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Higher-dimensional Euclidean and non-Euclidean structures
in planar circuit quantum electrodynamics
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We demonstrate that a recent proposal for simulating planar hyperbolic lattices using circuit quantum
electrodynamics can be extended to include higher-dimensional lattices in both Euclidean and non-Euclidean
spaces by allowing circuits that involve more than three polygons at each vertex. The quantum dynamics
of these circuits, which we are developing with current technology, are governed by effective tight-binding
Hamiltonians that correspond to higher-dimensional Kagomé-like structures (such as n-dimensional zeolites).
These structures are known for exhibiting strong frustration and flat bands. We analyze the spectra of both
hyperbolic and positive-curvature lattices and derive exact expressions for the fraction of flat-band states. Our
findings significantly broaden the possibilities for realizing non-Euclidean geometries using circuit quantum
electrodynamics, a research direction we are actively pursuing in microwave-guide circuits constructed with

sputtered niobium films on silicon substrates.

DOI: 10.1103/z2zk-m4c3
I. INTRODUCTION

There has been a long history of cross-pollination between
geometry and various areas of physics [1]. Geometry is at the
base of general relativity and cosmology, leading also to sur-
prising semiclassical effects such as Hawking radiation. The
difficulty of directly observing these subtle quantum effects
in a gravitational context has spurred the search for analogs
in condensed-matter systems [2—6]. Nonflat geometries, how-
ever, have proven fruitful even in situations that are not gravity
related. A prime example is geometric frustration. The opti-
mal local packing of hard spheres in an icosahedral structure
cannot be periodically extended in Euclidean space. It is, how-
ever, compatible with periodicity in hyperbolic space, which
can then serve as a starting point. The real system can then
be approximated and analyzed by introducing defects into
the pristine hyperbolic idealization (see, e.g., Ref. [7] for a
review). Other examples of this cross fertilization include the
control of infrared singularities in classical and quantum field
theories in hyperbolic space [8], the anti—de Sitter/conformal
field-theory duality [9], phase transitions in curved spaces
[10-12], and hyperbolic surface codes for quantum compu-
tation [13], among many others.

More recently, the flexibility of the design of circuit
quantum electrodynamics (cQED) [14-16] has enabled the
experimental realization of hyperbolic lattices using pla-
nar microwave circuits [17-19]. In these systems, multiple
microwave resonators are capacitively coupled to form an arti-
ficial photonic lattice. The photon dynamics can be effectively
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described by a tight-binding model in a hyperbolic plane. This
important achievement has stimulated some recent advances
such as the formulation of a band theory in hyperbolic lattices
[20] or proposals for the realization of topological phases [21].

A promising direction that follows from these results is the
integration of superconducting qubits into these architectures,
allowing for the implementation of fully interacting models
[22,23]. As far as we know, however, such experiments have
not yet been reported for either the ¢ =3 or ¢ > 3 cases.
Although there are reports describing measurements involving
N =3 sites with qubits in a Ph.D. thesis [24], no peer-
reviewed publications have resulted from those results. Other
recent works [25-27] explore lattices with superconducting
qubits, but in distinct network topologies.

A severe limitation of the systems built so far is their
confinement to strictly two-dimensional lattices. Indeed, the
planar layout of the circuits seems, at first, to preclude a
higher-dimensional setup. We propose in this paper a way
to overcome this limitation by increasing the connectivity
of the microwave resonators. This is achieved by means of
a capacitive coupling design that can symmetrically cou-
ple ¢ > 3 resonators with equal strength, a g-leg capacitor
that can be easily constructed with present technology (see
Fig. 1). As aresult, even though the device layout is contained
within the usual planar design, the effective dimension of the
underlying dynamics is greater than 2, forming a so-called n-
zeolite framework [28]. This enlarges considerably the range
of possible applications and opens the possibility of exploring
different hyperbolic structures with flat bands, as we will
show. It also affords the flexibility of generating a spatially
varying connectivity and, consequently, a nonhomogeneous
geometric configuration. Besides exploring this new design in
both cases of positive and negative curvature, we also derive
some results regarding the spectra of these systems, such as

©2026 American Physical Society
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FIG. 1. Proposed planar g-leg capacitive devices coupling the
resonators for (a) ¢ = 4 and (b) ¢ = 5. We are building these circuits
using standard microfabrication techniques. In the 4-leg capacitor
(a), for instance, the capacitance between any pair of legs is 374
pF, with deviations smaller than 0.01 pF. The generic case with ¢
symmetrical legs follows analogously as a star-shaped configuration
with g leaves. See the Appendix A further construction details.

a generic expression for the fraction of flat-band states and
some bounds for the largest eigenvalues of full and half-wave
modes.

