

MCCL Framework

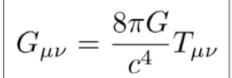
Why is weak lensing difficult to measure?

MCCL Framework

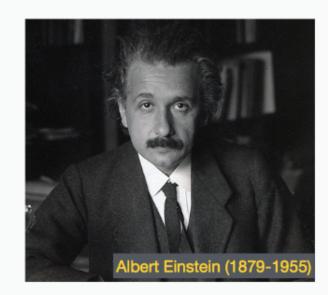
Why is weak lensing difficult to measure?

first a quick recap of lensing

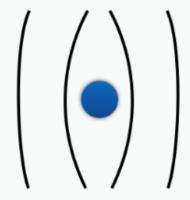
Gravitational Lensing



$$\alpha = \frac{4GM}{c^2} \frac{M}{r_m}$$

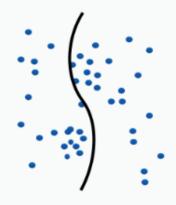


Two Limits



Strong Lensing:

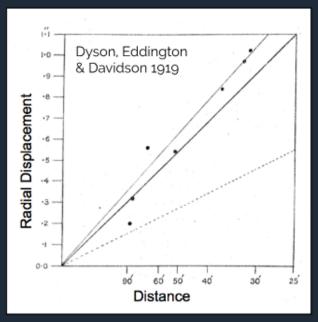
Single object effect Large displacements Physics of instabilities Sensitive System



Weak Lensing:

Lowest order - no Lensing <k> = 0
Fluctuations in density -> weak lensing
Effect is small
Collective action
Statistical physics

Examples of Gravitational Lenses

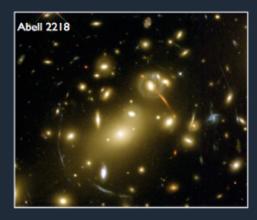


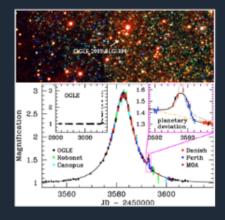
1915: General Relativity

1919: Eclipse Experiment

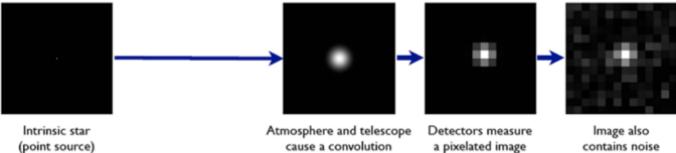
1937: Galaxies as Lens (Zwicky)

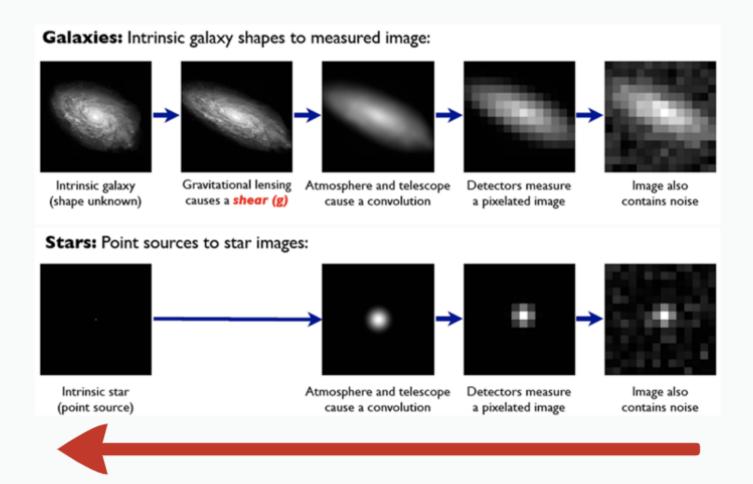
1979: First Galaxy Lens



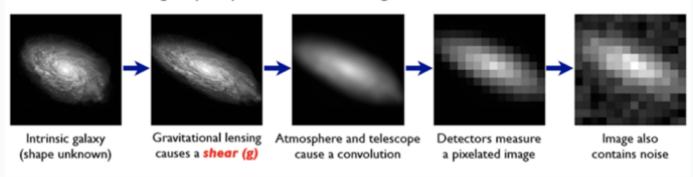


Galaxies: Intrinsic galaxy shapes to measured image: Intrinsic galaxy (shape unknown) Gravitational lensing causes a shear (g) Atmosphere and telescope cause a convolution Detectors measure a pixelated image Contains noise Stars: Point sources to star images:

