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Multi-Dirac and Weyl physics in heavy-fermion systems
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We have studied multi-Dirac/Weyl systems with arbitrary topological charge n in the presence of a lattice
of local magnetic moments. To do so we propose a multi-Dirac/Weyl Kondo lattice model which is analyzed
through a mean-field approach appropriate to the paramagnetic phase. We study both the broken time-reversal
and the broken inversion-symmetry Weyl cases. The multi-Dirac and broken time-reversal multi-Weyl cases
have similar behavior, which is in contrast to the broken-parity case. For the former, low-energy particle-hole
symmetry leads to the emergence of a critical coupling constant below which there is no Kondo quenching,
reminiscent of the pseudogap Kondo impurity problem. Away from particle-hole symmetry, there is always
Kondo quenching. For the broken inversion symmetry, there is no critical coupling. Depending on the conduction
electron filling, Kondo insulator, heavy-fermion metal, or semimetal phases can be realized. In the last two
cases, quasiparticle renormalizations can differ widely between opposite chirality sectors, with characteristic
dependences on microscopic parameters that could in principle be detected experimentally.
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I. INTRODUCTION

In the last several years much attention has been devoted
to systems that show nontrivial topological states of matter
[1,2]. The main examples of topological systems are topolog-
ical insulators and topological superconductors [3,4]. Besides
their fascinating physics, this focus is also due to some of
their characteristic features that can find applications in a
wide range of areas, from electronic transport to quantum
computation [5–7].

Other important examples of topological systems are topo-
logical semimetals [8]. When time-reversal and inversion
symmetries are present, topological semimetals are charac-
terized by degenerate three-dimensional (3D) Dirac cones. If,
on the other hand, time-reversal symmetry (TRS) or inversion
symmetry (IS) is broken, the Dirac nodes split into Weyl
nodes and the system becomes a Weyl semimetal [9,10]. Weyl
nodes act as monopoles of 3D Berry curvature characterized
by the topological charge n. In 3D translationally invariant
systems, only topological charges n = 1, 2, and 3 are allowed
[11]. Most known Weyl semimetals are single-Weyl semimet-
als, characterized by unitary topological charge (n = 1) [12].
However, double-Weyl nodes (n = 2) are predicted to oc-
cur, for example, in HgCr2Se4 and SrSi2 [11,13]. Moreover,
triple-Weyl nodes (n = 3) can be found in transition-metal
monochalcogenides A(MoX )3, with A = Rb, Tl; X = Te [14].

The presence of single-Weyl nodes in the heavy-fermion
compound Ce3Bi4Pd3 [15] has been proposed as an explana-
tion of some its exotic physical properties, such as a giant
spontaneous Hall effect in a nonmagnetic regime [16–18].
These systems are referred to as Weyl-Kondo semimetals [16].
Furthermore, the presence of double-Weyl nodes has been
predicted in Weyl semimetals without inversion symmetry
[19]. Finally, the interest in Dirac(Weyl)-Kondo semimetals
goes beyond the condensed-matter community, as they are a
platform for the study of relativistic fermions in the presence

of quantum impurities such as the “QCD Kondo effect,” which
may be realized in quark matter systems [20–23].

Despite the existence of previous studies of multi-
Dirac(Weyl) systems in the presence of single and double
magnetic impurities [24–28], less attention has been devoted
to multi-Dirac(Weyl) semimetals in the presence of an ordered
lattice of magnetic moments [15–18]. It is the aim of this
paper to address this question. We propose here the study
of a multi-Weyl Kondo lattice model with arbitrary topo-
logical charge n. As a first step in that direction, we focus
on the paramagnetic phase of the model, where a large-N
inspired mean-field approach has proved extremely useful for
the understanding of experiments in the usual Kondo lattice
case. Prominent among the latter are the interaction-induced
renormalizations that lead to the large effective masses in
heavy-fermion metals and the reduced hybridization gaps in
Kondo insulators. In the multi-Dirac(Weyl) Kondo lattice, we
find three possible phases: the multi-Dirac(Weyl) Kondo in-
sulator, the heavy-fermion semimetal, and the heavy-fermion
metal. We distinguish, on the one hand, the multi-Dirac and
the broken-TRS multi-Weyl Kondo lattices, both of which
have similar properties, from the broken-IS multi-Weyl case,
on the other hand. Our main results are a thorough charac-
terization of the different renormalizations of Kondo gaps,
quasiparticle masses, and velocities. These will depend on
whether particle-hole symmetry is present or not. In particular,
in the broken-IS multi-Weyl Kondo lattice, different chirality
sectors will suffer vastly different renormalizations, which
should lead to discernible experimental signatures that we will
discuss.

The paper is organized as follows. In Sec. II we present
the multi-Dirac(Weyl) Kondo lattice model. In Sec. III we
describe the general mean-field approach used. In Sec. IV
we present the results of this approach as applied to the
multi-Dirac and multi-Weyl Kondo systems. We analyze
the mean-field results in Sec. V in light of some previous
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theoretical results and point to the measurable signatures of
our findings. Finally, in Sec. VI we wrap up with some con-
cluding remarks. Some mathematical developments are left to
the Appendices.

II. MODEL

We focus on a model of a multi-Weyl conduction band
coupled to a lattice of quantum spins, aptly described as a
multi-Weyl-Kondo lattice. The Hamiltonian consists then of
two terms,

H = H0 + HK , (1)

where H0 corresponds to the multi-Weyl semimetal described
in k space by the minimal model [27,29,30],

H0 =
∑

k

�
†
kHk�k − μ, (2)

where �k = (ck+↑, ck+↓, ck−↑, ck−↓)T , c†
ksα is the creation

operator for an electron in state k of orbital s and spin α, μ

is chemical potential, and

Hk = τz ⊗ [
v⊥k(1−n)

0 (kn
−σ+ + kn

+σ−) + vzkzσz − Q0σ0
]

−vzQτ0 ⊗ σz, (3)

where k0 is a dimensionful reference wave vector, k± =
kx ± iky, σ± = (σx ± iσy)/2, and n = 1, 2, 3 is the topological
charge that characterizes the multi-Weyl semimetal index. In
addition, σ = (σx, σy, σz ) are the Pauli matrices which act
on the (pseudo)spin space, τ = (τx, τy, τz ) acts on the orbital
space, and σ0 and τ0 denote the identity matrices in spin
and orbital spaces, respectively. The term in Q breaks TRS,
since for Q = 0 we have that T Hk(k)T −1 = Hk(−k), where
T = τ0 ⊗ (iσy)K is the time-reversal operator (with complex
conjugation K). On the other hand, the term in Q0 breaks IS.
For Q0 = 0, PHk(k)P−1 = Hk(−k), where P = τx ⊗ σ0 is

the inversion operator. When both time-reversal and inversion
symmetries are present (Q = Q0 = 0), the model reduces to a
3D multi-Dirac semimetal [31,32]. A generic Kondo Hamil-
tonian HK has two kinds of contributions, associated with
intraorbital processes and interorbital processes [33,34]. Thus
it is given by

HK = 1

2

∑
js,α,β

(JS js + W S js̄) · (c†
jsασαβc jsβ )

+ 1

2

∑
js,α,β

K (S js + S js̄) · [(c†
jsασαβc js̄β ) + (c†

js̄ασαβc jsβ )],

(4)

where α, β are spin components, s = ± are the orbital indices,
s̄ = −s, c†

jsα = 1√
V
∑

k c†
ksαe−ik·R j , and V is the number of

unit cells. The first term of HK is associated with intraorbital
processes, while the second refers to interorbital ones, both
mediated by the interaction with the local magnetic moments.
The latter are assumed to have, in general, orbital indices as
well.