In the following section, we will provide a brief review of
some fundamental results in circuit quantum electrodynamics
(cQED), including their layouts and the underlying lattices.
Section IIT will focus on higher-dimensional geometries and
the circuits associated with them. Our main results will be
presented in Sec. IV, while the final remarks will be discussed
in Sec. V. Some construction details for the g-leg capacitor
are included in Appendix A.

II. SUPERCONDUCTING CIRCUITS AND LATTICES

Let us briefly review some of the basics of cQED [17-19].
These photonic systems consist of identical quantum mi-
crowave resonators disposed along the edges of a layout
lattice. Each vertex of the lattice is a g-leg capacitor, re-
sponsible for the symmetric pairwise coupling between the
q resonators meeting at that vertex. This defines a lattice
called the layout graph G [see Figs. 2(a) and 2(c)]. The un-
derlying quantum dynamics of the system is governed by a
tight-binding Hamiltonian

H =Hy+ H = wy Za}ai - Zt,»j(a;aj—i—a;ai), (1)
i (i.)

where wy is the resonator frequency. The off-diagonal term H;
describes the hopping (with amplitude 7;;) of photons between
resonators induced by the capacitors. It is clear that the sites
of the Hamiltonian of Eq. (1) should be taken to be the mid-
points of the edges of the layout lattice, and its connectivity is
determined by the capacitors. This underlying lattice is called
the line graph, which we will denote by L(G) [see Figs. 2(b)
and 2(d)].

In order to describe either type of graph we will use
Schléfli’s {p, g} notation for two-dimensional regular tilings.
It denotes a tiling with p-regular polygons, or p-gons,
disposed so that g of them meet at every corner. A regular
hyperbolic tiling requires only

T=(p—2)g—2)>4, 2
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FIG. 2. Some examples of tilings with ¢ = 4 and their associated
line graphs. (a) The usual square {4, 4} tiling of E? and (b) its associ-
ated line graph, which is equivalent to a single layer of corner-sharing
tetrahedra (3 zeolites) in E3, with the blue and yellow vertices located
in two parallel planes and seen from a perpendicular viewpoint.
(c) The hexagonal {6, 4} tiling of H? and (d) its associated line
graph, which can be viewed in an analogous way: a single layer of
corner-sharing tetrahedra in H? (or in H? x R), viewed from above.
Note that a layered geometrical realization of the line graphs of
(b) and (d) are only available for {p, 4} tilings with even p, since the
disposition of the blue and yellow vertices in two parallel planes is
only possible if the line graph is bipartite. We employ here Schlifli’s
{p, q} notation for two-dimensional regular tilings (see text).

with no further restrictions on the polygons besides being
convex and regular. Hence, there are (countably) infinitely
many regular tilings of the hyperbolic plane H?, in contrast
to the possible tilings of the usual Euclidean plane E? and
the sphere S?, for which t = 4 and t < 4, respectively. The
particular choice of ¢ = 3 for the layouts explored in Ref. [17]
leads to line graphs that are Kagomé lattices of corner-sharing
triangles. These are highly frustrated two-dimensional lattices
with characteristic flat bands in their tight-binding spectra
[17-19].

The absolute value of #;; is homogeneous in the lattice, but
its sign may vary. Two sets of modes arise naturally in this
system, which should be treated separately [18]. The first are
the so-called full-wave or symmetrical modes, for which the
sign of t;; is the same for all resonator pairs (i, j). In this case,
we can write, in matrix notation,

H; = Hy = —1A;g, 3)

where A; g stands for the adjacency matrix of the correspond-
ing line graph. The second set of modes are the half-wave
or antisymmetrical modes, for which the sign of f; varies
throughout the lattice. The signs of #;; depend on a chosen
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orientation of the edges of the layout graph G. This means
that each edge of G should be assigned a head vertex and a
foot vertex. We can then write

