
F 415 – Mecânica Geral II – Lista 2

Center of mass and conservation theorems:

01. P.9.3, Marion:
Find the center of mass of a uniformly solid cone of base diameter 2a and height h and a solid hemisphere
of radius a where the two bases are touching.

02. P.9.4, Marion:
Find the center of mass of a uniform wire that subtends an arc θ if the radius of the circular arc is a,
as shown in Figure 9-A.

03. P.9.5, Marion:
The center of gravity of a system of particles is the point about which external gravitational forces
exert no net torque. For a uniform gravitational force, show that the center of gravity is identical to
the center of mass for the system of particles.

04. P.9.9, Marion:
A projectile is fired at an angle of 45◦ with initial kinetic energy E0. At the top of its trajectory, the
projectile explodes with additional energy E0, into two fragments. One fragment of mass m1 travels
straight down. What is the velocity (magnitude and direction) of the second fragment of mass m2 and
the velocity of the first? What is the ratio of m1/m2 when m1 is a maximum?

P.05. P.9.13 and P.9.26, Marion:

a) Even though the total force on a system of particles (Equation 9.9) is zero, the net torque may
not be zero. Show that the net torque has the same value in any coordinate system.

b) The force of attraction between two particles is given by

f12 = k (r2 − r1)− kr

v0
(ṙ2 − ṙ1)

where k is a constant, v0 is a constant velocity, and r = |r2 − r1|. Calculate the internal torque
for the system; why does this quantity not vanish? Is the system conservative?
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Elastic and inelastic collisions:

06. P.9.23, Marion:
A particle of mass m1 and velocity u1 collides with a particle of mass m2 at rest. The two particles
stick together. What fraction of the original kinetic energy is lost in the collision?

07. P.9.28, Marion and P.4.15, Symon:
A particle of mass m1 elastically collides with a particle of mass m2 at rest. What is the maximum
fraction of kinetic energy loss for m1? Describe the reaction.

P.08. P.9.32, Marion:
A particle of mass m and velocity u1 makes a head-on collision with another particle of mass 2m at
rest. If the coefficient of restitution is such to make the loss of total kinetic energy a maximum, what
are the velocities v1 and v2 after the collision?

09. P.9.34, Marion:
A billiard ball of initial velocity u1 collides with another billiard ball (same mass) initially at rest. The
first ball moves off at ψ = 45◦. For an elastic collision, what are the velocities of both balls after the
collision? At what LAB angle does the second ball emerge?

10. P.9.36, Marion:
In an elastic collision of two particles with masses m1 and m2, the initial velocities are u1 and u2 = αu1.
If the initial kinetic energies of the two particles are equal, find the conditions on u1/u2 and m1/m2

such that m1 is at rest after the collision. Examine both cases for the sign of α.

P.11. P.9.40, Marion:
A particle of mass m1 and velocity u1 strikes head-on a particle of mass m2 at rest. The coefficient
of restitution is ε. Particle m2 is tied to a point a distance a away as shown in Figure 9-H. Find the
velocity (magnitude and direction) of m1 and m2 after the collision.

12. P.9.41, Marion:
A rubber ball is dropped from rest onto a linoleum floor a distance h1 away. The rubber ball bounces
up to a height h2. What is the coefficient of restitution? What fraction of the original kinetic energy
is lost in terms of ε?

13. P.9.43, Marion:
A proton (mass m) of kinetic energy T0 collides with a helium nucleus (mass 4m) at rest. Find the
recoil angle of the helium if ψ = 45◦ and the inelastic collision has Q = −T0/6.
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P.14. P.4.16, Symon:
A cloud-chamber picture shows the track of an incident particle which makes a collision and is scattered
through an angle ψ1. The track of the target particle makes an angle ψ2 with the direction of the incident
particle. Assuming that the collision was elastic and that the target particle was initially at rest, find the
ratio m1/m2 of the two masses. (Assume small velocities so that the classical expressions for energy
and momentum may be used.)

15. P.4.17, Symon:
A proton of mass m1 collides elastically with an unknown nucleus in a bubble chamber and is scattered
through an angle ψ1. The ratio P1f/P1i is determined from the curvature of its initial and final tracks.
Find the mass m2 of the target nucleus. How might it be possible to determine whether the collision
was indeed elastic?

