
F 415 – Mecânica Geral II – Lista 4

01. P.11.2, Marion:
Calculate the moments of inertia I1, I2, and I3 for a homogeneous cone of mass M whose height is h
and whose base has a radius R. Choose the x3-axis along the axis of symmetry of the cone. Choose
the origin at the apex of the cone, and calculate the elements of the inertia tensor. Then make a
transformation such that the center of mass of the cone becomes the origin, and find the principal
moments of inertia.

02. P.11.3, Marion:
Calculate the moments of inertia I1, I2, and I3 for a homogeneous ellipsoid of mass M with axes’
lengths 2a > 2b > 2c.

03. P.11.4, Marion:
Consider a thin rod of length l and mass m pivoted about one end. Calculate the moment of inertia.
Find the point at which, if all the mass were concentrated, the moment of inertia about the pivot axis
would be the same as the real moment of inertia. The distance from this point to the pivot is called
the radius of gyration.

P.04. P.11.13, Marion:
A three-particle system consists of masses mi and coordinates (x1, x2, x3) as follows:

m1 = 3m, (b, 0, b); m2 = 4m, (b, b,−b); m3 = 2m, (−b, b, 0).

Find the Inertia tensor, principal axes, and principal moments of inertia.

05. P.11.14, Marion:
Determine the principal axes and principal moments of inertia of a uniformly solid hemisphere of radius
b and mass m about its center of mass.

06. P.11.15, Marion:
If a physical pendulum has the same period of oscillation when pivoted about either of two points of
unequal distances from the center of mass, show that the length of the simple pendulum with the same
period is equal to the sum of separations of the pivot points from the center of mass. Such a physical
pendulum, called Kater’s reversible pendulum, at one time provided the most accurate way (to about 1
part in 105) to measure the acceleration of gravity. Discuss the advantages of Kater’s pendulum over
a simple pendulum for such a purpose.
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07. P.11.16, Marion: similarity transformation:
Consider the following Inertia tensor:

I =

 (A+B)/2 (A−B)/2 0
(A−B)/2 (A+B)/2 0

0 0 C

 .
Perform a rotation of the coordinate system by an angle θ about the x3-axis. Evaluate the transformed
tensor elements, and show that the choice θ = π/4 renders the inertia tensor diagonal with elements
A, B, and C.

P.08. P.11.17 and P.11.18, Marion:

a) Consider a thin homogeneous plate that lies in the x1-x2 plane. Show that the inertia tensor
takes the form

I =

 A −C 0
−C B 0
0 0 A+B

 .
b) If the coordinate axes are rotated through an angle θ about the x3-axis, show that the new inertia

tensor is

I =

 A′ −C ′ 0
−C ′ B′ 0

0 0 A′ +B′

 .
where

A′ = A cos2 θ − C sin 2θ +B sin2 θ, B′ = A sin2 θ + C sin 2θ +B cos2 θ,

C ′ = C cos 2θ − 1

2
(B −A) sin 2θ,

and hence show that the x1- and x2-axes become principal axes if the angle of rotation is

θ =
1

2
tan−1

(
2C

B −A

)
.
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09. P.11.22 and P.11.23, Marion:

a) The trace of a tensor is defined as the sum of the diagonal elements:

Tr I =
∑
i

Iii.

Show, by performing a similarity transformation, that the trace is an invariant quantity. In other
words, show that

Tr I = Tr I ′,

where I is the tensor in one coordinate system and I ′ is the tensor in a coordinate system rotated
with respect to the first system. Verify this result for the different forms of the inertia tensor for
a cube given in several examples in the text.

b) Show by the method used in the previous problem that the determinant of the elements of a
tensor is an invariant quantity under a similarity transformation. Verify this result also for the
case of the cube.

P.10. P.11.27, Marion:
A symmetric body moves without the influence of forces or torques. Let x3 be the symmetry axis of
the body and L be along x′3. The angle between ω and x3 is α. Let ω and L initially be in the x2-x3
plane. What is the angular velocity of the symmetry axis about L in termos of I1, I3, ω, and α?

