
PROCEEDINGS OF SPIE

SPIEDigitalLibrary.org/conference-proceedings-of-spie

Simulation and optimization of the
Sirius IPE soft x-ray beamline

Bernd C. Meyer
Tulio C. R. Rocha
Sergio A. L. Luiz
Artur  C. Pinto
Harry  Westfahl

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 10/5/2017 Terms of Use: https://spiedigitallibrary.spie.org/ss/TermsOfUse.aspx



 

 

Simulation and optimization of the SIRIUS IPE soft X-ray beamline 
 

Bernd C. Meyer*a, Tulio C. R. Rochaa, Sergio A. L. Luiza, Artur C. Pintoa, Harry Westfahl Jr.a 

a Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and 
Materials (CNPEM), ZIP Code 13083-970 Campinas, São Paulo, Brazil 

ABSTRACT   

The soft X-ray beamline IPE is one of the first phase SIRIUS beamlines at the LNLS, Brazil. Divided into two branches, 
IPE is designed to perform ambient pressure X-ray photo-electron spectroscopy (AP-XPS) and high resolution resonant 
inelastic X-ray scattering (RIXS) for samples in operando/environmental conditions inside cells and liquid jets. The aim 
is to maximize the photon flux in the energy range 200-1400 eV generated by an elliptically polarizing undulator source 
(EPU) and focus it to a 1 μm vertical spot size at the RIXS station and 10 μm at the AP-XPS station. In order to achieve 
the required resolving power (40.000 at 930 eV) for RIXS both the dispersion properties of the plane grating 
monochromator (PGM) and the thermal deformation of the optical elements need special attention. The grating 
parameters were optimized with the REFLEC code to maximize the efficiency at the required resolution. Thermal 
deformation of the PGM plane mirror limits the possible range of cff parameters depending of the photon energy used. 
Hence, resolution of the PGM and thermal deformation effects define the boundary conditions of the optical concept and 
the simulations of the IPE beamline. We compare simulations performed by geometrical ray-tracing (SHADOW) and 
wave front propagation (SRW) and show that wave front diffraction effects (apertures, optical surface error profiles) has 
a small effect on the beam spot size and shape.   

Keywords: soft X-ray beamline, ray-tracing, wave front propagation, grating efficiency 

 

1. INTRODUCTION 
The high brilliance of 4th generation sources enabled the improvement and spread of X-ray emission spectroscopies, due 
to the photon hungry process and the high demand for spectral resolution. The IPE beamline, coupled with the high 
brilliance of the new Brazilian synchrotron radiation source – SIRIUS, has been designed to provide access for a large 
community to state-of-the-art soft X-ray characterization techniques, being capable of in situ investigation of materials 
under different environments and conditions. This modern concept allows the study of structure-function correlations, 
which is fundamental for better understanding and improvement of materials in several applications like catalysis and 
energy storage devices. The beamline will serve two end stations dedicated to Ambient Pressure X-ray Photo-electron 
spectroscopy (AP-XPS) and Resonant Inelastic X-ray Scattering (RIXS).  

Resonant inelastic X-ray scattering is a second order optical process with very low cross section demanding high 
intensity incident radiation and efficient detection of scattered photons. At the same time, very high resolution is 
necessary to separate the spectral features that carries information about different electronic and vibrational excitations in 
the materials. Hence, optimizing the transmission of the monochromator at a target resolution is crucial to enhance the 
scientific throughput of the beamline and improve the statistical quality of the data. The great challenge for the RIXS end 
station is the vertical spot size at the sample, which must be less than 1 μm for allowing slit-less operation. Smaller beam 
spot allows better resolving power and reduces the spectrometer arm length. The beamline must be optimized to provide 
the highest transmission possible for the target energy resolution of 15 meV at 930 eV, which combined with the RIXS 
spectrometer, will provide resolution in the order of 20 meV.  
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emittance and the energy spread of the electron beam in the storage ring. The Synchrotron Radiation Workshop (SRW) 
software calculates accurately the emission over the undulator length based on the electron beam parameters and the 
magnetic field structure. 

3. OPTICAL DESIGN  
The optical design of the IPE beamline is based on the collimated PGM8 (cPGM) design. Compared to the commonly 
variable line space grating design, it allows more flexibility in optimizing for high energy resolution, high photon flux or 
high spectral purity with the free choice of the cff parameter.    

3.1. Beamline layout 

The first optical element is a horizontal deflecting toroidal mirror (CM) located 27 m from the source collimating the 
beam vertically and focusing it horizontally into the exit slit. The PGM sitting 2 m downstream the CM consists of a 
plane mirror, to change the entrance angle of the grating, and interchangeable plane gratings with constant ruling. A 
sagittal cylindrical mirror (FM) focuses the vertically dispersed beam into the exit slit. A plane side deflecting mirror 
(DM) located 2 m downstream the FM deflects the beam to the AP-XPS branch, whereas without the DM the beam 
continues in the RIXS branch. An ellipsoidal mirror (RMR and RMX) focuses the beam to each experimental station.   

 

Figure 2. IPE beamline optical layout. 

