2 m$ at rest. If the coefficient of restitution is such to make the loss of total kinetic energy a maximum, what are the velocities v_{1} and v_{2} after the collision?

09. P.9.34, Marion:

A billiard ball of initial velocity u_{1} collides with another billiard ball (same mass) initially at rest. The first ball moves off at $\psi=45^{\circ}$. For an elastic collision, what are the velocities of both balls after the collision? At what LAB angle does the second ball emerge?

10. P.9.36, Marion:

In an elastic collision of two particles with masses m_{1} and m_{2}, the initial velocities are u_{1} and $u_{2}=\alpha u_{1}$. If the initial kinetic energies of the two particles are equal, find the conditions on u_{1} / u_{2} and m_{1} / m_{2} such that m_{1} is at rest after the collision. Examine both cases for the sign of α.
P.11. P.9.40, Marion:

A particle of mass m_{1} and velocity u_{1} strikes head-on a particle of mass m_{2} at rest. The coefficient of restitution is ϵ. Particle m_{2} is tied to a point a distance a away as shown in Figure $9-\mathrm{H}$. Find the velocity (magnitude and direction) of m_{1} and m_{2} after the collision.

12. P.9.41, Marion:

A rubber ball is dropped from rest onto a linoleum floor a distance h_{1} away. The rubber ball bounces up to a height h_{2}. What is the coefficient of restitution? What fraction of the original kinetic energy is lost in terms of ϵ ?

13. P.9.43, Marion:

A proton (mass m) of kinetic energy T_{0} collides with a helium nucleus (mass $4 m$) at rest. Find the recoil angle of the helium if $\psi=45^{\circ}$ and the inelastic collision has $Q=-T_{0} / 6$.
P.14. P.4.16, Symon:

A cloud-chamber picture shows the track of an incident particle which makes a collision and is scattered through an angle ψ_{1}. The track of the target particle makes an angle ψ_{2} with the direction of the incident particle. Assuming that the collision was elastic and that the target particle was initially at rest, find the ratio m_{1} / m_{2} of the two masses. (Assume small velocities so that the classical expressions for energy and momentum may be used.)

15. P.4.17, Symon:

A proton of mass m_{1} collides elastically with an unknown nucleus in a bubble chamber and is scattered through an angle ψ_{1}. The ratio $P_{1 f} / P_{1 i}$ is determined from the curvature of its initial and final tracks. Find the mass m_{2} of the target nucleus. How might it be possible to determine whether the collision was indeed elastic?
16. P.4.21, Symon:

A particle of mass m_{1}, momentum $p_{1 i}$ collides elastically with a particle of mass m_{2}, momentum $p_{2 i}$ going in the opposite direction. If m_{1} leaves the collision at an angle ψ_{1} with its original course, find its final momentum.
P.17. P.4.25, Symon:

A billiard ball sliding on a frictionless table strikes an identical stationary ball. The balls leave the collision at angles $\pm \psi$ with the original direction of motion. Show that after the collision the balls must have a rotational energy equal to $1-0.5 \cos ^{-2} \psi$ of the initial kinetic energy, assuming that no energy is dissipated in friction.

Central force: scattering:
P.18. P.9.46, Marion:

With the aid of Eq. (9.123), calculate the differential cross section $\sigma(\theta)$ and the total cross section σ_{t}, for the elastic scattering of a particle from an impenetrable sphere; the potential is given by

$$
U(r)= \begin{cases}0, & r>a \\ \infty, & r<a\end{cases}
$$

19. P.9.49, Marion:

Consider the case of Rutherford scattering in the event that $m_{1} \ll m_{2}$. Obtain an expression of the differential cross section in the CM system that is correct to first order in the quantity m_{1} / m_{2}. Compare this result with Eq. (9.140).
P.20. P.3.71, Symon and P.9.50, Marion:

Show that for a repulsive central force

$$
F(r)=\frac{k}{r^{3}}, \quad k>0
$$

the possible orbits have the form discuss in problem P.3.50, Symon. Determine β in terms of k, the energy E, angular momentum l, and the mass m of the incident particle. Show that the differential cross-section $\sigma(\theta)$ is given by

$$
\sigma(\theta)=\frac{k \pi^{2}(\pi-\theta)}{m u_{0}^{2} \theta^{2}(2 \pi-\theta)^{2} \sin \theta}
$$

where u_{0} is the initial velocity of the particle.

21. P.9.51, Marion:.

It is found experimentally that in the elastic scattering of neutrons by protons ($m_{n} \approx m_{p}$) at relatively low energies, the energy distribution of the recoiling protons in the LAB system is constant up to a maximum energy, which is the energy of the incident neutrons. What is the angular distribution of the scattering in the CM system?
Hint: Energy distribution $=d N / d T_{i}$.

22. P.3.34, Goldstein:

Consider a truncated repulsive Coulomb potemial defined as

$$
U(r)= \begin{cases}k / a, & r \leq a \\ k / r, & r>a\end{cases}
$$

For a particle of total energy $E>k / a$, obtain expressions for the scattering angle θ as a function of s / s_{0}, where s_{0} is the impact parameter for which the periapsis occurs at the point $r=a$. (The formulas can be given in closed form bm they are not simple!) Make a numerical plot of θ versus s / s_{0}
for the special case $E=2 k / a$. What can you deduce about the angular scattering cross section from the dependence of θ on s / s_{0} for this particular case?
23. Calculate the differential cross-section $\sigma(\theta)$ and the total cross-section σ_{t} for the elastic scattering of a particle from the repulsive potential ("soft-sphere")

$$
U(r)=\left\{\begin{array}{cc}
U_{0}, & r<a \\
0, & r>a
\end{array} \quad U_{0}>0\right.
$$

Consider the cases $E<U_{0}$ and $E>U_{0}$.
24. P.1.16 Fetter and Walecka:

A uniform beam of particles with energy E is scattered by a repulsive central potential $V(r)=\gamma / r^{2}$. Derive the differential elastic cross section

$$
\frac{d \sigma}{d \Omega}=\frac{\gamma \pi^{2}}{E \sin \theta} \frac{\pi-\theta}{\theta^{2}(2 \pi-\theta)^{2}}
$$

Sketch carefully the angular dependence. Discuss the total cross section. What happens if the potential is attractive, that is, $\gamma<0$?

P.25. P.1.18 Fetter and Walecka:

A particle with large impact parameter b is slightly deflected from a uniform trajectory by a central potential $V(r)$.
a) In the impulse approximation, the (small) integrated deflecting force is evaluated along the original straight-line trajectory. Use this approximation to derive the expression

$$
\theta \approx \frac{2 b}{m v_{\infty}^{2}}\left|\int_{b}^{\infty} \frac{d r}{\sqrt{r^{2}-b^{2}}} \frac{d V}{d r}\right|
$$

for the (small) deflection angle.
b) If $V(r)=\gamma / r^{n}$ with positive n and γ, find the differential cross section for small-angle scattering and discuss its behavior as $\theta \rightarrow 0$. Show that the answer reproduces the known results for $n=1$ (Sec. 5) and 2 (Prob. 1.16). Is σ_{T} defined for any n ?
c) If $V(r)=\gamma \exp (-\lambda r)$, show that b varies approximately like $(1 / \lambda) \ln (1 / \theta)$. Hence obtain the approximate form of the differential cross section. Is σ_{T} well defined?
d) In quantum mechanics, the small-angle part of σ_{T} is finite whenever $r^{2} V(r) \rightarrow 0$ as $r \rightarrow 0$. Discuss briefly why the classical behavior is different.