P.11. P.11.29, Marion:
Investigate the motion of the symmetric top discussed in Section 11.11 for the case in which the axis
of rotation is vertical (i.e., the x′3- and x3-axes coincide). Show that the motion is either stable or
unstable depending on whether the quantity 4I1Mhg/I23ω

2
3 is less than or greater than unity. Sketch

the effective potential V (θ) for the two cases, and point out the features of these curves that determine
whether the motion is stable. If the top is set spinning in the stable configuration, what is the effect
as friction gradually reduces the value of ω3? (This is the case of the ”sleeping top.”)

P.12. P.11.31, Marion:
Consider a thin homogeneous plate with principal momenta of inertia
I1 along the principal axis x1,
I2 > I1 along the principal axis x2,
I3 = I1 + I2 along the principal axis x3.
Let the origins of the xi and x′i systems coincide and be located at the center of mass O of the plate.
At time t = 0, the plate is set rotating in a force-free manner with an angular velocity Ω about an axis
inclined at an angle α from the plane of the plate and perpendicular to the x2-axis. If I1/I2 = cos 2α,
show that at time t the angular velocity about the x2-axis is

ω2(t) = Ω cosα tanh (Ωt sinα) .
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13. P.11.34, Marion:
Consider a symmetrical rigid body rotating freely about its center of mass. A frictional torque Nf = −bω
acts to slow down the rotation. Find the component of the angular velocity along the symmetry axis
as a function of time.

P.14. P.10.37, Taylor:
A thin, flat, uniform metal triangle lies in the xy plane with its corners at (1, 0, 0), (0, 1, 0), and the
origin. Its surface density (mass/area) is σ = 24. (Distances and masses are measured in unspecified
units, and the number 24 was chosen to make the answer come out nicely.)

a) Find the triangle’s inertia tensor I.

b) What are its principal moments and the corresponding axes?

15. P.10.2, Symon:
Show that the centrifugal force Fc = −mω× (ω× r) is a linear function of the position vector r of the
particle, and find an expression for the corresponding tensor in dyadic form, i.e., show that Fc = T · r.
Write out the matrix of its coefficients.

16. P.10.3, Symon:
For a tensor T, define time derivatives (dT/dt)f and (dT/dt)r relative to fixed and rotating coordinate
systems, as was done in Chapter 7 for derivatives of vectors. Prove that(

dT

dt

)
f

=

(
dT

dt

)
r

+ ω ×T−T× ω,

where the cross product of a vector with a tensor is defined in the obvious way.

17. P.10.5 and 10.12, Symon:
Transform the tensor T = AB + BA, where A = 5x̂− 3ŷ + 2ẑ and B = 5ŷ + 10ẑ, into a coordinate
system rotated 45◦ about the z-axis, using Eq. (10.74). Transform the vectors A and B, using Eq.
(10.71), and show that the results agree. Diagonalize the tensor T, i.e., find its eigenvalues and the
corresponding principal axes.

P.18. P.11.4 and P.11.5, Symon:

a) Show that if the only torque on a symmetrical rigid body is about the axis of symmetry, then
(ω2

1 +ω2
3) is constant, where ω1 and ω2 are angular velocity components along axes perpendicular

to the symmetry axis. If N3(t) is given, show how to solve for ω1, ω2, and ω3.

b) A symmetrical rigid body (I1 = I2 6= I3) moving freely in space is powered with jet engines
symmetrically placed with respect to the body x3–axis, which supply a constant torque N3 about
the symmetry axis. Find the solution for the angular velocity vector as a function of time relative
to the body axes and describe how the angular velocity vector moves relative to the body.
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19. P.11.6, Symon:

a) Consider a charged sphere whose mass m and charge e are both distributed in a spherically
symmetrical way. That is, the mass and the charge densities are each functions of the radius r
(but not necessarily the same function). Show that if this body rotates in a uniform magnetic
field B, the torque on it is (Gaussian units)

