High Resolution Powder Diffraction with Synchrotron X-Rays and Neutrons

Eduardo Granado

Institute of Physics "Gleb Wataghin" University of Campinas – UNICAMP Campinas, SP, Brazil

Single Crystal Crystallography

$$I(hkl) \propto |F(hkl)|^2 = |\sum b_j e^{i2\pi (hx_j + ky_j + lz_j)}|^2$$

 Intensities I(hkl) determined with accuracy (vectors G well spaced in the 3D reciprocal space).

 Structure is solved through well established crystallographic methods (direct methods for small structures).

Why using the powder method?

•The greatest majority of new materials are firstly sinthesized in powders; single crystals are typically grown several years after the initial discovery.

- Superconducting cuprates, manganites, etc...
- Many 'single crystals' show twinning.
- Precise lattice parameters \rightarrow subtle structural transitions.
- Thermal environment may be more conveniently controlled.

PART I PD with synchroton x-rays

LNLS 1.37 GeV 4 straight sections:

1 regular Wiggler for PX -MX2 beamline 1 undulator for soft x-rays -PGM beamline Superconducting Wiggler -XDS beamline

Beamlines: XRD-1

XPD beamline

- Huber 4+2 circle
 diffractometer
- Coupling with furnaces (300-1273K), criostats (1.7-400K), pressure cell, etc.
- Allows for lowbackground highresolution (Ge analyser) or highintensity (Mythen 1K) powder diffraction measurements.

Journal of Synchrotron Radiation

ISSN 0909-0495

Received 19 October 2005 Accepted 25 November 2005

X-ray powder diffraction beamline at D10B of LNLS: application to the Ba₂FeReO₆ double perovskite

Fabio Furlan Ferreira,^a Eduardo Granado,^{b,a}* Wilson Carvalho Jr,^a Stefan W. Kycia,^a Daniele Bruno^a and Roosevelt Droppa Jr^a

J. Synchrotron Rad. (2006). 13, 46-53

A case example (XPD beamline): $BiMn_2O_5$ multiferroic

<i>T</i> =100 K		Pbam	a = 7.54116(1) Å	b = 8.52994(1) Å	c=5.7543	37(1) Å
Atom	Site	x	у	Z	U_{iso} (Å ²)	Frac
Bi	4g	0.15896(4)	0.16556(4)	0	0.00588(6)	0.938(4)
Mn1	4f	1/2	0	0.2596(2)	0.0021(2)	1
Mn2	4 h	0.40755(15)	0.35091(14)	1/2	0.0029(2)	1
01	4e	0	0	0.2876(10)	0.0048(5)	1
02	4g	0.1567(8)	0.4453(6)	0	0.0048(5)	1
O3	4 h	0.1437(7)	0.4243(6)	1/2	0.0048(5)	1
04	8 <i>i</i>	0.3866(5)	0.2018(4)	0.2525(7)	0.0048(5)	1
$R_p = 13.6\%$		$R_{wp} =$		$\chi^2 = 1.86$		

TABLE I. Refined lattice and atomic parameters of sample BMO2 at 100 K. Errors in parentheses are statistical only, and represent one standard deviation.

Intensity

Ś

Magnetoelastic and thermal effects in the BiMn₂O₅ lattice: A high-resolution x-ray diffraction study

 E. Granado,^{1,2,*} M. S. Eleotério,^{1,2} A. F. García-Flores,¹ J. A. Souza,³ E. I. Golovenchits,⁴ and V. A. Sanina⁴ ¹Instituto de Física "Gleb Wataghin," UNICAMP, Caixa Postal 6165, 13083-970, Campinas, São Paulo, Brazil ²Laboratório Nacional de Luz Síncrotron, Caixa Postal 6192, 13084-971, Campinas, São Poulo, Brazil ³Instituto de Física, Universidade de São Paulo, Caixa Postal 66318, 05315-970, São Paulo, Brazil ⁴Ioffe Physical-Technical Institute of RAS, 194021 St. Petersburg, Russia (Received 29 November 2007; published 1 April 2008)

High-resolution synchrotron x-ray diffraction measurements were performed on single crystalline and powder samples of BiMn₂O₅. A linear temperature dependence of the unit cell volume was found between T_N = 38 and 100 K, suggesting that a low-energy lattice excitation may be responsible for the lattice expansion in this temperature range. Between $T^* \sim 65$ K and T_N , all lattice parameters showed incipient magnetoelastic effects, due to short-range spin correlations. An anisotropic strain along the **a** direction was also observed below T^* . Below T_N , a relatively large contraction of the *a* parameter following the square of the average sublattice magnetization of Mn was found, indicating that a second-order spin Hamiltonian accounts for the magnetic interactions along this direction. On the other hand, the more complex behaviors found for *b* and *c* suggest additional magnetic transitions below T_N and perhaps higher-order terms in the spin Hamiltonian. Polycrystalline samples grown by distinct routes and with nearly homogeneous crystal structure above T_N presented structural phase coexistence below T_N , indicating a close competition amongst distinct magnetostructural states in this compound.