III. MEAN-FIELD APPROACH

The local magnetic moment operators that appear in (4)
can be written using Abrikosov’s pseudo-fermion operators
f jsα with both spin and orbital indices as

S js = 1

2

∑
αβ

f †
jsασαβ f jsβ. (5)

A faithful representation of spin-1/2 operators requires the
enforcement of the single-occupancy constraint (per site and
orbital) ∑

α

f †
jsα f jsα = n f js = 1. (6)

Using this we can write HK up to constant factors as

HK = −J

2

∑
js,α,β

(c†
jsβ f jsβ )( f †

jsαc jsα ) − W

2

∑
js,α,β

(c†
js̄β f jsβ )( f †

jsαc js̄α ) − K

2

∑
js,α,β

[(c†
j+β f jsβ )( f †

jsαc j−α ) + H.c.] + λ̃
∑

js

(n f js − 1).

(7)

In the last line we introduced the Lagrange multiplier λ̃, anticipating the later enforcement of the constraint n f js = 1 at the mean
field level.

Mean-field Hamiltonian and free energy

We now proceed along the lines of the large-N-inspired mean-field treatment of Kondo lattices [35–37]. We do so in
Hamiltonian language through the following decouplings of the quartic terms in the usual Kondo channels:

(c†
jsβ f jsβ )( f †

jsαc jsα ) → 〈c†
jsβ f jsβ〉 f †

jsαc jsα + 〈 f †
jsαc jsα〉c†

jsβ f jsβ − 〈c†
jsβ f jsβ〉〈 f †

jsαc jsα〉,
(c†

js̄β f jsβ )( f †
jsαc js̄α ) → 〈c†

js̄β f jsβ〉 f †
jsαc js̄α + 〈 f †

jsαc js̄α〉c†
js̄β f jsβ − 〈c†

js̄β f jsβ〉〈 f †
jsαc js̄α〉,

(c†
j+β f jsβ )( f †

jsαc j−α ) → 〈c†
j+β f jsβ〉 f †

jsαc j−α + 〈 f †
jsαc j−α〉c†

j+β f jsβ − 〈c†
j+β f jsβ〉〈 f †

jsαc j−α〉.
Defining the spinors �

†
ks = (c†

ks↑, c†
ks↓) and �

†
k f s = ( f †

ks↑, f †
ks↓), where f †

ksσ = 1√
V
∑

j f †
jsσ eik·R j , we can write the mean-field

Hamiltonian in terms of �
†
k = (�†

k+, �
†
k f +, �

†
k−, �

†
k f −) as

HMF =
∑

k

�
†
kHHS

k �k + V
[∑

s

(J + K )|vs|2 +
∑

s

(W + K )|ws|2 − λ

]
, (8)
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with λ = 2λ̃, enforcing the constraint of Eq. (6) on the average, and

HHS
k =

⎛
⎜⎜⎜⎝

Hk+ − μ1 Jv+
2×2 + Kw−

2×2 02×2 W w+
2×2 + Kv−

2×2

Jv∗+
2×2 + Kw∗−

2×2 λ2×2 W w∗+
2×2 + Kv∗−

2×2 02×2

02×2 W w−
2×2 + Kv+

2×2 Hk− − μ1 Jv−
2×2 + Kw+

2×2

W w∗−
2×2 + Kv∗+

2×2 02×2 Jv∗−
2×2 + Kw∗+

2×2 λ2×2

⎞
⎟⎟⎟⎠. (9)

Above

Hks = s[v⊥k(1−n)
0 (kn

−σ+ + kn
+σ−) + vzkzσz − Q0σ0] − vzQσz,

(10)

and the matrices are given by

vs
2×2 =

(
vs 0
0 vs

)
, ws

2×2 =
(

ws 0
0 ws

)
,

(11)

λ2×2 =
(

λ 0
0 λ

)
, 02×2 =

(
0 0
0 0

)
,

where we defined the Kondo order parameters

vs = 〈c†
jsσ f jsσ 〉, ws = 〈c†

jsσ f js̄σ 〉. (12)

The equilibrium values of the order parameters are obtained
by minimization of the mean-field free energy density with
respect to their values,

FMF = − 1

β

∑
iωn

∫
d3k

(2π )3
ln det

[− iωn1 + HHS
k

]

+
[∑

s

(J + K )|vs|2 +
∑

s

(W + K )|ws|2 − λ

]
,

(13)

where β = 1/kBT , and ωn = (2n + 1)π/β is the fermionic
Matsubara frequency.

The most generic mean-field equations do not allow an
analytical treatment, although a numerical analysis is straight-
forward. In order to obtain a deeper physical understanding,
we will focus in this paper on the cases in which analytical
insight can be gained. This happens when there are only in-
traorbital Kondo interactions (J �= 0 and W = K = 0), which
we take up in the remainder of the main text. Furthermore,
in the presence of particle-hole and time-reversal symmetry
(λ = μ = Q = 0), cases with W �= 0 and/or K �= 0 also allow
for an analytical approach. These are listed in Appendix E. We
will not dwell on them because the mean-field equations have
a form quite similar to the cases discussed in detail below.