H; =H, = —tAj;. @)
where the matrix Aj; is such that its entries are [18]
o4y -
1, 1fei_ej ore; =e;,
[Ajglij=1—1, if ef = e; ore; = e}“, 5)
0, otherwise,

where eii denotes the head (+) and foot (—) of the oriented
edge whose midpoint is i € L(G) and the comparisons in
Eq. (5) refer to the vertex shared by the edges i and j. The
matrix A7 is the adjacency matrix of the so-called signed
line graph of the layout (see, e.g., Ref. [29] for further details
on signed graphs). Although its entries depend on the chosen
orientation for G, a change of orientation of any edge of G (a
so-called switching operation) preserves the spectra of Eq. (4).
Actually, a switching operation corresponds to a gauge trans-
formation of the Hamiltonian (1), which obviously preserves
the spectra. In order to see this, let us consider an edge of the
layout lattice. Its midpoint is a lattice site of the line graph,
which we will identify as site 0. Now perform a switching
operation, i.e., change the orientation of this edge while pre-
serving all the other edge orientations. From Eq. (5), it is easy
to see that this reverses the signs of the hopping amplitudes
fo; between site 0 and its nearest neighbors in the line graph,
while leaving all the other hopping amplitudes unchanged. In
other words, the only change in the tight-binding Hamiltonian
is in the terms

Zfo,/(agaj + a;ao) - = Ztoj(a(’;aj + a;ao). (6)
(0 (0j)

Now, this is a particular case of a lattice gauge transformation
[a more general U (1) transformation would involve distinct
phases ¢®], which can be easily undone through the canon-
ical transformation of the creation and annihilation operators
given by a) — —a,, ag — —ag.

III. HIGHER-DIMENSIONAL GEOMETRIES.

Circuits based on {p, g} tilings with ¢ > 3 naturally lead
to some effective higher-dimensional structures. Figure 2 de-
picts, for example, the {4, 4} and {6, 4} tilings of E? [(a)] and
H?2 [(¢)], and their associated line graphs [(b) and (d)], respec-
tively. Note the higher-dimensional “cages” (tetrahedra) of the
line graphs. Our proposal for the construction of these lattices
depends critically on the existence of efficient implementa-
tions of symmetric planar capacitors with g-legs. Figure 1
depicts a possible star-shaped construction for these devices
based on the usual techniques of cQED, see Appendix A for
further details. In such a device, any pair of legs experiences
the same mutual capacitance, not only adjacent ones.

In general, the quantum dynamics of a {p, g}-layout cir-
cuit will be determined by its line graph (see Fig. 2): the
full and half-wave modes will be governed, respectively, by
Egs. (3) and (4). Such line graphs are composed of vertex-
sharing subgraphs, each of which is a regular (¢ — 1) simplex.
A regular n simplex is the convex hull (polyhedron) of

FIG. 3. The {3, 4} tiling of S?. Left: the octahedron in E* and its
associated planar graph, which can be implemented as a circuit with
symmetrical 4-leg capacitors. Right: the cuboctahedron (rectified
octahedron) as a schematic representation of the the octahedron line
graph, which corresponds to 6 corner-sharing tetrahedra. Each square
face of the cuboctahedron is in fact a tetrahedra, but only one is
depicted for simplicity. Such structure does not exist in E3, but can
be embedded in E°, see the text.

n+ 1 equidistant points in some n-dimensional space. For
the ¢ = 4 case of Fig. 2, this simplex is a regular tetrahe-
dron. Note that the simplices are regular due to the symmetry
of the capacitive coupling and the homogeneity of the res-
onators. In general, the line graph associated with a {p, g}
layout with symmetric couplings will be a regular graph with
2(g — 1) edges per vertex, corresponding to a structure of
corner-sharing identical (¢ — 1) simplices. Such structures of
corner-sharing identical n simplices are known in the literature
as n-dimensional zeolites [28]. Besides, its geometrical real-
ization as an embedding, if possible, clearly demands at least
a (g — 1)-dimensional background space, which cannot be
Euclidean unless the original layout is also Euclidean. Again,
for g = 4, we need 3 dimensions, as seen in Fig. 2(d).