N =
eg

2mc
L×B,

where g is a numerical constant, and g = 1 if the mass density is everywhere proportional to the
charge density.

b) Write an equation of motion for the body, and show that by introducing a suitably rotating
coordinate system, you can eliminate the magnetic torque.

c) Compare this result with Larmor’s theorem (Chapter 7). Why is no assumption needed here
regarding the strength of the magnetic field?

d) Describe the motion. What points in the body are at rest in the rotating coordinate system?

P.20. P.11.14, Symon:
Discuss the free rotation of a symmetrical rigid body, using the Lagrangian method. Find the angular
velocity for uniform precession and the frequency of small nutations about this uniform precession.
Describe the motion and show that your results agree with the solutions found in Section 11.2 and in
Problem 11.3, Symon.

P.21. P.11.17, Symon (opcional):
A planet consists of a uniform sphere of radius a, mass M , girdled at its equator by a ring of mass
m. The planet moves (in a plane) about a star of mass M ′. Set up the Lagrangian function, using
as coordinates the polar coordinates r and α in the plane of the orbit, and Euler’s angles θ, φ, and
ψ, relative to space axes of which the z-axis is perpendicular to the plane of the orbit, and the x-axis
is parallel to the axis from which α is measured. You may assume that r � a, and use the result of
Problem 15, Chapter 6. Find the ignorable coordinates, and show that the period of rotation of the
planet is constant.

22. P.11.20, Symon:
Write Lagrangian equations of motion for the rigid body in Problem 11.5, Symon. Carry the solution as
far as you can. [Make use of the results of Problem 5 if you wish.] Show that you can obtain a second
order differential equation involving θ alone. Can you find any particular solutions, or approximate
solutions, of this equation for special cases? Describe the corresponding motions. [Note that this
problem, to the extent that it can be solved, gives the motion of the body in space, in contrast to
Problem 5, where we found the angular velocity relative to the body.]
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23. P.11.21, Symon:
An electron may for some purposes be regarded as a spinning charged sphere like that considered in
Problem 11.6, Symon, with g very nearly equal to 2. Show that if g were exactly 2, and the electron
spin angular momentum is initially parallel to its linear velocity, then as the electron moves through any
magnetic field, its spin angular momentum would always remain parallel to its velocity.

24. P.5.3, Goldstein:
Prove that for a general rigid body motion about a fixed point, the time variation of the kinetic energy
T is given by

dT

dt
= ω ·N.

25. P.5.8, Goldstein:
When the rigid body is not symmetrical, an analytic solution to Euler’s equation for the torque-free
motion cannot be given hi terms of elementary functions. Show, however, that the conservation of
energy and angular momentum can be used to obtain expressions for the body components of ω in
terms of elliptic integrals.

P.26. P.5.9, Goldstein:
Apply Euler’s equations of motion to the problem of the heavy symmetrical top, expressing wi in terms
of the Euler angles. Show that the two constants of motion (pφ and pψ) can be obtained directly from
Euler’s equations in this form.

P.27. P.5.10, Goldstein:

Obtain from Euler’s equations of motion the condition Mgh = φ̇
(
I3ω3 − I1φ̇ cos θ0

)
for the uniform

precession of a symmetrical top in a gravitational field, by imposing the requirement that the motion
be a uniform precession without nutation.

P.28. P.5.11, Goldstein:
Show that the magnitude of the angular momentum for a heavy symmetrical top can be expressed as
a function of θ and the constants of motion only. Prove that as a result the angular momentum vector
precesses uniformly only when there is uniform precession of the symmetry axis.

29. P.5.16, Goldstein:
Three equal mass points are located at (a, 0, 0), (0, a, 2a), and (0, 2a.a). Find the principal moments
of inertia about the origin and a set of principal axes.
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