DOI: 10.1103/PhysRevB.77.134101

PACS number(s): 75.30.Kz, 77.80.Bh, 61.05.cp, 61.50.Ks

The need for a higher energy and more intense beamline

- Typical flux for bending magnet beamlines @ 8keV: 5 x 10¹⁰ ph/s/250 mA. Energy did not exceed ~12 keV.
- Meanwhile, a third generation, ~3 GeV machine, was being prepared (SIRIUS).
- The Materials Science users of LNLS-1 needed a highflux hard x-ray beamline to attack previously unaccessible problems, meet a more challenging scientific agenda, and get ready for the new machine.

XDS beamline - Optical Layout

- Vertically collimating mirror (VCM):
 - Water cooled
 - Three stripes, Si (5-10 keV), Rh (9-20 keV), Pt (14-30 keV).
- Double Crystal Monochromator (DCM):
 - First crystals: LN2-refrigerated Si(111) [5-20 keV) and Si(311) [14-30 keV]
 - Second crystals: Plane Si(111), plane Si(311), sagittal Si(111)
- Focusing Mirror (VFM)
 - Three stripes: Rh toroidal, Pt toroidal, Rh cylindrical (for use with sagittal DCM)

Beam shape at focal point (sagittal monochromator) E = 11 keVObserved Simulated (ray-tracing)

Energy resolution

Calculated Flux @ 3.8 T

Some New perspectives for Science at LNLS with the XDS beamline

- "High" Energy Photons \rightarrow up to 30 keV
 - X-ray diffraction under high pressure (DAC cells)
 - X-ray diffraction under high magnetic fields (6 tesla)
 - New absorption edges for XAS / EXAFS (4th row of periodic table)
 - Pair distribution function (PDF) analysis
 - X-ray diffraction up to high $Q \rightarrow$ more reliable crystal structures
- High Intensity \rightarrow up to ~10¹³ ph/s
 - XAS/EXAFS of highly diluted elements (ppm)
 - Resonant / magnetic x-ray diffraction
 - Inelastic x-ray scattering (X-ray Raman / RIXS)
 - High resolution x-ray emission spectroscopy

beamlines

ISSN 1600-5775

XDS: a flexible beamline for X-ray diffraction and spectroscopy at the Brazilian synchrotron

F. A. Lima,^a* M. E. Saleta,^a R. J. S. Pagliuca,^a M. A. Eleotério,^a R. D. Reis,^a J. Fonseca Júnior,^a B. Meyer,^a E. M. Bittar,^b N. M. Souza-Neto^a and E. Granado^c*

Received 24 May 2016 Accepted 2 September 2016 ^aLaboratório Nacional de Luz Síncrotron, Caixa Postal 6192, CEP 13084-971, Campinas (SP), Brazil,
^bCentro Brasileiro de Pesquisas Físicas, Rua Doutor Xavier Sigaud 150, CEP 22290-180, Rio de Janeiro (RJ), Brazil, and
^cInstituto de Física 'Gleb Wataghin', Universidade de Campinas, CEP 13083-859, Campinas (SP), Brazil.
*Correspondence e-mail: frederico.lima@lnls.br, egranado@ifi.unicamp.br

J. Synchrotron Rad. (2016). 23, 1538-1549

Preliminary PDF Studies on the $Ca_{1-x}Ba_{x}Ti_{1-y}Zr_{y}O_{3}$ ferroelectric/relaxor system (Martín Saleta)

Part II - High resolution Neutron Powder diffraction

Neutron facts

Properties of the neutron	
Mass (m)	$1.68 imes 10^{-27} \text{ kg}$
Charge	0
Spin	1/2
Magnetic moment (μ_n)	-1.913 nuclear magneton
Wavelength (λ)	h/mv
Wavevector (k)	magnitude $2\pi/\lambda$
Momentum (p)	ħk .2
Energy (E)	$1/2 mv^2 = \frac{h^2}{2}$
	$2m\lambda^2$

Free neutrons are unstable against b-decay - no neutrons as cosmic rays ! $(n^0 \rightarrow p^+ + e^- + \overline{v_e})$

mean lifetime: 881.5±1.5 s

Basic geometry of a NPD experiment - CW

Example: BT1 Beamline, NCNR, NIST, Gaitherburg, Maryland, USA

Why neutron powder diffraction (I) - scattering factors

Neutron scattering occurs through nuclear interactions \rightarrow no systematic atomic number dependence

R.Winter, F. Noll: Methoden der biophysikalischen Chemie, Teubner (1998)

Why neutron powder diffraction (II) - no form factor

Other possible reasons for neutron powder diffraction

- Magnetic structure determination / refinement (see tomorrow talk)
- Large sample volume is probed
- Allows for good powder averaging (large number of grains in Bragg condition)
- Preferred orientation effects minimized

Intensity (arb. un.)

