F 415 – Mecânica Geral II – Lista 2

Center of mass and conservation theorems:

01. P.9.3, Marion:

Find the center of mass of a uniformly solid cone of base diameter 2a and height h and a solid hemisphere of radius a where the two bases are touching.

02. P.9.4, Marion:

Find the center of mass of a uniform wire that subtends an arc θ if the radius of the circular arc is a, as shown in Figure 9-A.

03. P.9.5, Marion:

The center of gravity of a system of particles is the point about which external gravitational forces exert no net torque. For a uniform gravitational force, show that the center of gravity is identical to the center of mass for the system of particles.

04. P.9.9, Marion:

A projectile is fired at an angle of 45° with initial kinetic energy E_0 . At the top of its trajectory, the projectile explodes with additional energy E_0 , into two fragments. One fragment of mass m_1 travels straight down. What is the velocity (magnitude and direction) of the second fragment of mass m_2 and the velocity of the first? What is the ratio of m_1/m_2 when m_1 is a maximum?

P.05. P.9.13 and P.9.26, Marion:

- a) Even though the total force on a system of particles (Equation 9.9) is zero, the net torque may not be zero. Show that the net torque has the same value in any coordinate system.
- b) The force of attraction between two particles is given by

$$\mathbf{f}_{12} = k \left(\mathbf{r}_2 - \mathbf{r}_1 \right) - \frac{kr}{v_0} \left(\dot{\mathbf{r}}_2 - \dot{\mathbf{r}}_1 \right)$$

where k is a constant, v_0 is a constant velocity, and $r = |\mathbf{r}_2 - \mathbf{r}_1|$. Calculate the internal torque for the system; why does this quantity not vanish? Is the system conservative?

Elastic and inelastic collisions:

06. P.9.23, Marion:

A particle of mass m_1 and velocity u_1 collides with a particle of mass m_2 at rest. The two particles stick together. What fraction of the original kinetic energy is lost in the collision?

07. P.9.28, Marion and P.4.15, Symon:

A particle of mass m_1 elastically collides with a particle of mass m_2 at rest. What is the maximum fraction of kinetic energy loss for m_1 ? Describe the reaction.

P.08. P.9.32, Marion:

A particle of mass m and velocity u_1 makes a head-on collision with another particle of mass 2m at rest. If the coefficient of restitution is such to make the loss of total kinetic energy a maximum, what are the velocities v_1 and v_2 after the collision?

09. P.9.34, Marion:

A billiard ball of initial velocity u_1 collides with another billiard ball (same mass) initially at rest. The first ball moves off at $\psi = 45^{\circ}$. For an elastic collision, what are the velocities of both balls after the collision? At what LAB angle does the second ball emerge?

10. P.9.36, Marion:

In an elastic collision of two particles with masses m_1 and m_2 , the initial velocities are u_1 and $u_2 = \alpha u_1$. If the initial kinetic energies of the two particles are equal, find the conditions on u_1/u_2 and m_1/m_2 such that m_1 is at rest after the collision. Examine both cases for the sign of α .

P.11. P.9.40, Marion:

A particle of mass m_1 and velocity u_1 strikes head-on a particle of mass m_2 at rest. The coefficient of restitution is ϵ . Particle m_2 is tied to a point a distance a away as shown in Figure 9-H. Find the velocity (magnitude and direction) of m_1 and m_2 after the collision.

12. P.9.41, Marion:

A rubber ball is dropped from rest onto a linoleum floor a distance h_1 away. The rubber ball bounces up to a height h_2 . What is the coefficient of restitution? What fraction of the original kinetic energy is lost in terms of ϵ ?

13. P.9.43, Marion:

A proton (mass m) of kinetic energy T_0 collides with a helium nucleus (mass 4m) at rest. Find the recoil angle of the helium if $\psi = 45^{\circ}$ and the inelastic collision has $Q = -T_0/6$.

P.14. P.4.16, Symon:

A cloud-chamber picture shows the track of an incident particle which makes a collision and is scattered through an angle ψ_1 . The track of the target particle makes an angle ψ_2 with the direction of the incident particle. Assuming that the collision was elastic and that the target particle was initially at rest, find the ratio m_1/m_2 of the two masses. (Assume small velocities so that the classical expressions for energy and momentum may be used.)

15. P.4.17, Symon:

A proton of mass m_1 collides elastically with an unknown nucleus in a bubble chamber and is scattered through an angle ψ_1 . The ratio P_{1f}/P_{1i} is determined from the curvature of its initial and final tracks. Find the mass m_2 of the target nucleus. How might it be possible to determine whether the collision was indeed elastic?

16. P.4.21, Symon:

A particle of mass m_1 , momentum p_{1i} collides elastically with a particle of mass m_2 , momentum p_{2i} going in the opposite direction. If m_1 leaves the collision at an angle ψ_1 with its original course, find its final momentum.

