Eur. Phys. J. B (2020) 93: 17
https://doi.org/10.1140/epjb /e2019-100576-6

THE EUROPEAN
PHYSICAL JOURNAL B

Regular Article

Emergent SU(IN) symmetry in disordered SO(IV) spin chains*

Victor L. Quito!'2, Pedro L.S. Lopes®4, José A. Hoyos®?, and Eduardo Miranda®

! Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, USA
2 Department of Physics and National High Magnetic Field Laboratory, Florida State University, Tallahassee,

Florida 32306, USA

3 Stewart Blusson Quantum Matter Institute, University of British Columbia, Vancouver,

British Columbia V6T 174, Canada

4 Département de Physique, Institut Quantique and Regroupement Québécois sur les Matériaux de Pointe,
Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada

5 Instituto de Fisica de Sdo Carlos, Universidade de Sao Paulo, C.P. 369, S&o Carlos, SP 13560-970, Brazil

6 Instituto de Fisica Gleb Wataghin, Unicamp, Rua Sérgio Buarque de Holanda, 777, CEP 13083-859 Campinas,

SP, Brazil

Received 27 November 2019 / Received in final form 17 December 2019

Published online 28 January 2020

© EDP Sciences / Societa Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature,

2020

Abstract. Strongly disordered spin chains invariant under the SO(NN) group are shown to display random-
singlet phases with emergent SU(NN) symmetry without fine tuning. The phases with emergent SU(N)
symmetry are of two kinds: one has a ground state formed of randomly distributed singlets of strongly
bound pairs of SO(N) spins (a ‘mesonic’ phase), while the other has a ground state composed of singlets
made out of strongly bound integer multiples of N SO(N) spins (a ‘baryonic’ phase). The established
mechanism is general and we put forward the cases of N =2, 3,4 and 6 as prime candidates for experimental
realizations in material compounds and cold-atoms systems. We display universal temperature scaling and
critical exponents for susceptibilities distinguishing these phases and characterizing the enlarging of the

microscopic symmetries at low energies.

1 Introduction

The process of symmetry breaking, as the energy of a
given system is lowered, plays a central role in our cur-
rent understanding of both high-energy physics (as in the
standard model) and condensed matter physics (with uni-
versality and classification of phases) [1,2]. A less noticed
(and explored) scenario is that of symmetry emergence,
in which the lowering of the system’s energy allows for
ground states and excitations which are symmetric under
a larger group of transformations than their correspond-
ing microscopic Hamiltonian. A basic mechanism by which
this can happen can be understood in the renormalization
group framework by means of fixed points characterized
by a symmetry which is broken only by irrelevant pertur-
bations. There remains, nevertheless, a widespread lack
of recognizable generic processes or patterns, so systems
which realize this type of physics are found by trial and
error (see Refs. [3-15] for examples). In scenarios domi-
nated by disorder, the situation is even more clouded. It
was in this context that, in reference [16], it was shown
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that generic disordered SU(2)-symmetric spin-1 chains
exhibit emergent SU(3)-symmetric random-singlet phases
(RSPs) [17]. There, it was also noted that in the pioneering
work by Fisher on disordered XXZ spin-1/2 chains [18],
there was also the emergence of SU(2) symmetric RSPs;
SU(2) is explicitly broken down to U(1) in the microscopic
XXZ7 Hamiltonian. What was not noted, however, is that
in both cases the emergent SU(N) symmetry material-
ized out of systems with manifest SO(NV) invariance, with
N =3 and 2, respectively.

This situation, which at first might be naively thought
of as just a coincidence, uncovers, on the contrary, a con-
sistent pattern. It is the aim of this letter to show that
generic disordered magnetic chains invariant under the
SO(N) group, in its defining vector representation, display
emergent SU(NV)-symmetric phases via a unified route
for any N > 2; we denote this process by SO(N) 3%
SU(N). Our pattern of symmetry emergence contains two
phases: (i) an obvious SU(NV) generalization of the SU(2)-
symmetric random singlet phase of the Heisenberg chain
of reference [18], (ii) a phase whose ground state also con-
sists of random SU(N)-symmetric singlets, but which are
composed of kN original SO(N) ‘spins’, with k an arbi-
trary integer. Separating the two phases there is a critical
point with manifest SU(N) symmetry. In the particular
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Table 1. List of the most relevant SO(N)-symmetric one-dimensional models described by equation (5) with their
possible physical realizations and the corresponding emergent symmetry in the limit of strong disorder.