It should be emphasized, however, that not all corner-
sharing (g — 1)-simplex frameworks corresponding to a
{p, g}-tiling line graph will admit layered embeddings as
those depicted in Fig. 2. This happens, for example, in the
{5, 4} tiling of H?. In this case, the presence of the pen-
tagon odd cycles precludes the possibility of embedding the
corner-sharing tetrahedra in two parallel planes as is possi-
ble for even p. These cases, called combinatorial zeolites,
correspond to situations without clear geometrical realiza-
tion, which nonetheless have proven to be interesting from a
theoretical point of view [30]. Our proposal allows for such
layouts to be constructed as planar circuits and their quantum
dynamics to be explored.

A. Geometrical properties of the circuits

Even though we are restricted by construction to planar
circuits, and consequently to layouts corresponding to planar
graphs, our g-leg symmetrical coupling can effectively orig-
inate quite generic higher-dimensional Kagomé-like struc-
tures. Let us consider, for the sake of illustration, the case of
the octahedral graph {3, 4}, which is the simplest 4-regular
planar graph with 6 vertices and 12 edges, corresponding to
the {3, 4} tiling of S?. The associated Kagomé structure in
this case (the octahedron line graph) is clearly a nonplanar
graph with 6 pairwise corner-sharing tetrahedra, see Fig. 3.
However, it is easy to see that it is impossible to assemble
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such structure in E®. We necessarily have to go to higher-
dimensional spaces to get a geometrical representation of the
octahedron Kagomé structure! The simplest way to embed
such structure in a homogeneous space is to consider the
octahedron not as embedded in E3, but in E>, the smallest
Euclidean space where we can accommodate 6 equidistant
points. One possible realization is to locate the vertices of the
octahedron at the points (1,0,0,0,0), (0,1,0,0,0), (0,0,1,0,0),
(0,0,0,1,0), (0,0,0,0,1), and (¢, ¢, ¢, @, @), with w:%(l +

V/6), and connect them accordingly. In this way, the resulting
line graph will correspond to a configuration with 6 pairwise
corner-sharing tetrahedra in [E3, which has effectively arisen
from the planar circuit corresponding to the octahedral graph,
as depicted in Fig. 3.

Notice that the inverse problem for these circuits is also
well posed in the sense that, given, for instance, some real
or hypothetical n-zeolite framework, one can in principle
determine its equivalent planar layout. This corresponds to
determining the original graph given its line graph, and such a
problem is known to be well posed in general and it is indeed
efficiently implemented in several graph-computing packages
[31]. As an example, it is easy to see that the line graph of a
star graph S, with n + 1 leaves is the complete graph K1,
which denotes our n simplex. Hence, one can determine the
circuit equivalent to a certain n-zeolite framework substituting
the n- simplexes with star graphs S, and connecting the ver-
tices accordingly. This can be illustrated with the octahedron
case of Fig. 3. It is not difficult to get the original circuits from
the corner-sharing n-simplex framework by replacing the n-
simplexes by S,1; graphs.

Finally, we stress that since we are restricted to planar
layouts, the corresponding graph circuits will always be em-
bedded in a two-dimensional manifold. In particular, the
continuous limit of Ref. [18] in our case will also give origin
to two-dimensional geometries. However, due to the design
flexibility of our g-leg capacitor, we can explore layouts
with spatially varying coordination g, which could simu-
late a nonuniform curvature in a two-dimensional space and,
consequently, expand the results of Ref. [18] to nonuniform
geometries.

B. Positive-curvature lattices

It is worth mentioning that even circuits with g = 3, as
those originally considered in Ref. [17], can also give rise to
effectively higher-dimensional structures. This is the case,
for example, of the fullerenes discussed in Ref. [18]. These
correspond to lattices with positive curvature, tilings of the
two-sphere S?, whose embedding requires 3 dimensions.
However, both the Cgy and Cg, finite tilings of S? considered
in Ref. [18] involve two different types of faces: pentagons
and hexagons. Hence, the associated Kagomé decoration will
necessarily also involve some isosceles triangles besides the
equilateral ones associated with the symmetrical capacitor.
Although our star-shaped proposal for the capacitor is also
able to emulate the isosceles triangles of the associated line
graph, one can circumvent this problem by considering the
regular dodecahedron circuit shown in Fig. 4, which can be
viewed as the {5, 3} tiling of the sphere S%. Since any spher-
ical tiling admits a planar representation, the dodecahedron