IV. MEAN-FIELD THEORY
OF THE MULTI-DIRAC/WEYL KONDO LATTICE

We will explore in detail the case in which only the in-
traorbital Kondo interaction is present, that is, J �= 0 and
W = K = 0 in the Hamiltonian of Eq. (4). Using Eqs. (9)
and (13), we obtain a block-diagonal mean-field free energy

given by

FMF = − 1

β

∑
iωn

∑
s

∫
d3k

(2π )3

× ln det

[
−iωn1 +

(
Hks − μ1 Vs

2×2
V∗s

2×2 λ2×2

)]

+
(

1

J

∑
s

|Vs|2 − λ

)
, (14)

where Vs
2×2 = Jvs

2×2. This can be written in terms of the
dispersion relations as

FMF = − 1

β

∑
s

∫
d3k

(2π )3

∑
α,ξ

ln
[
1 + e−βEαξ

s (k)
]

+
(

1

J

∑
s

|Vs|2 − λ

)
, (15)

where

Eαξ
s (k) = 1

2

(
εα

ks − μ + λ
)+ ξ

2

√(
εα

ks − μ − λ
)2 + 4V 2

s ,

(16)
and

εα
ks = α

√
A2

nk2n
⊥ + v2

z (kz − sQ)2 − sQ0, (17)

with An = k(1−n)
0 v⊥, k2

⊥ = k2
x + k2

y , α = ±, and ξ = ±. The
mean-field parameters Vs = Jvs and λ are determined by the
saddle-point equations

∂FMF

∂Vs
= ∂FMF

∂λ
= 0, (18)

resulting in∫
d3k

(2π )3

[
1

E2+
s (k) − E+−

s (k)

[
f
(
E2+

s (k)
) − f (E+−

s (k))
]

+ 1

E−+
s (k) − E2−

s (k)
(k)
[

f (E−+
s (k)) − f

(
E2−

s (k)
)]]

= − 1

2J
(19)

and

∑
s,α,ξ

∫
d3k

(2π )3
f
(
Eαξ

s (k)
)

⎡
⎢⎣1 − ξ

(
εα

ks − μ− λ
)

√(
εα

ks − μ− λ
)2 + 4V 2

s

⎤
⎥⎦ = 1.

(20)
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(b) (e) (h)

(c) (f) (i)

FIG. 1. Dispersion relations for the multi-Dirac Kondo system (in the kz = 0 plane) for n = 1, 2, 3. Upper panels [(a),(d),(g)] show the
nonhybridized bare dispersions. Middle panels [(b),(e),(h)] show the multi-Dirac Kondo insulator. Bottom panels [(c),(f),(i)] show the multi-
Dirac Kondo semimetal regime. The parameter values used are V = 0.15�, λ = 0.1�. The horizontal dashed gray line indicates the Fermi
energy.

Above, f (x) = (1 + eβx )−1 is the Fermi-Dirac distribution.
We will now solve these self-consistent equations at zero
temperature for different physical situations.

A. The multi-Dirac Kondo lattice (preserved TRS and IS)

When both TRS and IS are present (Q = Q0 = 0) H0

in Eq. (2) describes a 3D multi-Dirac system with gapless
Kramers-degenerate Dirac nodes at kD = 0, see Figs. 1(a),
1(d) and 1(g). First, let us analyze the particle-hole symmet-
ric case, μ = λ = 0. In the absence of magnetic moments,
the system is a multi-Dirac semimetal. In the presence of
these moments, however, due to the semimetallic nature of
the system, a finite mean-field Vs only occurs above a criti-
cal value (J > Jc

n ), which is characteristic of the pseudo-gap
Kondo problem [38]. Therefore, for J > Jc

n the f electrons
hybridize with itinerant multi-Dirac c electrons, giving rise to
heavy quasiparticles. The Dirac nodes are energetically split,
opening an energy gap in the spectra, Figs. 1(b), 1(e), and 1(h).
Thus, the system becomes a multi-Dirac Kondo insulator. If
both TRS an IS are present, we have Vs = V , and at T = 0 we
obtain the gap equation∫ 1

0
dx

x2/n

√
x2 + m2

= n

2 jn
. (21)

Above, jn = J/Jc
n , where Jc

n = (2/n)/ρn(�) is the critical
Kondo coupling, ρn(�) is the multi-Dirac density of states

at the high-energy cutoff �, and m = 2V/� (see Appendix B
for details). Numerical solutions of the gap equation for n =
1, 2, 3 are shown in Fig. 2. A similar gap equation is found in
the study of the axionic insulator phase for general multi-Weyl
systems [29].

1.0 1.2 1.4 1.6 1.8 2.0
jn

0.0

0.1

0.2

0.3

0.4

0.5

m

n = 1
n = 2
n = 3

FIG. 2. Numerical solution for the multi-Dirac Kondo insulator
gap equation (21) for n = 1, 2, 3.
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10−6 10−5 10−4 10−3 10−2 10−1

δ

10−4

10−3

10−2

m

n = 1
n = 2
n = 3

O Numerical
— Analytical

FIG. 3. Critical behavior of the multi-Dirac Kondo insulator or-
der parameter m for n = 1, 2, 3. Symbols show numerical results,
while solid lines are the analytical results of Eqs. (22) and (23).

Now, to study in detail the order parameter critical behavior
near the quantum phase transition (QPT) point jn ≈ 1 (J ≈
Jc

n ), we write jn = 1 + δ, with δ = |J − Jc
n |/Jc

n  1. For n >

1 (see the details in Appendix C),

m(δ) = Cnδ
n/2, (n > 1) (22)

with Cn = [ −n
√

π

�( 1
2 + 1

n )�(− 1
n )

]n/2. Specifically, C2 = 1, C3 ≈ 1.249.

In the single-Dirac case (n = 1) the critical behavior is modi-
fied by

m(δ) = f (δ)δ1/2, (n = 1), (23)

where f (δ) carries logarithmic corrections, calculated in
Appendix C. A comparison between numerical solutions and
the analytic expressions (22) and (23) is shown in Fig. 3.
The mean-field quantum critical exponent is thus ν = n/2, in
agreement with early work [38].

Away from particle-hole symmetry (μ �= 0), the density of
states of the unhybridized system (J = 0) is always finite and
the Kondo effect occurs for any finite Kondo coupling. There-
fore we obtain a multi-Dirac Kondo metal. The self-consistent
equations at T = 0 are given by∫ 1

0
dx

x(2/n)+1√
(x − α)2 + m2

= 1

ρn(�)�

[
1 − α

J/�

]
, (24a)

∫ 1

0
dx

x2/n√
(x − α)2 + m2

= 1

ρn(�)J
, (24b)

where α = (μ + λ)/� (see Appendix B).
A particular case of special interest occurs when μ =

−V 2/λ (λ > 0). In this case the lower hybridized Dirac node
is pinned to the Fermi energy: E+−

s (kD) = E−−
s (kD) = 0.

This particular choice of chemical potential realizes a multi-
Dirac Kondo semimetal, see Figs. 1(c), 1(f), and 1(i). This
is reminiscent of the choice of Ref. [16] for the single
Kondo-Weyl semimetal. The self-consistency equations of the
multi-Dirac Kondo semimetal are given by (24), but with α =
α(m, λ̄) = −m2/4λ̄ + λ̄, where m = 2V/�, λ̄ = λ/�. The

0.4 0.6 0.8 1.0

ρn(Λ)J

0.0

0.1

0.2

0.3

λ̄

n = 1
n = 2
n = 3

0.4 0.6 0.8 1.