P.17. P.4.25, Symon:

A billiard ball sliding on a frictionless table strikes an identical stationary ball. The balls leave the collision at angles $\pm \psi$ with the original direction of motion. Show that after the collision the balls must have a rotational energy equal to $1 - 0.5 \cos^{-2} \psi$ of the initial kinetic energy, assuming that no energy is dissipated in friction.

Central force: scattering:

P.18. P.9.46, Marion:

With the aid of Eq. (9.123), calculate the differential cross section $\sigma(\theta)$ and the total cross section σ_t , for the elastic scattering of a particle from an impenetrable sphere; the potential is given by

$$U(r) = \begin{cases} 0, & r > a \\ \infty, & r < a \end{cases}$$

19. P.9.49, Marion:

Consider the case of Rutherford scattering in the event that $m_1 \ll m_2$. Obtain an expression of the differential cross section in the CM system that is correct to first order in the quantity m_1/m_2 . Compare this result with Eq. (9.140).

P.20. P.3.71, Symon and P.9.50, Marion: Show that for a repulsive central force

$$F(r) = \frac{k}{r^3}, \qquad k > 0,$$

the possible orbits have the form discuss in problem P.3.50, Symon. Determine β in terms of k, the energy E, angular momentum l, and the mass m of the incident particle. Show that the differential cross-section $\sigma(\theta)$ is given by

$$\sigma(\theta) = \frac{k\pi^2(\pi - \theta)}{mu_0^2\theta^2(2\pi - \theta)^2\sin\theta},$$

where u_0 is the initial velocity of the particle.

21. P.9.51, Marion:.

It is found experimentally that in the elastic scattering of neutrons by protons $(m_n \approx m_p)$ at relatively low energies, the energy distribution of the recoiling protons in the LAB system is constant up to a maximum energy, which is the energy of the incident neutrons. What is the angular distribution of the scattering in the CM system?

Hint: Energy distribution $= dN/dT_i$.

22. P.3.34, Goldstein:

Consider a truncated repulsive Coulomb potential defined as

$$U(r) = \begin{cases} k/a, & r \le a \\ k/r, & r > a. \end{cases}$$

For a particle of total energy E > k/a, obtain expressions for the scattering angle θ as a function of s/s_0 , where s_0 is the impact parameter for which the periapsis occurs at the point r = a. (The formulas can be given in closed form bm they are not simple!) Make a numerical plot of θ versus s/s_0

for the special case E = 2k/a. What can you deduce about the angular scattering cross section from the dependence of θ on s/s_0 for this particular case?

23. Calculate the differential cross-section $\sigma(\theta)$ and the total cross-section σ_t for the elastic scattering of a particle from the repulsive potential ("soft-sphere")

$$U(r) = \begin{cases} U_0, & r < a \\ 0, & r > a \end{cases} \qquad U_0 > 0.$$

Consider the cases $E < U_0$ and $E > U_0$.

24. P.1.16 Fetter and Walecka:

A uniform beam of particles with energy E is scattered by a repulsive central potential $V(r) = \gamma/r^2$. Derive the differential elastic cross section

$$\frac{d\sigma}{d\Omega} = \frac{\gamma \pi^2}{E \sin \theta} \frac{\pi - \theta}{\theta^2 \left(2\pi - \theta\right)^2}.$$

Sketch carefully the angular dependence. Discuss the total cross section. What happens if the potential is attractive, that is, $\gamma < 0$?

P.25. P.1.18 Fetter and Walecka:

A particle with large impact parameter b is slightly deflected from a uniform trajectory by a central potential V(r).

a) In the impulse approximation, the (small) integrated deflecting force is evaluated along the original straight-line trajectory. Use this approximation to derive the expression

$$\theta \approx \frac{2b}{mv_{\infty}^2} \left| \int_b^\infty \frac{dr}{\sqrt{r^2 - b^2}} \frac{dV}{dr} \right|$$

for the (small) deflection angle.

- b) If $V(r) = \gamma/r^n$ with positive n and γ , find the differential cross section for small-angle scattering and discuss its behavior as $\theta \to 0$. Show that the answer reproduces the known results for n = 1 (Sec. 5) and 2 (Prob. 1.16). Is σ_T defined for any n?
- c) If $V(r) = \gamma \exp(-\lambda r)$, show that b varies approximately like $(1/\lambda) \ln(1/\theta)$. Hence obtain the approximate form of the differential cross section. Is σ_T well defined?
- d) In quantum mechanics, the small-angle part of σ_T is finite whenever $r^2 V(r) \rightarrow 0$ as $r \rightarrow 0$. Discuss briefly why the classical behavior is different.