FIG. 4. A {5, 3} tiling of S°. Left: the dodecahedron in E3 and
its planar graph, which can be implemented as a circuit with sym-
metrical 3-leg capacitors. Right: the associated line graph, which is
realized as the triangular faces of an icosidodecahedron in E3, and
its respective 30-vertex graph. The dashed line corresponds to one of
the ten even cycles associated with the flat band in the spectra of the
icosidodecahedron graph.

can be realized as a planar layout circuit, as also shown in
Fig. 4. Its line graph is a finite Kagomé lattice known as
an icosidodecahedron (the rectified dodecahedron), a well-
known Archimedean solid. This is quite an interesting case
to be explored as a circuit due to its amenable size and known
analytical spectra.

IV. SOME EXACT RESULTS ABOUT THE SPECTRA

All the analyses and experiments of Ref. [17], which we
propose to extend here, require the knowledge of the excita-
tion spectra of the Hamiltonian of Eq. (1) for both full- and
half-wave modes. For this, some classical results for finite
graphs prove useful. In particular, Lemma 2.1 of Ref. [32]
applied to A, reads

XArg, A) = A +2)""x(Q, 1 +2), @)

where x (M, 1) denotes the characteristic polynomial for the
matrix M in the variable A, and Q = D + A, with D, A, n,
and m standing for the degree matrix, the adjacency matrix,
the number of vertice,s and the number of edges of the layout
G, respectively. The degree of a graph vertex is the number
of edges connecting to it (coordination number), and hence
the degree matrix here is the diagonal matrix whose entries
correspond to the number of resonators connected to each
capacitor in the layout circuit. The matrix Q is known in the
graph literature as the signless Laplacian matrix of the graph
G (see, e.g., Ref. [33]). The same Lemma applied to A ; gives

XA M) = A +2Y""x(L, 2 +2), ®)

where L = D — A is the usual Laplacian matrix of the layout
G. Note how Egs. (7) and (8) relate the spectrum of the line
graph L(G) to properties of its layout G. Both matrices Q and
L are positive semidefinite and, thus, the spectra of both Ay
and A} ; are bounded from below by —2. Moreover, there are
flat bands with at least m — n eigenvectors with eigenvalue
Amin = —2 for any layout G. In fact, for the half-wave modes,
the flat band has m — n + 1 eigenstates, since L always has
a single zero eigenvalue due to the fact that the layout is
connected [32]. Furthermore, Q also has one vanishing eigen-
value if and only if G is bipartite, in which case we also have
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x(0, 1) = x(L, A) [33], so that A, and AJ; have the same
spectra. This case corresponds to a layout with a balanced [29]
signed line graph. Physically, this is a consequence of the fact
that the two Hamiltonians corresponding to Egs. (3) and (4)
are gauge equivalent in this case. It is clear from Eqgs. (7) and
(8) that the spectra of the layout matrices Q and L suffice to
determine the complete spectra of the physical Hamiltonian
of Eq. (1) for both full- and half-wave modes. All the other
eigenvalues belong to the flat band at A = —2.

Let us illustrate this with the finite {5, 3} tiling of S? of
Fig. 4, whose associated line graph is the icosidodecahedron.
The layout in this case has L =3/ — A and Q = 3] +A.
Moreover, for the dodecahedron [33]

XA )= =3)R* =510 - 120 +2)*4 9

and from Egs. (7) and (8), we have finally the icosidodecahe-
dral graph spectra

S(ALe) = (=210, (1 = /3)3, =14, 14, 25, (1 +V/5)3, 41},
(10

S(ALG) = (=211, (1 = v/5)3,05, 14, (1 +v/5)3,34), (1)

where the indices give the respective eigenvalue multiplicities.
One can see that the flat band, which corresponds roughly to
1/3 of the total spectra, effectively comes from the m —n =
10 term in Egs. (7) and (8). For the full-wave modes, it is quite
easy to identify the flat-band eigenvectors: they correspond
to an alternating sequence of 1 and —1 along even cycles as
the one depicted in Fig. 4, and zero elsewhere [18]. These
cycles are closed paths that go through a unique edge of
each visited triangle in the line graph. There are 10 linearly
independent even cycles of this type in the icosidodecahedron
graph, and hence an equal number of —2 eigenvalues of A .
Finally, since we are dealing with a regular graph, the largest
eigenvalue of A, is precisely the line-graph degree, see the
Appendix B.