ρn(Λ)J

0.12

0.24

0.36

0.48

(a) (b)Metal Semimetal

μ̄ = 0.1Λ

FIG. 4. Numerical solution of the self-consistent mean-field pa-
rameter λ̄ for n = 1, 2, 3 for (a) the multi-Dirac Kondo metal and
(b) the multi-Dirac Kondo semimetal.

numerical solution of the self-consistent equations, both for
the multi-Dirac Kondo metal and semimetal, are shown in
Figs. 4 and 5. Their behavior is quite similar.

B. The multi-Weyl Kondo lattice (broken TRS or IS)

1. Broken-TRS multi-Weyl Kondo lattice

When TRS is broken and IS is preserved (Q �= 0, Q0 =
0), the Kramers-degenerate Dirac nodes of the unhybridized
bands split in momentum space into two multi-Weyl nodes
with opposite chiralities at the same energy and distinct k
points k±

W = (0, 0,∓Q) [39,40], see Fig. 6(a). If the energy
of those Weyl nodes coincides with the Fermi energy we have
a nodal semimetal before coupling to the local moments. For
strong enough interactions with the lattice of local moments

1 2 3 4 5

1/ρn(Λ)J

10−8

10−6

10−4

10−2

100

m

n = 1
n = 2
n = 3

1 2 3 4 5

1/ρn(Λ)J

(a) (b)Metal Semimetal

μ = 0.1Λ

FIG. 5. Semilog plot of the numerical solution of the mean-field
parameter m for the multi-Dirac Kondo metal and semimetal for n =
1, 2, 3.
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−0.5 0.0 0.5
kz

−0.5

0.0

0.5

E
α

ξ
s

(k
⊥

=
0,

k
z
)

s = +
s = −

−0.5 0.0 0.5
kz

−0.5 0.0 0.5
kz

(a) (b) (c)

FIG. 6. Dispersion relations for the broken-TRS multi-Weyl Kondo system (in the k⊥ = 0 plane) for n = 1. (a) The nonhybridized case
(J = 0). (b) The broken-TRS multi-Weyl Kondo insulator (λ = μ = 0). (c) The broken-TRS multi-Weyl Kondo semimetal (μ = −V 2/λ). The
parameters used are Q = 0.1�, V = 0.15�, λ = 0.1�. The horizontal dashed gray line indicates the Fermi energy. The vertical dashed black
lines indicate the Weyl-node k points k±

W = (0, 0 ± Q).

and at the particle-hole symmetric point (μ = λ = 0), the
system becomes a broken-TRS multi-Weyl Kondo insulator,
because the hybridization opens a gap at the Weyl nodes,
see Fig. 6(b). At first it would appear that the hybridized
bands would define two distinct order parameters, V±. After
integration of the self-consistent equations, however, as in the
multi-Dirac Kondo case, Vs = V (see Appendix B). Thus the
mean-field equations of this broken-TRS multi-Weyl Kondo
lattice have a form similar to those of the previously analyzed
multi-Dirac Kondo lattice. In particular, if we now, as we
did in the multi-Dirac Kondo lattice case, set the chemical
potential at μ = −V 2/λ, we obtain a broken-TRS multi-Weyl
Kondo semimetal, see Fig. 6(c).

2. Broken-IS multi-Weyl Kondo lattice

Finally, we consider the case where there is TRS but IS
is broken (Q = 0, Q0 �= 0). In this case the multi-Weyl nodes
occur at the same k point kW = 0 but with different energies
ε±W = ∓Q0 [39,40]. Thus IS breaking destroys the nodal
semimetal phase generically producing a phase with electron
and hole Fermi surfaces [39]. The dispersion relations for the
nonhybridized broken-IS single- and double-Weyl metals are
shown in the upper panels of Figs. 7 (n = 1) and 8 (n = 2). In
Figs. 7(a) and 8(a), the particle-hole symmetric case (μ = 0)
is shown, whereas in Figs. 7(b) and 8(b), particle-hole symme-
try is broken by setting μ = −Q0, which pins the Weyl node
with positive chirality to the Fermi energy.

We first analyze the effect of coupling the lattice of lo-
cal moments to the broken-IS multi-Weyl Kondo lattice at
particle-hole symmetry (μ = λ = 0). In contrast to the multi-
Dirac and broken-TRS multi-Weyl cases, now the Fermi
surface is always finite and the local moments Kondo-bind to
the itinerant c electrons for any finite Kondo coupling, and
thus the critical value Jc = 0. Because a gap opens at the
chemical potential, we will call this a broken-IS multi-Weyl
Kondo insulator, as shown in Figs. 7(c) and 8(c). Moreover,
V+ = V− = V , and, at T = 0, f (E++

ks ) = f (E−+
ks ) = 0 and

f (E+−
ks ) = f (E−−

ks ) = 1, so the mean-field equation becomes

∑
s=±

∫ 1

0
dx

x2/n√
(x − sQ̄0)2 + m2

= 2

ρn(�)J
. (25)

Here, m = 2V/�, Q̄0 = Q0/�. Numerical solutions for the
order parameter m for n = 1, 2, 3 are shown in Fig. 9,
where the usual Kondo exponential dependence can be
discerned.

In the limit ρn(�)J  1 and m  Q̄0, it is possible to
extract analytically the exponential dependence on J for n =
1, 2. We find

m = f KI
1 (Q0/�)exp

[− 1/
(
2ρW

1 (0)J
)]

(n = 1), (26a)

m = f KI
2 (Q0/�)exp

[− 1/
(
2ρW

2 (0)J
)]

(n = 2), (26b)
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FIG. 7. Dispersion relations for the broken-IS (Q0 = −0.1�)
single-Weyl Kondo system (in the kz = 0 plane). The nonhybridized
limit (J = 0) is shown in the upper panels (a) and (b), with (μ = 0)
and without (μ = −Q0) particle-hole symmetry, respectively. The
interacting regimes are shown in the bottom panels (c) and (d),
with μ = 0 and μ = −V 2

+/λ − Q0, respectively. The parameters
used in the interacting particle-hole symmetric case are V+ = V− =
0.15�, λ = 0, whereas in the asymmetric case we have V+ = 0.05�,
V− = 0.25�, λ = 0.1�. The horizontal dashed gray line shows the
Fermi energy.
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FIG. 8. Dispersion relations for the broken-IS double-Weyl
Kondo system (in the kz = 0 plane). The description and parameters
used are the same as those of Fig. 7.

where

f KI
1 (x) =

√
x(1 − x)

2
exp[(1 − 3x2)/2x2], (27a)

f KI
2 (x) =

√
x(1 − 2x)

2
exp[(2 − 2x)/2x], (27b)

and ρW
n (0) is the multi-Weyl density of states at the Fermi

energy (see Appendix A for details). As expected, since IS
breaking drives the critical coupling Jc to zero, the order
parameter is nonanalytic in both J and Q0. The explicit expo-
nential dependence of m on Q0 becomes clear when we note
that ρW

n (0) ∝ Q2/n
0 [see Eqs. (A7) and (A8) of Appendix A].