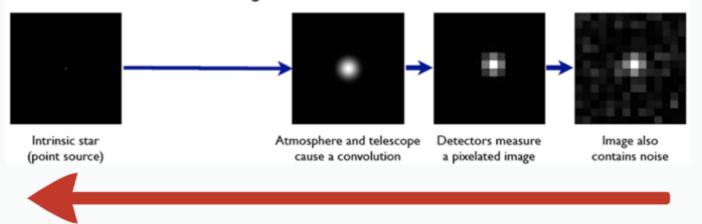


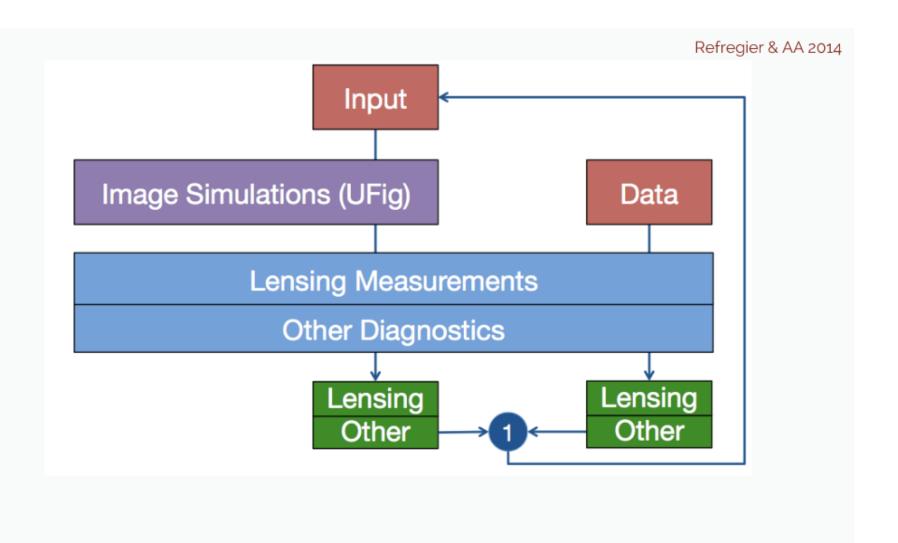


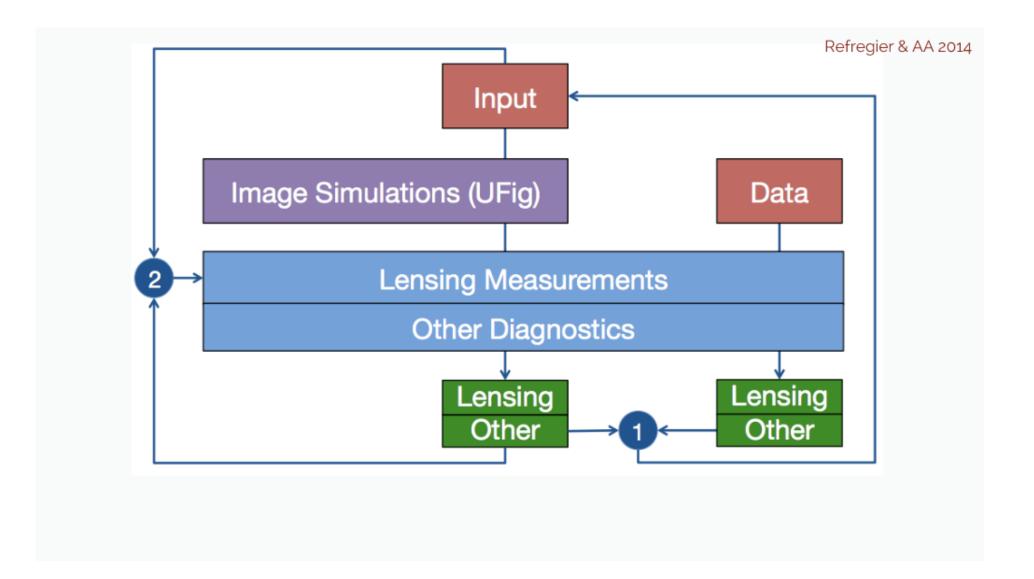
Galaxies: Intrinsic galaxy shapes to measured image:

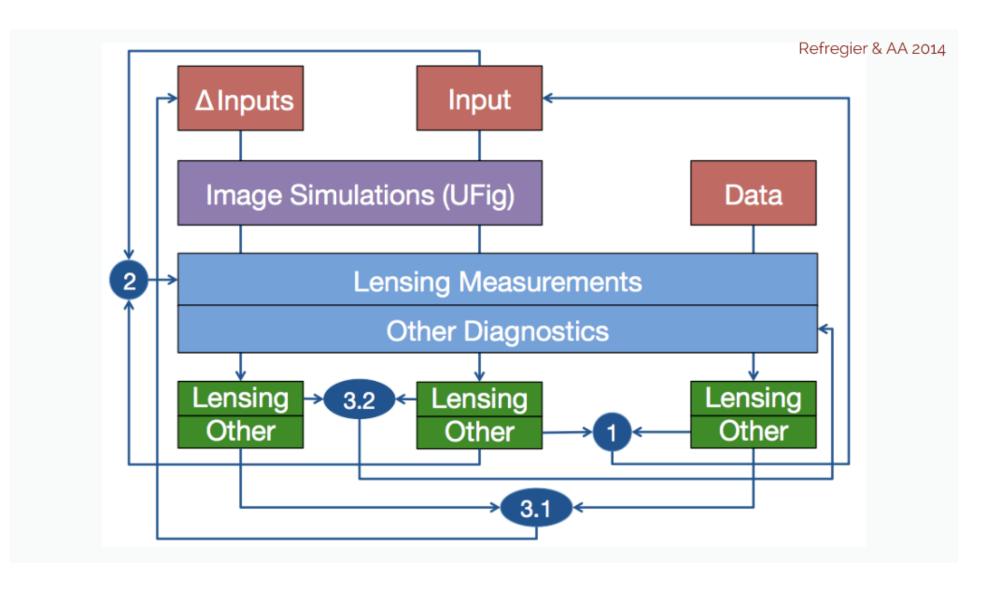


Stars: Point sources to star images:





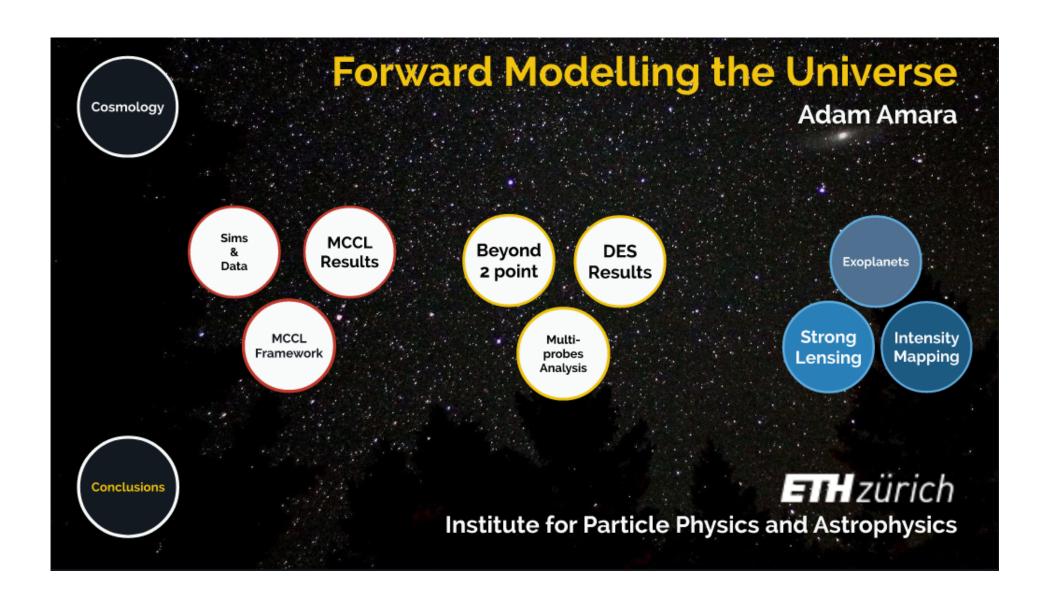


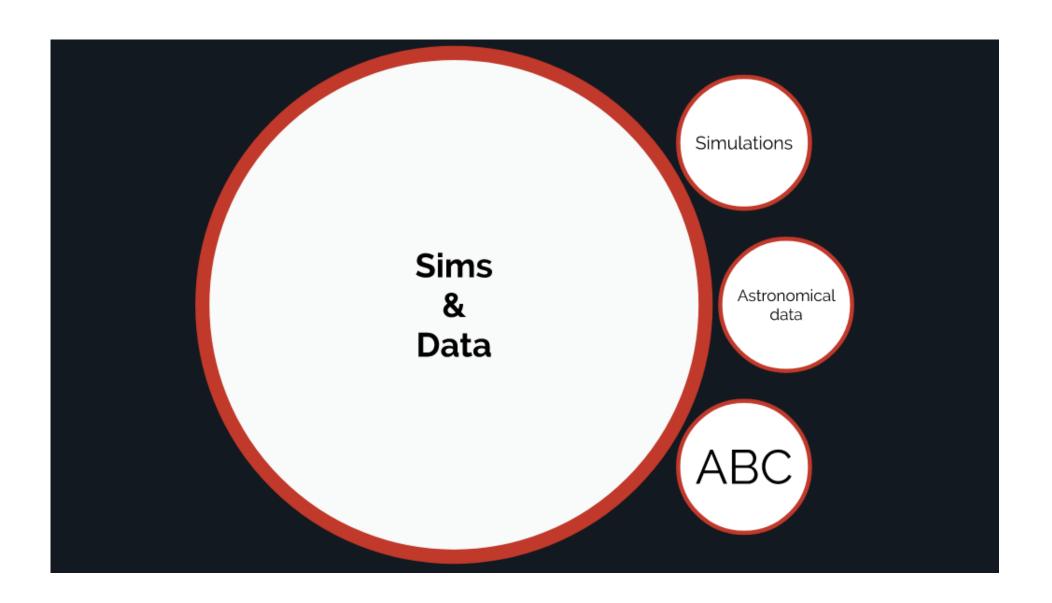


Key Features

- For each analysis of data we will need to analyses lots of simulations
- The analysis pipeline therefore needs to be fast
- The simulation pipeline needs to be fast also
- The MCCL method takes a holistic end-to-end approach

+ earlier contributions: Joel Berge, Lukas Gamper, Chihway Chang, Laurence Gamper and Joel Akeret





Simulations

Simulations (generative models) are the backbone of a forward modelling approach

Forward modelling has been done in other areas (high enegry particle physics and CMB)

Applying these ideas to the late-time universe allows for new inovations (complex fields and modern methods)

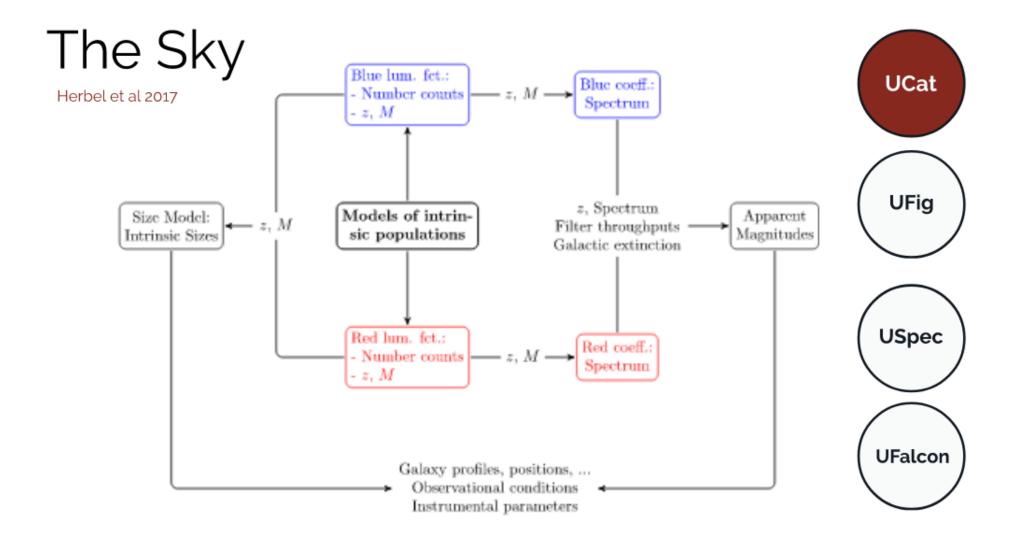
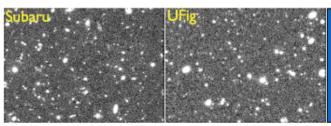


Image Rendering

Berge et al 2013



Speed the driving factor

As fast as SExtractor (or faster)
Subaru Image (0.25
deg2,R~26,10kx8k) generated in:
30sec on a laptop
30µsec per galaxy

HOPE: A Python Just-In-Time compiler for astrophysical computations

| Python | Numba | Cython | Nuitka (NumPy)