16. P.4.21, Symon:
A particle of mass m1, momentum p1i collides elastically with a particle of mass m2, momentum p2i
going in the opposite direction. If m1 leaves the collision at an angle ψ1 with its original course, find
its final momentum.

P.17. P.4.25, Symon:
A billiard ball sliding on a frictionless table strikes an identical stationary ball. The balls leave the
collision at angles ±ψ with the original direction of motion. Show that after the collision the balls must
have a rotational energy equal to 1− 0.5 cos−2 ψ of the initial kinetic energy, assuming that no energy
is dissipated in friction.
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Central force: scattering:

P.18. P.9.46, Marion:
With the aid of Eq. (9.123), calculate the differential cross section σ(θ) and the total cross section σt,
for the elastic scattering of a particle from an impenetrable sphere; the potential is given by

U(r) =

{
0, r > a
∞, r < a.

19. P.9.49, Marion:
Consider the case of Rutherford scattering in the event that m1 � m2. Obtain an expression of the
differential cross section in the CM system that is correct to first order in the quantity m1/m2. Compare
this result with Eq. (9.140).

P.20. P.3.71, Symon and P.9.50, Marion:
Show that for a repulsive central force

F (r) =
k

r3
, k > 0,

the possible orbits have the form discuss in problem P.3.50, Symon. Determine β in terms of k, the
energy E, angular momentum l, and the mass m of the incident particle. Show that the differential
cross–section σ(θ) is given by

σ(θ) =
kπ2(π − θ)

mu20θ
2(2π − θ)2 sin θ

,

where u0 is the initial velocity of the particle.

21. P.9.51, Marion:.
It is found experimentally that in the elastic scattering of neutrons by protons (mn ≈ mp) at relatively
low energies, the energy distribution of the recoiling protons in the LAB system is constant up to a
maximum energy, which is the energy of the incident neutrons. What is the angular distribution of the
scattering in the CM system?
Hint: Energy distribution = dN/dTi.

22. P.3.34, Goldstein:
Consider a truncated repulsive Coulomb potemial defined as

U(r) =

{
k/a, r ≤ a
k/r, r > a.

For a particle of total energy E > k/a, obtain expressions for the scattering angle θ as a function
of s/s0, where s0 is the impact parameter for which the periapsis occurs at the point r = a. (The
formulas can be given in closed form bm they are not simple!) Make a numerical plot of θ versus s/s0
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for the special case E = 2k/a. What can you deduce about the angular scattering cross section from
the dependence of θ on s/s0 for this particular case?

23. Calculate the differential cross–section σ(θ) and the total cross–section σt for the elastic scattering
of a particle from the repulsive potential (“soft–sphere”)

U(r) =

{
U0, r < a
0, r > a

U0 > 0.

Consider the cases E < U0 and E > U0.

24. P.1.16 Fetter and Walecka:
A uniform beam of particles with energy E is scattered by a repulsive central potential V (r) = γ/r2.
Derive the differential elastic cross section

dσ

dΩ
=

γπ2

E sin θ

π − θ
θ2 (2π − θ)2

.

Sketch carefully the angular dependence. Discuss the total cross section. What happens if the potential
is attractive, that is, γ < 0?

P.25. P.1.18 Fetter and Walecka:
A particle with large impact parameter b is slightly deflected from a uniform trajectory by a central
potential V (r).

a) In the impulse approximation, the (small) integrated deflecting force is evaluated along the original
straight-line trajectory. Use this approximation to derive the expression

θ ≈ 2b

mv2∞

∣∣∣∣∫ ∞
b

dr√
r2 − b2

dV

dr

∣∣∣∣
for the (small) deflection angle.

b) If V (r) = γ/rn with positive n and γ, find the differential cross section for small-angle scattering
and discuss its behavior as θ → 0. Show that the answer reproduces the known results for n = 1
(Sec. 5) and 2 (Prob. 1.16). Is σT defined for any n?

c) If V (r) = γ exp(−λr), show that b varies approximately like (1/λ) ln(1/θ). Hence obtain the
approximate form of the differential cross section. Is σT well defined?

d) In quantum mechanics, the small-angle part of σT is finite whenever r2V (r) → 0 as r → 0.
Discuss briefly why the classical behavior is different.
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