Moreover, it is reminiscent of the Kondo temperature obtained
previously by one of us using the numerical renormalization
group in the study of multi-Weyl systems in the presence of

2 4 6 8 10 12 14 16

1/ρn(Λ)J

10−10

10−8

10−6

10−4

10−2

100

m

n = 1
n = 2
n = 3

Q0 = 0.05Λ

FIG. 9. Semilog plot of the order parameter m for the broken-IS
multi-Weyl Kondo insulator (Q0 = 0.05�) for n = 1, 2, 3.

a single quantum impurity [28]. We have checked that these
analytical expressions perfectly match the numerical results in
their validity region.

We now consider the particle-hole asymmetric case. In this
case, V+ �= V−. Inspired by the choice of Ref. [16], we set
the chemical potential to μ = −(V 2

+/λ) − Q0, which pins the
unhybridized multi-Weyl node with positive chirality to the
Fermi energy, i.e., E+−

+ (kW ) = E−−
+ (kW ) = 0, see Figs. 7(d)

and 8(d). Unlike the broken-TRS multi-Weyl Kondo lattice,
in broken-IS Weyl systems with both Weyl nodes at the same
k point, as we have here, a nodal semimetallic phase is not
possible. This is because, at the Fermi energy, although the
density of states associated with a particular Weyl chirality
might go to zero, the density of states associated with the
opposite chirality is always nonvanishing. Moreover, as we
will see, this difference will lead to a huge difference between
the mean-field order parameters associated with each chirality.

The self-consistency equations in the broken-IS particle-
hole asymmetric Weyl-Kondo lattice setting μ = −(V 2

+/λ) −
Q0 are (see Appendix B for details)

∫ 1

0
dx

x(2/n)+1√
[x + α(m+, λ̄)]2 + m2+

+
∫ 1

0
dx

x(2/n)+1√
[x + α(m+, λ̄) + 2Q̄0]2 + m2−

= 2

ρn(�)�

[
1 − α(m+, λ̄) + Q̄0

J/�

]
, (28a)

∫ 1

0
dx

x2/n√
[x + α(m+, λ̄)]2 + m2+

= 1

ρn(�)J
, (28b)

∫ 1

0
dx

x2/n√
[x + α(m+, λ̄) + 2Q̄0]2 + m2−

= 1

ρn(�)J
. (28c)

Above, m± = 2V±/�, Q̄0 = Q0/�, and α(m+, λ̄) =
−(m2

+/4λ̄) + λ̄. Note that for Q0 = 0, IS is restored and
Eqs. (28) reduce to Eqs. (24) for the multi-Dirac Kondo case,
as expected. Besides, for Q0 �= 0, like in the particle-hole
symmetric case, the total density of states at the Fermi level is
finite and the critical coupling constant is zero. The numerical
solutions of Eqs. (28) are plotted in Figs. 10 through 12. Like
in the multi-Dirac and broken-TRS multi-Weyl lattice, the
self-consistent parameter λ̄ does not present any exponential
behavior, nor does it change significantly with the increase
of the IS-breaking parameter Q̄0. In contrast, from Fig. 11
we can see that the order parameters m+ and m− both
behave exponentially with a marked hierarchy: m+  m−.
In Fig. 12 we show the Kondo parameters for the broken-IS
multi-Weyl Kondo lattice for several values of Q̄0 for n = 2.
Clearly, although they are equal when there IS (Q̄0 = 0),
they differ significantly as Q̄0 = 0 is increased, even though
they both decrease exponentially for decreasing ρn(�)J . This
is a reflection of the semimetallic character of the positive
chirality electronic band, contrasting with the fully metallic
nature of the negative chirality sector.
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FIG. 10. Self-consistent parameter λ̄ for the broken-IS multi-Weyl Kondo lattice for n = 1, 2, 3 for several values of Q̄0.

FIG. 11. Semilog plot of Kondo parameters m+ and m− for the
broken-IS multi-Weyl Kondo lattice for n = 1, 2, 3 for Q̄0 = −0.1.

FIG. 12. Semilog plot of Kondo parameters m+ and m− for the
broken-IS multi-Weyl Kondo lattice for n = 2 for several values of
Q̄0.

V. DISCUSSION

The mean-field description of heavy-fermion metals [41]
and Kondo insulators [42] has played a pivotal role in our
understanding of these large families of compounds. Compli-
cations due to magnetic ordering [43], particularly quantum
critical behavior [44] and heavy-fermion superconductivity
[45], are beyond the scope of the theory. However, on the
paramagnetic side of the Doniach phase diagram [43], consid-
erable insight has been gained, from the origin of the heavy
effective masses to the nature of the renormalized Kondo
insulating gap. This work offers an analogous phenomenology
for multi-Dirac and multi-Weyl Kondo systems.

We have seen that at particle-hole symmetries, the bare
multi-Dirac and TRS-broken multi-Weyl densities of states
have the power-law form ρ(ω) ∝ ωr , with r = 2/n [see
Eq. (A9) in Appendix A]. Then, in the presence of Kondo
spins, these systems become archetypes of pseudogap Kondo
systems. The pseudogap problem for a single Kondo impurity
was originally proposed by Withoff and Fradkin (WF) [38].
That and subsequent works focused on a large-N approach
similar to the one we used here [46–48]. The problem has also
been extensively analyzed using the perturbative renormaliza-
tion group (PRG) [49–52] and the numerical renormalization
group (NRG) [53–57]. It has been thoroughly reviewed in
[58]. Although we are dealing here with a lattice of spins
instead of a single impurity, the local nature of the large-N
inspired approach should lead to similar results. In particular,
the critical behavior close to Jc should be similar. In this
respect, subtle complications arise due to the absence of exact
particle-hole symmetry at all scales in any realistic descrip-
tion [46–48,58]. We have skirted these issues by working
within a simplified particle-hole symmetric description close
to the Dirac/Weyl nodes that ignores higher-energy deviations
from that symmetry. This simplification leads to the critical
behavior we found for the multi-Dirac Kondo in Sec. IV A
and the TRS-broken multi-Weyl case in Sec. IV B 1, namely,
that the characteristic energy scale m ∝ |J − Jc|ν , with ν =
1/r. We expect that a more microscopic description of the
Dirac/Weyl bands would change the detailed critical behavior
but not the presence of a critical coupling constant in the cases
considered.
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If the coupling constant exceeds the critical value, then
the usual opening of a Kondo insulating gap ensues. In con-
trast to usual Kondo insulators [42], though, the renormalized
energy gap is not an exponential function of J . This may
have detectable experimental consequences, e.g., in pressure
studies, which can tune the microscopic value of J . Away
from particle-hole symmetry, the generic behavior is that of
a heavy-fermion metal, with the usual phenomenology.