Combining neutrons and synchrotron xrays: Ba₂FeReO₆

J. Synchrotron Rad. (2006). 13, 46-53

	Temperature	14 K	400 K
$\lambda = 1.37728 \text{ Å} $ (a) 14 K	Space group <i>a</i> (Å) <i>c</i> (Å)	<i>I</i> 4/ <i>mmm</i> (#139) 5.68278 (2) 8.02337 (5)	<i>Pm</i> 3 <i>m</i> (#225) 8.063328 (13) -
	Fe	2a (0, 0, 0)	4a (0, 0, 0)
	Re	2b (0, 0, 1/2)	4b (1/2, 1/2, 1/2
	B _{iso} (Fe, Re) (Å ²)	0.66 (2)	0.79 (2)
	Ba	4d (1/2, 0, 1/4)	8c (1/4, 1/4, 1/4
	B_{iso} (Ba) (Å ²)	0.26 (2)	0.57 (2)
(b) 400 K	O1 x O2 z B_{iso} (O1,O2) (Å ²)	8h (x, x, 0) 0.2569 (13) 4e (0, 0, z) 0.255 (2) 0.1 (1)	24e $(x, 0, 0)$ 0.2608 (9) - 0.7 (1)
	d(Fe-O1) (Å)	2.065 (11)	2.103 (8)
	d(Fe-O2) (Å)	2.044 (17)	-
	d(Re-O1) (Å)	1.953 (11)	1.929 (8)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	a(Re-O2) (A)	1.968 (17)	-
	R_{pb}	15.1%	13.0%
	R_{wpb}	37.5%	28.8%
	χ^2	1.89	1.68

Ba₂FeReO₆

The high-resolution of XPD beamline was essencial to pin down the lattice symmetry reduction associated with the Fe/Re spin ordering at 305 K, caused by a strong magnetoelastic coupling.

J. Synchrotron Rad. (2006). 13, 46-53

Incipient Orbital Order in Half-Metallic Ba₂FeReO₆

C. Azimonte,^{1,2} J. C. Cezar,³ E. Granado,^{1,2,*} Q. Huang,⁴ J. W. Lynn,^{4,5} J. C. P. Campoy,¹ J. Gopalakrishnan,^{5,6} and K. Ramesha⁶

¹Instituto de Física "Gleb Wataghin," UNICAMP, C.P. 6165, 13083-970, Campinas, São Paulo, Brazil
 ²Laboratório Nacional de Luz Síncrotron, C.P. 6192, 13084-971, Campinas, São Paulo, Brazil
 ³European Synchrotron Radiation Facility, F-38043, Grenoble, France
 ⁴NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
 ⁵Center for Superconductivity Research, University of Maryland, College Park, Maryland 20742, USA
 ⁶Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India (Received 16 May 2006; published 5 January 2007)

Largely unquenched Re 5*d* orbital magnetic moments in half-metallic Ba₂FeReO₆ drive a symmetry lowering transition from a cubic paramagnet to a compressed tetragonal (c/a < 1) ferrimagnet below $T_C \sim 305$ K, with a giant linear magnetoelastic constant and the spins lying spontaneously along the unique tetragonal axis. The large orbital magnetization and degree of structural deformation indicate proximity to a metal-insulator transition. These results point to an incipient orbitally ordered state in the metallic ferrimagnetic phase.

DOI: 10.1103/PhysRevLett.98.017204

PACS numbers: 75.50.Gg, 61.10.Nz, 61.12.Ld, 71.30.+h

Summary

• High-resolution x-ray Powder diffraction experiments in solids under a variety of conditions can be performed at the XPD and XDS beamlines of LNLS.

• Observation of very slight structural distortions ($\delta a/a \sim 10^{-3}$) can only be seen with synchrotron XPD.

• Reliable structure factor determination of a larger number of reflections is obtained under high-resolution setup \rightarrow more reliable extraction of atomic and Debye-Waller parameters.

• High-resolution Neutron Powder Diffraction is the desired technique if:

(i) A magnetic structure/ordered moments is being probed
(ii) Position of light atoms (e.g., hydrogen) is important
(iii) Preferred orientation / powder averaging is an issue in synchrotron x-ray experiments

Thank you !