Flat fraction of the spectra

For a large {p, ¢} layout, the fraction f = == (m > 1)
of the spectra corresponding to the flat band is an important
property of the circuit. We can determine f from the growth
properties of the layout graphs (see Appendix B for further
details). For large hyperbolic layouts, the flat-band fraction
tends exponentially to

fzg, (12)
oc—1+g¢g
where
T—2+4+12 47
o= , (13)

2

with T given by Eq. (2). For hyperbolic tilings, o > 1. Equa-
tion (12) is also valid for Euclidean tilings (for which o = 1)
but the convergence is a power law. Spherical tilings are finite
and this discussion does not apply. For the sake of illustra-
tion, Fig. 5 depicts the spectra for some {p, g} layouts. Such
spectra are key ingredients in the kinds of experiments per-
formed in Ref. [17] and which we propose to extend to ¢ > 3
configurations.

{5.,4} layout {6.,4} layout

Eigenvalue
.,
Eigenvalue

~.

o —Y

6 200 460 660 6 500 10‘00 15‘00 2060
Eigenvector index Eigenvector index

FIG. 5. Spectra of the line-graph adjacency matrix A, for some
{p, q} layouts, with the red vertical line highlighting the predicted
flat-band endpoint. Left: a layout of 4 concentric rings of the {5, 4}
hyperbolic tilling. The associated line graph has 681 vertices. The
predicted flat-band fraction is f = 0.297. Note the gap between the
flat band and the rest of the spectra, a property of all layouts with odd
p. Since p = 5, this circuit cannot be interpreted as a layer of corner-
sharing tetrahedra as in Fig. 2. Right: a layout of 4 concentric rings
of the {6, 4} hyperbolic tilling of Fig. 2. The associated line graph
has 2233 vertices. The predicted flat-band fraction is f = 0.226. For
even p, there is no gap between the flat band and the rest of the
spectra.

V. CONCLUSIONS

In summary, we have shown that, with present-day technol-
ogy, planar circuit quantum electrodynamics can be explored
to simulate some higher-dimensional Euclidean and non-
Euclidean structures as, e.g., some n-dimensional zeolites,
opening the doors to a myriad of new possibilities in meta-
material studies and other related fields. We have investigated
the spectral properties of line graphs associated with polygon-
centered {p, g} layouts, with special emphasis on hyperbolic
geometries. Using an exact recurrence relation governing the
layered growth of these layouts, we derived the flat-band
fraction f; and established its exponential convergence to a
finite value in hyperbolic tilings, in contrast with the alge-
braic convergence observed in Euclidean cases. These results
provide a precise characterization of the asymptotic spectral
weight of the flat band as a function of the local curvature
encoded by p and g. We also analyzed the deviation of the
average degree (k) from the regular value ¢ in finite layouts,
showing that the degree deficit is concentrated at the boundary
and persists regardless of system size due to the exponential
growth of hyperbolic structures. This effect ensures the pres-
ence of undercoordinated vertices even in large systems and
reinforces the robustness of the flat band.
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Finally, motivated by these theoretical insights, we are
currently developing superconducting circuits based on com-
pact hyperbolic layouts, notably a dodecahedral configuration.
More specifically, we are exploring microwave-guide circuits
constructed with sputtered niobium films on silicon sub-
strates. This architecture is designed to probe the spectral
features discussed here and to explore experimentally the in-
terplay between geometric frustration, flat-band localization,
and nontrivial connectivity. A detailed report on this ongoing
work will be provided in a future publication [34]. Addition-
ally, another promising avenue for exploration is the study
of lattices with spatially varying coordination g, which can
simulate nonuniform curvature.
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APPENDIX A: THE g-leg SYMMETRIC CAPACITOR

We now discuss an efficient implementation of a symmetric
planar capacitor with ¢ legs, essential for the cQED appli-
cation we are proposing. Figure 1 illustrates the schematic
geometry of devices featuring 4 and 5 legs. The g-leg coupling
element, designed as a single central star-shaped section with
q legs, is positioned at the convergence point of the microwave
cavities. Each of these cavities is formed from a segment of a
Zy = 50 2 planar transmission line, coupled at its rf input and
output ports through small capacitors Ci,s. These capacitors
set the boundary conditions of the cavity as voltage antin-
odes, facilitating standing-wave resonances with wavelengths
A =2L/n, where L is the cavity length and n is an integer.
These components can be manufactured using standard mi-
crofabrication techniques in a single-layer device.