A particular fine-tuned case of possible interest, however,
occurs when the chemical potential of the multi-Dirac or TRS-
broken multi-Weyl Kondo lattice is at or close to the Dirac
or Weyl nodes, see Figs. 1(c), 1(f), 1(i), and 6(c). Then the
hybridized multi-Dirac/Weyl nodes will have renormalized
velocities, a consequence of the composite nature of fermions
in the Kondo condensate. As a result, physical quantities such
as the specific heat will be deeply affected. In general, it will
depend on temperature as a higher power law than in a metal,

Cv (T )

T
= γnT 2/n, (29)

where γn will reflect the nodal velocity renormalization (see
Appendix F). Thus specific heat measurements could play
an important role in the search for signatures of strongly
correlated topological materials [18,59].

In sharp contrast, for broken-IS multi-Weyl systems, the
bare density of states is always nonzero at the Fermi level,
see Figs. 7 and 8, and Kondo condensation will occur for any
value of J . At particle-hole symmetry, a broken-IS multi-Weyl
Kondo insulator ensues, see Figs. 7(c) and 8(c). The renormal-
ized Kondo gap has the usual exponential dependence on J , as
can be seen in Fig. 9 and from Eq. (26). Note, however, that
the IS-breaking momentum Q0 also appears in the argument
of the exponential, which might offer an opportunity for ex-
perimental detection if Q0 can be externally tuned.

The heavy-fermion metal phenomenology applies away
from particle-hole symmetry, but now there are different
mean-field order parameters m+ �= m−, each one responsible
for renormalizing a different chirality sector. Even for modest
IS breaking, these two can be parametrically widely separated,
as seen in Figs. 11 and 12. These widely different energy
scales are expected to be reflected in the temperature depen-
dence, the smallest ms crossing over to zero at a much lower
temperature than the other. Evidently, these should give rise
to detectable consequences in thermodynamic and transport
properties.

If the chemical potential happens to fall at or close to one
of Weyl nodes there will be both metallic and semimetallic
bands, as shown in Figs. 7(d) and 8(d). The specific heat
will be given by CV /T = γ0 + γnT 2/n, the first and second
terms coming from the metallic and semimetallic bands, re-
spectively (see Appendix F). Whether the presence of these
two terms can be distinguished from other contributions, such
as phonons, remains to be seen.

One final remark is worth making. Whenever any of the or-
der parameters ms has the familiar exponential dependence on
1/J , we expect its value to be on the order of the ratio between
the Kondo temperature and the bandwidth, TK/D, in conven-
tional heavy-fermion materials, namely, ms ∼ 10−3 − 10−2.
The inverse of this ratio will determine the renormalizations
of the corresponding quasiparticle masses or Kondo insulating

gap, whichever applies. In the semimetallic phases we ana-
lyzed here, however, the Dirac/Weyl masses are only weakly
renormalized, as can be easily shown. This is because we
chose a model with Dirac/Weyl points at the zone center. Had
we chosen them closer to the zone boundaries, they would
also have been strongly renormalized on a 1/ms scale (see,
e.g., Refs. [15–18,60]).

VI. CONCLUDING REMARKS

In this manuscript we have studied multi-Dirac/Weyl sys-
tems in the presence of a lattice of local moments using
the multi-Dirac/Weyl Kondo lattice model. We have done so
based on the large-N inspired mean-field approach, adequate
to the paramagnetic side of the Doniach phase diagram. At
particle-hole symmetry and in the multi-Dirac and broken-
TRS Weyl cases, there is a nonzero coupling constant Jc,
below which no Kondo compensation occurs. For J > Jc,
however, there is Kondo quenching and Kondo insulating
behavior but with a nonexponential characteristic energy
scale. Away from particle-hole symmetry Jc = 0, and either
heavy-fermion metallic or semimetallic behavior can occur,
depending on the position of the chemical potential. For the
broken-IS multi-Weyl Kondo lattice Jc = 0 always. Depend-
ing on the conduction electron filling, we can have a Kondo
insulator or a heavy-fermion metal. Different quasiparticle
renormalizations are expected for different chirality sectors.

Our results have experimental consequences that could in
principle be sought in some compounds. In particular, we
have found a complex phenomenology for the mass and ve-
locity renormalizations of the quasiparticles, which we have
described in detail, that could be directly investigated. More
detailed studies of transport properties and the effects of
disorder are promising future directions to pursue. Beyond
mean-field theory, there remain important questions we have
not touched, such as magnetic ordering, quantum criticality,
and superconductivity. We hope our results will serve as an
initial guide in those directions.
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APPENDIX A: THE MULTI-WEYL DENSITY OF STATES

The multi-Weyl density of states can be computed using the
multi-Weyl matrix Green’s function Gk(ω) = [(ω + μ)1 −
Hk]−1, where the Hamiltonian Hk is given by Eq. (3). The
spin-diagonal part of the Green’s function is given by

GW
kσ s(ω) = ω + μ + sQ0

[ω + μ + sQ0]2 − ε2
ks

+ sσ
vz(kz − sQ)

[ω + μ + sQ0]2 − ε2
ks

. (A1)
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Above, σ = ±, s = ±, εks =
√

A2
nk2n

⊥ + v2
z (kz − sQ)2, with

k2
⊥ = k2

x + k2
y , and An = k(1−n)

0 v⊥. The spectral function is

AW
kσ s(ω) = 1

π
Im
[
GW

kσ s(ω − iδ)
]

= |ω + μ + sQ0|δ
[
(ω + μ + sQ0)2 − ε2

ks

]
+ sσ

vz(kz − sQ)

2εks
[δ(ω + μ + sQ0 − εks)

−δ(ω + μ + sQ0 + εks)]. (A2)

The density of states is

ρW
σ s(ω) =

∫
d3k

(2π )3
AW

kσ s(ω)

= 1

(2π )2

∫ �′

−�′
dkz

∫ �′

0
dk⊥k⊥AW

kσ s(ω), (A3)

where �′ is a high-momentum cutoff. The density of states is
independent of the TRS breaking parameter Q. To see that, we
shift kz − sQ → kz, which leads to

ρW
σ s(ω) = 1

(2π )2

∫ �′−sQ

−�′−sQ
dkz

∫ �′

0
dk⊥k⊥AW

kσ s(ω),

from which we can drop Q in the limit of moderate TRS
breaking �′ � Q. We now make the change of variables

Ankn
⊥ = ρ cos θ, kzvz = ρ sin θ, (A4)

and use a different regularization at high energies (which does
not affect the low-energy physics), with 0 � ρ � �,−π/2 �
θ � π/2, and

dkzdk⊥ = ρ1/n

nA1/n
n vz

cos( 1
n −1)(θ )dρdθ.