Hamiltonian symmetry

Possible realizations

Emergent symmetry

SO(2)

Anisotropic spin-1/2 systems
Generic spin-1 systems SU(

e4 orbitals in transition metal oxides SU(4)
Cold fermionic alkaline-earth atoms  SU(6)

SU(2)

case of SO(3) “=5° SU(3) of reference [16] [previously

interpreted as SU(2)spin-1 —— SU(3)], particular versions
of these phases were dubbed “mesonic” and “baryonic”
random singlet phases, respectively. Furthermore, every
one-dimensional RSP encountered so far [11,19-21] seems
to find a counterpart in one of the permutation-symmetric
multicritical points described by Damle and Huse [7,22],
each one indexed by an integer n. The SO(N) baryonic
RSPs we found realize all of these Damle-Huse points with
n=N in an extended phase (see also the discussion in
Ref. [23]).

While SO(V) magnetism may sound exotic at first, such
systems can be realized in several ways, either by exploit-
ing explicit breaking of a larger SU(N) isotropy or, more
interestingly, by taking advantage of the isomorphisms
between orthogonal (so(N)) and unitary (su(NV)) algebras
at low N values. Some examples, summarized in Table 1,
follow:

— The first two mentioned cases, that of the XXZ
spin-1/2 Heisenberg chain [18] and of spin-1 bilin-
ear and biquadratic Hamiltonians [16] can be real-
ized in solid state [24] and, in principle, in cold
atom systems [25,26], respectively. The former has
a Hamiltonian with broken SU(2)-symmetry which,
in fact, corresponds to an SO(2) symmetric Hamil-
tonian. The latter is realized explicitly as the most
general SU(2)-symmetric Hamiltonian with spin-1
representations, but due to the algebra isomorphism
s0(3) ~ su(2), it corresponds also to the most general
SO(3)-symmetric Hamiltonian in the defining vector
representation.

— Through the isomorphism so(4)~su(2)® su(2),
SO(4)-symmetric magnetism is realized by the well-
known Kugel-Khomskii Hamiltonian [27], commonly
used in the description of e, orbitals in transi-
tion metal oxides [28], with su(2)-spin (S) and
su(2)-orbital (T) degrees of freedom

Higg = Z [Ji (Si-Sip1 +T; - Tipr)

+8D; (S; - Sit1) (T - Tign)]. (1)

— There are proposals to realize SU(N) magnetism
with arbitrary N in fermionic alkaline-earth cold
atomic systems in representations other than the
fundamental one [29]. Exploiting the isomorphism
50 (6) ~ su (4), disordered SU(4) magnetic chains in
the self-conjugate representation realize an SO(6)-
symmetric chain in its defining representation. In
this case, according to our mechanism, disordered

SU(4) symmetric chains would realize SU(4) cmele

Su(6).t

— Random SO(2S5 + 1) chains can, in fact, be designed
by fine-tuning in any disordered rotation invariant
spin-S system. Such generic spin-S chains have been
previously studied by some of us [30], but the SO(N)
phases of these systems were not characterized at
that point.

We will first describe the general model and our results

for the disordered SO(N) =% SU(N) mechanism. After
that, we will give the finer technical details of our work.

2 Model and results

The N(N —1)/2 SO(N) generators [SO(N) ‘spins’] will
be denoted by L, with a,b in the range a=1,..., N and
a < b.2 We will take them in the defining representation,
which is spanned by a basis |c), c=1,...,N. Each L%
generates rotations in the ab plane. For N =4, for exam-
ple, L?3 rotates a four-dimensional vector in the (2,3)
Cartesian plane, while components 1 and 4 are kept fixed.
In general,

iL% |¢) = 6%¢|b) — 6 |a) . (2)
The L operators obey the so(N) Lie algebra
[Lab,LCd] -3 (5bcLad + 5adLbc o 5acLbd o 5deac) , (3)

with Tr (L“bLCd) = 2§9¢5%4,

An SO(N)-symmetric Hamiltonian can be built as a
sum over pairs of SO(N) spins (although 3-site terms are
possible, we do not consider them here). In the defin-
ing representation, the most general pair term contains
only bilinear and biquadratic terms [23,31]. In one dimen-
sion and considering only nearest-neighbor interactions we

L The proposal from reference [29] generates SU(IN)-symmetric
spin Hamiltonians, with arbitrary N, in perturbation theory in 1/U
(where U is the usual Hubbard on-site interaction) in the Mott insu-
lating limit. To lowest order, only the Heisenberg term appears. By
symmetry, however, other SU(N)-invariant terms (biquadratic, etc.)
are also allowed and appear in higher orders of perturbation theory.
Systems which are closer to the Mott transition and at weaker inter-
action strengths should therefore be described by these more general
SU(N) Hamiltonians.