 

3.2. PGM mechanical design 

The guiding line for the mechanical design of the PGM considers that the grating and the plane mirror can be 
manufactured and measured. The grating optical active length amounts 140 mm is defined by accepting 4σ of the vertical 
beam over the energy range of 200 eV to 1600 eV and for cff-values below 5. The optimization of the offset value is a 
compromise between a reasonable length of the plane mirror and avoiding shadowing effects on the beam. Hence, we 
obtained an optimum offset of 18 mm. The rotation axis of the plane mirror is located on top of the drawing and of the 
plane grating in the gratings center. Based on the formulation described by Pimpale9 we obtained an RC = 27.3 mm 
between the PM and its center of rotation (Figure 3). Thus, the beam is moving along the PM depending on energy and 
cff settings.    
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4. CONCLUSION 
We have shown a complete optical design process for a state-of-the art soft x-ray beamline dedicated to RIXS and XPS. 
The advent of 4th generation synchrotrons demand detailed simulations, where the partial coherence of the beam must be 
accounted for, which is generally not modeled in analytical calculations. In the IPE beamline, the optical system design 
showed that the beam properties, such as energy resolution and flux, are directly linked not only to the optical properties, 
but also to the mechanical and thermal aspects of the beamline. Due to these connections, we combined several 
simulation tools to try to model the beam performance as close as possible to real operation conditions.  

Ray-tracing with proper source configuration provides good estimates of the beam properties, and its flexibility allows 
large parametric execution with little computational effort. However, geometrical optics is limited to the uncoherent 
condition, and cannot be used as the only simulation tool. SRW was used to define the precise mirrors specifications. 

ACKNOWLEDGMENT 
We thank the Brazilian Ministry of Science, Technology and Communication (MCTIC) for the financial support of the 
SIRIUS project. We thank Franz Schäfers for his help of running the REFLEC code parametrically. We thank Gustavo 
Rodrigues for the discussions about the mechanical design, the LNLS PGM group for conceptual advisory. We also 
acknowledge the use of the computing cluster from LNCC – Laboratório Nacional de Computação Cientifica.  

 

REFERENCES 

[1]  Schäfers, F., “THE BESSY RAYTRACE PROGRAM to calculate SYNCHROTRON RADIATION 
BEAMLINES,” Tech. Bericht(202), 1–183 (1996). 

[2]  Rebuffi, L., Del Rio, M. S., “ShadowOui: A new visual environment for X-ray optics and synchrotron beamline 
simulations,” J. Synchrotron Radiat. 23(6), 1357–1367, International Union of Crystallography (2016). 

[3]  Canestrari, N., Chubar, O., Reininger, R., “Partially coherent X-ray wavefront propagation simulations including 
grazing-incidence focusing optics,” J. Synchrotron Radiat. 21, 1110–1121, International Union of 
Crystallography (2014). 

[4]  Temnykh, A. B., “Delta undulator for Cornell energy recovery linac,” Phys. Rev. Spec. Top. - Accel. Beams 
11(12), 1–10 (2008). 

[5]  Nuhn, H., Anderson, S., Bowden, G., Ding, Y., Gassner, G., Huang, Z., Kraft, E. M., Levashov, Y., Peters, F., et 
al., “R & D Towards a Delta-Type Undulator for the LCLS,” Int. Free Electron Laser Conf.(Fel), 2–4 (2013). 

[6]  Vilela, L. N. P., Liu, L., Resende, X. R., Sá, F. H. De., Synchrotron, B., “STUDIES OF DELTA-TYPE 
UNDULATORS FOR SIRIUS,” 52–54. 

[7]  Tanaka, T., Kitamura, H., “Universal function for the brilliance of undulator radiation considering the energy 
spread effect.,” J. Synchrotron Radiat. 16(Pt 3), 380–386, International Union of Crystallography (2009). 

[8]  Follath, R., Senf, F., “New plane-grating monochromators for third generation synchrotron radiation light 
sources,” Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 390(3), 
388–394 (1997). 

[9]  Pimpale, A. V., Deshpande, S. K.., Bhide, V. G., “Design considerations for the rotation of a plane premirror of a 
monochromator for reflecting synchrotron radiation onto the same spot of the dispersing grating of the XUV 
beamline.,” Appl. Opt. 30(13), 1591–1594 (1991). 

Proc. of SPIE Vol. 10388  103880D-10

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 10/5/2017 Terms of Use: https://spiedigitallibrary.spie.org/ss/TermsOfUse.aspx



 

 

[10]  Tanaka, T., Kitamura, H., “SPECTRA: A synchrotron radiation calculation code,” J. Synchrotron Radiat. 8(6), 
1221–1228, International Union of Crystallography (2001). 

[11]  Meyer, B. C., “A toolkit for the X-ray optics simulation software package XOP/ShadowVui,” 814114 (2011). 

[12]  Schwertz, K., “Useful Estimations and Rules of Thumb for Optomechanics,” Univ. Arizona, University of 
Arizona (2010). 

[13]  Westfahl, H., Lordano Luiz, S. A., Meyer, B. C.., Meneau, F., “The coherent radiation fraction of low-emittance 
synchrotrons,” J. Synchrotron Radiat. 24(3), 1–10, International Union of Crystallography (2017). 

[14]  Gbur, G.., Wolf, E., “The Rayleigh range of Gaussian Schell-model beams,” J. Mod. Opt. 48(11), 1735–1741 
(2001). 

[15]  Chu, T. S., “Geometrical Representation of Gaussian Beam Propagation,” Bell Syst. Tech. J. (1966). 

 

Proc. of SPIE Vol. 10388  103880D-11

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 10/5/2017 Terms of Use: https://spiedigitallibrary.spie.org/ss/TermsOfUse.aspx