The integrals in Eq. (A3) can now be easily computed as∫
d3k

(2π )3
δ
[
(ω + μ + sQ0)2 − ε2

ks

]

= 1

(2π )2nA2/n
n vz

√
π�(1/n)

�
(

1
2 + 1

n

) |ω + μ + sQ0|(2/n)−1

2
,

(A5)

where �(z) is the Gamma function, and∫
d3k

(2π )3

(kz − sQ)

2εks
[δ(ω + μ + sQ0 − εks)

−δ(ω + μ + sQ0 − εks)] = 0. (A6)

The final expression for the density of states per spin and
chirality is

ρW
nσ s(ω) = 1

2(2π )2nA2/n
n vz

√
π�(1/n)

�[(n + 2)/2n]
|ω + μ + sQ0|2/n,

(A7)

where we added a subscript “n” to highlight the dependence
on the topological charge. Thus the total multi-Weyl density

of states with both broken TRS and IS is given by

ρW
n (ω) =

∑
σ s

ρW
σ s(ω). (A8)

We notice from Eqs. (A7) and (A8) that if both TRS and IS
are preserved (multi-Dirac system) or if only TRS symmetry
is broken (broken-TRS multi-Weyl system), then the density
of states does not depend on either spin or chirality indices,
and we have ρD

n (ω) = ρW
nBT RS (ω) ≡ ρn(ω) with

ρn(ω) = 2

(2π )2nA2/n
n vz

√
π�(1/n)

�[(n + 2)/2n]
|ω + μ|2/n. (A9)

In particular, for n = 1, 2, 3, the multi-Weyl densities of states
(A7) are

ρW
1σ s(ω) = 1

4π2v2
⊥vz

|ω + μ + sQ0|2, (A10)

ρW
2σ s(ω) = 1

16π
(
k−1

0 v⊥
)
vz

|ω + μ + sQ0|, (A11)

ρW
3σ s(ω) = 1

24π2
(
k−2

0 v⊥
)2/3

vz

�(1/3)

�[5/6]
|ω + μ + sQ0|2/3.

(A12)

APPENDIX B: MEAN-FIELD EQUATIONS
FOR THE MULTI-DIRAC/WEYL KONDO LATTICE

In the multi-Dirac case with particle-hole symmetry, we
have only one mean-field parameter, Vs = V . Moreover,
at T = 0 f (E++(k)) = f (E−+(k)) = 0, and f (E+−(k)) =
f (E−−(k)) = 1, yielding

∫
d3k

(2π )3

1√
ε2

k + 4V 2
= 1

2J
, (B1)

where εk =
√

A2
nk2n

⊥ + v2
z k2

z . Introducing the high-momentum
cutoff � and performing the change of variables (A4) of
Appendix A, we obtain the dimensionless equation

∫ 1

0
dx

x2/n

√
x2 + m2

= 1

ρn(�)J
, (B2)

where m = 2V/� and ρn(�), given by (A9), is here computed
at � with μ = 0. Equation (B2) has a nontrivial solution only
above a critical Kondo coupling Jc

n , determined by letting m =
0 in Eq. (B2), resulting in

Jc
n = (2/n)

ρn(�)
, (B3)

which is consistent with the Withoff-Fradkin result for the
pseudogap Kondo problem with r = 2/n [38].

In the absence of particle-hole symmetry (μ �= 0, λ �= 0),
using the same procedure as before, at T = 0 f (E++(k)) =
f (E+−(k)) = f (E−+(k)) = 0, and we obtain the
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self-consistency equations∫ 1

0
dx

x(2/n)+1√
(x − α)2 + m2

= 1

ρn(�)�

[
1 − α

J/�

]
, (B4)∫ 1

0
dx

x2/n√
(x − α)2 + m2

= 1

ρn(�)J
. (B5)

where α = (μ + λ)/�.
When the TRS is broken but inversion symmetry is pre-

served, we have Q �= 0 and Q0 = 0. Following along the same
lines as in Appendix A, we can shift kz − sQ → kz in the
mean-field equations and, for weak TRS breaking � � Q,
the dependence on the TRS breaking parameter Q disappears,
and we conclude that Vs = V for the broken-TRS multi-Weyl
Kondo system. Thus, the broken-TRS multi-Weyl Kondo
mean-field equations are identical to those of the multi-Dirac
system [Eqs. (B4) and (B5)].

For the broken-IS multi-Weyl Kondo lattice, minimization
of the mean-field free energy leads to the self-consistency
equations ∫ 1

0
dx

x2/n√
(x − α − Q̄0)2 + m2+

= 1

ρn(�)J
, (B6)

∫ 1

0
dx

x2/n√
(x − α + Q̄0)2 + m2−

= 1

ρn(�)J
, (B7)

∫ 1

0
dx

x(2/n)+1√
(x − α − Q̄0)2 + m2+

+
∫ 1

0
dx

x(2/n)+1√
(x − α + Q̄0)2 + m2−

= 2

ρn(�)�

[
1 − α

J/�

]
, (B8)

where α = (μ + λ)/�, Q̃0 = Q0/�, and m± = 2V±/�. In
the limit Q0 = 0 we recover Eqs. (B4) and (B5), as expected.

APPENDIX C: DETAILED CALCULATIONS OF THE
MULTI-DIRAC KONDO QUANTUM CRITICAL BEHAVIOR

In the vicinity of the quantum phase transition point jn =
1 (J = Jc

n ), the Kondo coupling can be written in terms of a
small perturbation δ as jn = 1 + δ, with δ  1. Using this in
Eq. (21) and expanding up to linear order in δ we get

fn(m) = −n

2
δ, (C1)

where

fn(m) =
∫ 1

0
dxx2/n

[
1√

x2 + m2
− 1

x

]
.

Performing the variable change x = my,

fn(m) = m2/n
∫ 1/m

0
dyy2/n

[
1√

y2 + 1
− 1

y

]
. (C2)

For n > 1 we can let m → 0 since the integral converges. In
this case,

m(δ) = Cnδ
n/2, (n > 1) (C3)

where Cn = [ −n
√

π

�( 1
2 + 1

n )�(− 1
n )

]n/2. Thus for n > 1, the mean-field

critical exponent is ν = n/2.
For n = 1 we split the relevant integral as∫ 1/m

0
dyy2

[
1√

y2 + 1
− 1

y

]

=
∫ 1

0
dyy2

[
1√

y2 + 1
− 1

y

]

+
∫ 1/m

1
dy

{
y2

[
1√

y2 + 1
− 1

y

]
+ 1

2y

}
− 1

2

∫ 1/m

1

dy

y
.