2We can adhere to this convention if we define L® =—[Lba
whenever a > b.
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have H= ), H; where

H;=JL; - Liyi + D (L; - Li)”, (4)
where L; - L;41 = Za<b L;‘bL;‘Jbrl and J;, D; are random
couplings of ith link. For later convenience, we will recast

H in terms of the linear combinations K i(l) =J;, — %Di
(2) _ N—2
and Ki = TD'L’

1) A(1 2) A(2
H; = Ki( )Og,i)-&-l + Ki( )Oz(,i)ﬂv (5)
where OAE71iL1:Li - Ljy; and OEileLi - L +

55 (Li - L),
We choose a parametrization of equation (5) in terms of
the polar coordinates (r;, 8;) in the (Ki(l), Ki(2)> plane, so

that tanf; = Ki(Q)/Ki(l). For simplicity, we focus on ran-
dom couplings K i(l) and K 2(2) with a fized ratio throughout
the chain, i.e., ; =0 Vi (the general case is discussed else-
where [23]). In the regime of strong disorder, RSPs are
found at low energies. The phase is determined by 0, as
displayed in a circle, see Figure la. The basins of attrac-
tion, delineated by the colors and arrows, are found via
a strong-disorder renormalization group (SDRG) treat-
ment [17,18,32-35]. The green and blue regions are both
characterized by infinite effective disorder at long length
scales [18]. More interestingly, both the blue and the green
regions of Figure la correspond to phases with emergent
SU(N) symmetry.

RSPs are characterized by a ground state formed
by a collection of singlets. In the blue region, these
random singlets are formed by spin pairs [SO(NV)
‘mesons’], as in the random Heisenberg chain stud-
ied by Fisher [18] (see Fig. 1b). In such a phase,
long bonds of length L have strength of order
Q~ exp (—LwM) with ¥y =1/2. Low-energy excitations
correspond to breaking the longest bonds into free
SO(N) spins. At temperature T'=1, bonds of length

L > Ly~ |lnT|1/ “M are broken and the density of
free spins is n (T) ~ L;'. Thermodynamic properties are
then easily obtained: the spin linear susceptibility fol-
lows from Curie’s law [y(] e T/n(T) ~T [InT|" ™
the entropy density is s (T) ~ (InN)n (T) and the spe-
cific heat ¢ (T) =T (ds/dT) ~ [InT|~* /¥ A hallmark
of the infinite effective disorder is the wide distribu-
tion of correlation functions C;;= (L;-Lj), so that,

i— g7

one is

at T'=0, its average value is C¥~ (—1)
whereas the typical (i.e., most probable)
[CBP| ~ exp (= (1 =41 /"),
dependent length scale [36].

In the green region of Figure 1a, on the other hand, the
ground state consists of a collection of singlets formed
out of kN (k=1,2,...) original SO(N) spins [SO(NV)
‘baryons’] as depicted in Figure lc. The same relation
between energy and length scales 2 ~ exp (—L¢B) holds,

where ¢ is a disorder-
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Fig. 1. (a) Phase diagram of the strongly-disordered one-
dimensional SO(N)-symmetric Hamiltonian of equation (5).
Points in the circle refer to the angle tan 6 = Ki@)/Ki(l)7 which
is taken to be constant despite the randomness in Ki(l’z).
The blue and the green regions realize two distinct random-
singlet phases, both with emergent SU(N) symmetry. In the
blue region, SU(N) singlets are built out of SO(V) ‘spin’ pairs
[‘mesons’, shown in panel (b)]. The green region has SU(N) sin-
glets made of kN ‘spins’ (with k=1,2,...) [‘baryons’, shown
in panel (c)]. The arrows indicate the renormalization group
flow. Red and white stars represent stable and unstable fixed
points, respectively. The black (for any N) and the yellow (for
even N) regions are not addressed in this work.

but now the exponent is ©)g = 1/N. Thermodynamic prop-
erties retain the same form described above but with
¥y — Yp. Note that the structure of these RSPs is the
same as the Damle-Huse multicritical points [7,22].