In the weak-coupling limit, where the coupling capacitors
Ciegs, connecting the transmission-line resonators to the g-leg
coupling element, are small compared to the total capacitance
of the resonator Cg, the g-leg elements can be adiabatically
eliminated [14,15], allowing the system to be effectively de-
scribed by a tight-binding Hamiltonian, as shown in Eq. (1).
The photon-hopping amplitude between two resonators is then
[14,15]

tij X Ciegsij, (A1)

where ®;; is the voltage-mode function of the pair (i, j).

To ensure homogeneous photon-hopping amplitudes, the
capacitance between any two resonators (i, j) within the
network must be the same. To demonstrate the viability
of constructing such devices, we simulated the capacitance

between the cavities depicted in Fig. 1 using the Ansys Q3D
Extractor software. This process involved utilizing the CAD
file of our circuit to solve Maxwell’s equations, thereby deter-
mining the field and charge distributions. Employing standard
parameters used in cQED devices, we conducted electrostatic
simulations of the g-leg geometry based on the layout il-
lustrated in Fig. 1. These simulations were performed for
devices on a 500 um silicon substrate with a relative per-
mittivity of 11.45, and the superconducting thin film was
modeled as a 100-nm thick perfect electric conductor. The
resulting capacitance between any two legs was determined
to be 0.37399 £ 0.00001 fF and 0.27110 £ 0.00003 fF for
the 4-leg and 5-leg configurations, respectively. These results
suggest that the proposed geometry for the g-leg capacitor can
achieve uniform photon hopping within the circuit.

APPENDIX B: SPECTRA AND GROWTH PROPERTIES
OF LAYOUTS

The fraction f = *-* corresponding to the proportion of
zero eigenvalues in the spectrum of the adjacency matrix of
the line graph, which corresponds to the flat band, is a key
feature in the spectral analysis of these circuits. Recalling that
the average degree (k) of a graph with m edges and n vertex is

given by

(k) = —, (B1)
we have

=1-—. B2
f 7 (B2)
We can obtain the fraction f for finite {p, g}-hyperbolic lay-
outs from the growth properties of these graphs. The problem
of the growth of vertex-centered hyperbolic tilings was con-
sidered in Ref. [35]. One can easily adapt that approach to our
problem of growing polygon-centered layouts by the accretion
of concentric layers of tilings. Let us assume we have a layout
composed of £ concentric rings of vertices, ordered outwards,
of a {p, g} tiling, with p > 3. It will become clear that the case
of a triangular tiling (p = 3) is intrinsically different and will
not be treated here since it does not seem to be interesting
for our purposes. Each ring j contains two types of vertices:
type-B vertices, which connect to the previous (j — 1)th ring,
and type-b vertices, which do not. These are illustrated in
Fig. 6. Let b; be the number of vertices on the j th ring that
are not connected to the (j — 1)th one, and B; the number
of remaining vertices which are connected to previous ring.
For example, for the {6, 4} tiling of Fig. 2, one has b; = 6,
B; =0, b, =30, B, = 12, and so on. Each edge emanating
from the j th ring will necessarily reach a B-type vertex in the
(j + 1) th ring and, thus, we have

Bji1 = (g —2)bj + (g — 3)B;. (B3)

The recurrence for the b vertices is a little more intricate. From
Fig. 6, we see that for each B vertex, there are ¢ — 2 polygons
between the jth and the (j 4 1)th rings. For the b vertices,
there are ¢ — 1 of such polygons. Each one of these polygons,
which we assume to be ordered anticlockwise, will lead to
p — 3 b vertices in the (j + 1) th ring. To compute b;;, we
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Wl

FIG. 6. Three concentric rings of a polygon-centered {p, g} lay-
out (p > 3) with their two types of vertices: the B type, connecting
the j th ring to the previous (j — 1) th one, and the b type, that do
not connect to the previous ring. There are g edges meeting at every
vertex.