We can safely let m → 0 in the second term on right-hand side
since that integral is now convergent. Using this in Eq. (C1)
results in

m2ln
(m

A

)
= −δ, (C4)

where A = √
e/2. Equation (C4) can be solved in the limit

δ  1, yielding

m(δ) = f (δ)δ1/2, (n = 1), (C5)

where f (δ) =
√ −2

W−1[−A2δ] . Here, W−1(x) is one of the branches
of the Lambert function [61], which has the following asymp-
totic behavior for 0 < x  1:

W−1(−x) = ln (x) − ln [− ln (x)] + O(1). (C6)

Thus the critical exponent is ν = 1/2, with logarithmic cor-
rections built into the function f (δ).

APPENDIX D: ANALYTICAL RESULTS
FOR THE MULTI-DIRAC AND BROKEN-TRS

MULTI-WEYL KONDO LATTICE

We can extract analytical results from the self-consistency
equations (B4) and (B5) in the n = 1, 2 cases. To do so we use
the expressions

∫ 1

0
dx

x√
(x − α)2 + m2

=
√

m2 + (1 − α)2 −
√

m2 + α2 + α[ln(1 − α +
√

m2 + (1 − α)2) − ln(
√

m2 + α2 − α)],

∫ 1

0
dx

x2√
(x − α)2 + m2

= 1

2
[
√

m2 + (1 − α)2 + 3α(
√

m2 + (1 − α)2 −
√

m2 + α2)]

− 1

2
(m2 − 2α2)[ln(1 − α +

√
m2 + (1 − α)2) − ln(

√
m2 + α2 − α)],
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∫ 1

0
dx

x3√
(x − α)2 + m2

= 1

6
√

(m2 + α2)[m2 + (1 − α)2]
{2
√

m2 + α2 + 4m4(
√

m2 + (1 − α)2 −
√

m2 + α2)

+ m2[−2
√

m2 + α2 + 13α
√

m2 + α2 + 7α2(
√

m2 + α2 −
√

m2 + (1 − α)2)]α[
√

m2 + α2 + 3α
√

m2 + α2 − 17α2
√

m2 + α2

+ 11α3(
√

m2 + α2 −
√

m2 + (1 − α)2)]} + α

2
(−3m2 + 2α2)[ln(1 − α +

√
m2 + (1 − α)2) − ln(

√
m2 + α2 − α)].

In the regime in which the Kondo parameter m is ex-
ponentially small and m  α, these equations simplify
considerably. Then if n = 1,

−α2ln

(
m2

2α

)
+ f1(α) = 1

ρ1(�)J
, (D1)

2α

ρ1(�)J
+ 1

3
(1 − 2α3) = 1

ρ1(�)�
, (D2)

where f1(α) = 1
2 {1 + 2α − 6α2 + 2α2ln[2(1 − α)]}. For n =

2 we obtain

−αln

(
m2

2α

)
+ f2(α) = 1

ρ2(�)J
, (D3)

2α

ρ2(�)J
+ 1

2
(1 − 2α2) = 1

ρ2(�)�
, (D4)

where f2(α) = 1 − 2α + αln[2(1 − α)]. Closed-form expres-
sions can be obtained when 0 < α  1, with exponential
accuracy for m. For n = 1,

α ≈ 1

2

(
1

ρ1(�)�
− 1

3

)
ρ1(�)J, (D5)

m ≈ exp

[
− 1

2ρ1(α)J

]
. (D6)

Analogously for n = 2,

α ≈
(

1

ρ2(�)�
− 1

2

)
ρ2(�)J, (D7)

m ≈ exp

[
− 1

2ρ2(α)J

]
. (D8)

APPENDIX E: GENERAL HAMILTONIAN
AT THE PARTICLE-HOLE SYMMETRIC POINT

At the particle-hole symmetric point (λ = μ = 0) and in
the presence of TRS (Q = 0), some choices of the coupling
parameters J , W , and K allow for an analytical treatment,
which we now describe. In these cases the dispersion relations
of Hamiltonian (9) are given by

Eαξ
s (k) = 1

2α
[√

ε2
ks + 4r2

1 + ξ

√
ε2

ks + 4r2
2

]
, (E1)

where α = ±, ξ = ±, εks =
√

A2
nk2n

⊥ + v2
z k2

z − sQ0, and r1

and r2 are order parameters which depend on the case in
question.

The first interesting case is K = 0, for which r1 = Jv, r2 =
W w. By minimization of the free energy at T = 0, if J > W
we have ∑

s=±

∫ 1

0
dx

x2/n√
(x − sQ0)2 + m2

= 2

ρn(�)J
, (E2)

where m = 2Jv/�, ρn(�) is the multi-Weyl density of states
(see Appendix B), and w = 0 (r2 = 0). When W > J we
should exchange (J, v) and (W,w). In both cases the dis-
persion relations are those of Eq. (16) with μ = λ = Q = 0,
V = Jv (J > W ) o,r V = W w (W > J).

The second case is J = W �= K , for which r1 = Jv + Kw

and r2 = Kv + Jw. After the free-energy minimization we
obtain v/J = w/K , and again the problem reduces to a single
order parameter ruled by Eq. (E2). However, the dispersion
relation structure is slightly different from Eq. (16) since r1

and r2 are both finite.

APPENDIX F: MULTI-WEYL KONDO
SEMIMETAL SPECIFIC HEAT

To compute the multi-Weyl Kondo semimetal specific heat
we will follow Lai et al. in the study of the single Kondo-Weyl
semimetal [16]. We will take the effective multi-Weyl disper-
sion εks = h̄

√
A∗2

n k2n
⊥ + v∗2

z (kz − sQ)2, where we restore the
fundamental constant h̄, and A∗

n = k(1−n)
0 v∗

⊥, v∗
⊥, and v∗

z are
the renormalized velocities of the heavy Fermi liquid. The free
energy can be computed as

F = −N

β

∑
s=±

∫
d3k

(2π )3
ln[1 + e−βεks ]. (F1)

Performing the momentum integral above using the same
variable transformations (A4) and using

Cv (T ) = −T
∂2F

∂T 2
,

we obtain the specific heat for the multi-Weyl Kondo
semimetal,

Cv (T )

T
= γnT 2/n, (F2)

where

γn = kB

π2

(
kB

h̄

)(2+n)/n (1 + n)(2 + n)

n4
[�(1/n)]2

× ζ

(
2 + 2

n

)
[2(2+n)/n − 1]

kn(1−n)/n
0 v

∗2/n
⊥ v∗

z

, (F3)

and ζ (s) is the Riemann zeta function.
This result agrees with Ref. [16] in the particular case

of n = 1. In general, we see that the specific heat is
enhanced relative to the noninteracting value by a factor of
(v⊥/v∗

⊥)2/n(vz/v
∗
z ).
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