The emergent SU(N) symmetry in each of these phases
arises because, as it turns out, the strongly entangled
SO(N) singlets, be they pairs or N-tuples, are also SU(N)
singlets. Likewise, the original spins into which these sin-
glets are broken at energies above zero also transform as
SU(N) spins. As these two types of objects ultimately
determine the low-energy properties, the latter will reflect
this enhanced symmetry group. For example, the suscepti-
bilities of the SU(NN) operators (which can be constructed
from linear or bilinear combinations of the SO(N) opera-
tors, as we will show) will also have the quoted behavior
with the same exponent in each phase. The same is true of
the correlation function distributions. These two types of
phases and their properties had been described before by
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two of us in disordered spin chains with manifest SU(N)
symmetry [19]. Here, they are realized asymptotically as
emergent properties.

These are our main results. Their derivation relies on
the application of an elegant Lie algebra machinery to
the SDRG. In what follows we outline and motivate the
results, relegating the full details to a longer and more
pedagogic exposition [23].

3 SDRG details

The SDRG method is based on an iterative removal of
degrees of freedom in real space following an energy hierar-
chy dictated by the largest local 2-site gap. Each iteration
step consists of (i) the decimation of the pair with largest
gap €2 by a projection of its Hilbert space onto its ground
multiplet and (ii) the renormalization of the remaining
couplings between this sub-space to the adjacent spins
using perturbation theory. When applied sequentially, this
process translates into a flow of the distribution of cou-
pling constants. While the form of the Hamiltonian and
the connectivity of the chain is preserved, new multiplets
belonging to any one of the anti-symmetric SO(N) repre-
sentations appear throughout the flow. As a consequence,
the full characterization of the phases involves a flow of
representation distributions.

Using equation (5), the decimation rules can be writ-
ten in closed form [23]. Crucially, the decimations of the
angles 6; do not involve the radial variables r;. Suppose
the largest gap occurs between spins 2 and 3. If the ground
multiplet of Hs 3 is not a singlet, it belongs to one of the
int (N/2) anti-symmetric representation of SO(N), and
spins 2 and 3 are replaced by a new spin in that repre-
sentation. The couplings in links 1 and 3 are renormalized
according to

tan 9’41’3 = *tan 91’3. (6)

The choice of sign is determined by the representations
being decimated as well as their ground state multi-
plet [23]. If the ground multiplet of Ha 3 is a singlet, spins 2
and 3 are effectively removed. In this case, a new coupling
between spins 1 and 4 is created with [23]

N-—2
5 N + 2 Ny2 ~ tan 92
tan @ = ( N ) T tanf; tanfs.  (7)

In the blue mesonic region of Figure la, the ground
multiplets are always singlets and it follows trivially from
equation (7) that 6 =0 and —x/2 (points 3 and 4 of the
Figure) and § =—n/4 are fixed points of the flow. The
same equation can be used to show that points 3 and 4
are stable whereas 0 = — /4 is unstable.

In the green baryonic region of Figure 1a both types of
decimations occur and the analysis is more involved. The
pair of angles §# =+7/2 taken together are fixed points
and singlets are formed out of kN (k=1,2,...) of SO(N)
spins. There are several paths by which this can happen
and an illustrative example is shown in Figure 2 for SO(4).
In this case, the RG flow involves two anti-symmetric
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Fig. 2. An example of singlet formation for SO(4) at the fixed
point 1 of Figure 1la, with 6, indicated on each bond.

101 O L]

representations depicted by Young tableaux with 1 or 2
stacked boxes. Note how the angle can switch back and
forth from 7/2 to —m/2 depending on the representations
involved. This is the fixed point 1 in Figure la. A sta-
bility analysis shows that point 1 is a stable fixed point.
Similarly, the extremities of the green region 6 =7 /4 and
0 =3m/4 are unstable fixed points since, crucially, they
lead to Hamiltonians with exact SU(N) symmetry and
this symmetry is preserved by the SDRG flow.