run circularly over all these polygons between the j th and the
(j + 1) th rings. In order to avoid double counting, we neglect
the last polygon of each vertex, since it coincides with the
first one of the next vertex. We must also neglect one vertex
in the sum of each vertex in the j th, since the first polygon, in
contrast to the other ones (with the exception of the last), has
one of its edges on the j th ring. Finally, we have the following
recurrence system, valid for p > 3,

bim) _ (@=2D(p=3)—-1 (g=3)p-3) -1
By q—2

q—3
(B4)

For any polygon-centered {p, ¢} layout, the initial condition
for Eq. (B4)is by = pand By = 0. We can determine the num-
ber of edges m; and vertices n; of a {p, g} layout consisting of
£ concentric rings from the function B, alone. Following Ref.
[35], let ¢, be the number of polygons in the layout. Then,

(B5)

The number of vertices in the same layout will be given by

¢ ¢
1
ne = Z(bj +Bj) = TzZ(BjH + Bj)
=1 1= 53
B 2(ty — 1
_ Beri +2(% )’ (B6)
qg—2

where Eq. (B3) was used. The number of edges m, can be
determined from Euler’s formula for planar graphs

ng—mg+tg=1, B7

1.0
0.8
“— 0.6
=
= 0.4
e {64}
0.2 {5,4}
e ({73}
e {44}
0.0 T T T
1 2 3 4 5

14

FIG. 7. Convergence of f,/f as a function of the number of rings
¢ of the layout [see Eqgs. (12) and (B8)] for different tilings. The
convergence for hyperbolic tilings is exponential, in contrast to the
power-law convergence for the Euclidean case ({4, 4}).

from which we finally have the fraction

my — ng qg—2
= = , B8
f( my Cz + q ( )
where
B
C = L (B9)
tp—1

The fraction of Eq. (B8) for large layouts is determined by
limy_, oo C;. In order to evaluate this limit, let us consider
the equation for B, obtained from the recurrence system of
Eq. (B4)

Boyi = (t —2)B; — By, (B10)
with t given by Eq. (2), whose solution for our case is
-2
B == D e g2ty (B11)

o2 —1
with o given by Eq. (13). Note that this solution is valid

only for hyperbolic tilings. For Euclidean ones o = 1 and the
solution is B, = p(q — 2)(¢£ — 1). From Eq. (B11),

p(q _ 2) O,€+1 _ 0,2 —o+ 0,27Z

=1+ P o , (B12)
yielding
—2¢
C = 1:31721[)(_1(01 1)()772, (B13)
and finally
Jlim Co=0 1, (B14)

from which Eq. (12) follows immediately. For Euclidean
tilings, we have instead

(B15)

which is also compatible with Eq. (12), albeit with a slower
power-law convergence. Figure 7 illustrates the convergence
of f; as a function of the number of rings ¢ of the layout for
different tilings.
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It is worth mentioning that from Eqgs. (12) and (B2), the
average degree of a large {p, ¢} layout is

(k) = 2<ﬁ)_
o+1

This shows that, although hyperbolic tilings are g regular, we
always have (k) < ¢ for any finite hyperbolic layout, no mat-
ter how large it is. This is hardly surprising since all vertices
with degree deficiency (k < g) are located in the outermost
ring of the layout and hyperbolic tilings grow exponentially.
In contrast, Euclidean tilings grow linearly and have (k) = q.
Besides the flat band, we can also estimate the largest
eigenvalues of A; g and A ; from some classical results for the
spectra of the matrices Q and L. For instance, if u stands for

(B16)

the largest eigenvalue of Q, one has [33] 2kmin < 1 < 2kmax,
where kpmin and kn,x stand for, respectively, the minimal and
maximal degree of the layout, with the equality holding if and
only if G is regular. For our case, knj, = 2 in the outermost
ring and kn,x = ¢, implying

2 < max[S(ALg)] < 2(¢ — ). (B17)

There are many similar bounds for the largest eigenvalue of
the Laplacian matrix, and they can be used to estimate the
largest eigenvalues of A} ; analogously. For instance, from the
elementary bound [32] kpax < V < 2kpax for the the largest

eigenvalue v of L, we have
g—2 <max[SA;HI < 2(g - D). (B18)

These bounds can be checked against Fig. 5.
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