We now show that the SO(N)-symmetric Hamiltonian
of equation (5) can be viewed as an SU(N)-anisotropic
problem. The N2 — 1 generators {A;} of the fundamental
representation of the SU(N') group are traceless Hermitian
matrices, normalized as Tr[Al(-a)Ag-b)]:%“béij. We can
break this set in a subset of N (N — 1) /2 purely imagi-
nary anti-symmetric matrices, the generators of SO(N),
and another subset of N (N + 1) /2 — 1 real traceless sym-
metric ones, which are SO(N) second-rank tensors [see
the form of Okl(i)_s_1 after Eq. (5)].
(5) is then equivalent to an
Hamiltonian,

The Hamiltonian
SU(N)-anisotropic

dso(n) N2-1
H=KD S AOAD KD Y ATAD, @

3

a=1 a:dso(]\])+1

with dSO(N):N(]gfl). We can immediately find the

expected SU(N)-symmetric points: Ki(l) =+ Kl-(2). That
the choice with a minus sign is also SU(N)-symmetric can

be seen from the transformation Aga) — —AE“)* = [Xl(.a) on
every other chain site, which changes an SU(N) represen-
tation into its conjugate and absorbs the minus sign. This
case corresponds to having SU(N) (anti-) fundamental
representations on odd (even) sites.

The location of these angular fixed points sets the
topology of the flow, as shown by the arrows in Fig-
ure la. Although the #-distribution starts as a delta
function, it broadens under the SDRG flow. The exis-
tence of the stable fixed points, however, forces the
distribution to narrow back down to a delta function
at one of the points 1, 3 or 4. Point 2 and its asso-
ciated black region are outside the scope of this paper
as symmetric representations of SO(N) are generated
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by the flow. The yellow region between the generalized
AKLT point fypg = arctan [(N — 2) / (N + 2)] (blue pen-
tagon) [37] and 7/4 flows to the fixed point 4 for odd
N. For even N, the procedure becomes ill-defined in this
region, and our method cannot be applied [23].

The renormalization of radial variables depends explic-
itly on the representations being decimated as well as the
effective ones being introduced. A systematic derivation
of such rules will be given elsewhere [23], but up to pre-
factors, the rules are the ones derived in reference [7].
The distribution of r; broadens without limit and flows to
an infinite disorder form given by P (r) ~r® (=1 Here
o (Q) = (¢¥;"—1)/|InQ|, i=B or M in the green or
blue region, respectively, and €2 is the decreasing cutoff of
the distribution [16,18,23,33].

In the blue region, adjacent spins always form a sin-
glet and no other representation appears in the flow.
The ground state structure is shown in Figure 1b. In
contrast, in the green region decimations with ground
multiplets belonging to any one of the int (N/2) antisym-
metric representations of SO(N) are generated. After an
initial transient, each one of them is equally populated
in the renormalized system.? A singlet only forms out
of kN (k=1,2,...) SO(N) spins, leading to the ground
state structure in Figure lc. The different singlet struc-
tures lead to different physical properties at finite energies,
as discussed above. The apparently intricate combinations
leading to singlet formation out of kN SO(N) spins can
be easily understood at the exact SU(N) point § = + 7 /4:
only with kN SU(N) fundamentals can one form an
SU(N) singlet [19]. The stable fixed points that attract
the flow are adiabatically connected to these SU(N) points
and have the same ground state structure.

The emergent SU(N) symmetry, as mentioned, relies
on the fact that free spins and frozen singlets, the build-
ing blocks of the renormalized system, transform as
SU(N) fundamentals and singlets, respectively. If we now

recall that some of the SU(N) generators Aga) with a €
[N (N —1)/2+41,N? —1] are actually 2nd-rank SO(N)
tensors (see Egs. (5) and (8)), it follows that susceptibil-
ities and correlation functions built with these quadratic
SO(N) operators are governed by the same power laws as
those of the SO(N) generators. Measuring SO(N) sus-
ceptibilities may sound as a challenging task. Yet, we
point that this can be envisaged at least for the case
of N =3. In this case these susceptibilities are just reg-
ular magnetic susceptibilities for spin-1 operators [16].
The susceptibilities for 2nd rank operators in this case
are nothing but quadrupolar susceptibilities; protocols for
their measurements have recently been proposed at least
in two dimensions by considering cross responses between
magnetic probes and strain [38].

4 Conclusions

Our study of random SO(N)-symmetric chains unveils a
unified mechanism of symmetry emergence in a large and

3 With one exception: for even N, the self-conjugate representa-
tion is half as likely as any of the others.
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diverse set of realizable physical situations. Some possible
realizations had been previously studied (N =2,3) but
new ones (N =4,6) are here introduced. Crucial to the
mechanism is the existence of explicit SU(NV)-symmetric
points in the parameter space whose ground states are adi-
abatically connected (no local-gap closing) to those of a
finite region: symmetry emergence requires no fine tun-
ing. Disorder is the ingredient responsible for filtering,
from the set of SO(NV) representations, those which find
correspondence in the SU(N) group.
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