Akeret et al 2014 http://hope.phys.ethz.ch

	Python (NumPy)	Numba	Cython	Nuitka (NumPy)	PyPy (NumPy)	numexpr (8 cores)	норе	C++
Fibonacci	57.4	65.7a	1.1	26.7	21.1	_	1.1	1.0
Quicksort	79.4	_b	4.6	61.0	45.8	_	1.1	1.0
Pi sum	27.2	1.0	1.1	13.0	1.0	_	1.0	1.0
10 th order	2.6	2.2	2.1	1.2	12.1	1.4	1.1	1.0
Simplify	1.4	1.5ab	1.8	1.4	23.2	0.6	0.015	1.0
Pairwise	1357.8	1.8	1.0	1247.7	277.8	_	1.7	1.0
distance	(8.7)	1.0	1.0	(9.5)	(60.4)		***	1.0
Star PSF	265.4	250.4a	46.2	234.6	339.5	_	2.2	1.0

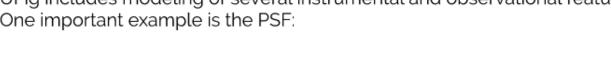
Several image simulatin tools in WL: Phosim, Balrog, GalSim

PSF modeling with deep learning

PSF model

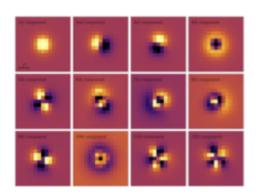
Herbel et al 2018

UFig includes modeling of several instrumental and observational features. One important example is the PSF:

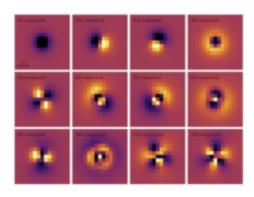


$$\theta_i'' = A_{ij}\theta_i' + D_{ijk}\theta_i'\theta_k' + E_{ijkl}\theta_i'\theta_k'\theta_l'.$$

Model parameters



CNN



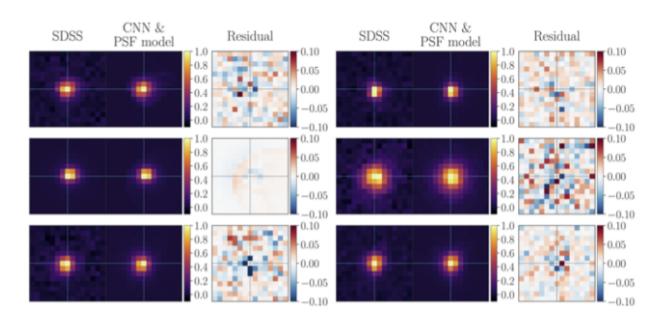
Refregier & AA 2014

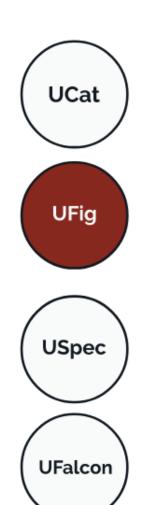
USpec

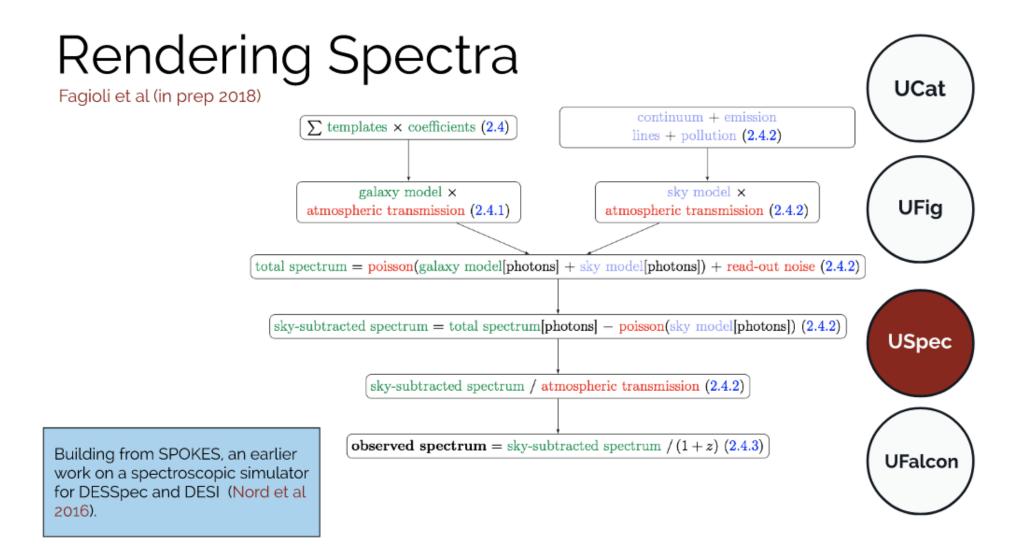
PSF modeling with deep learning

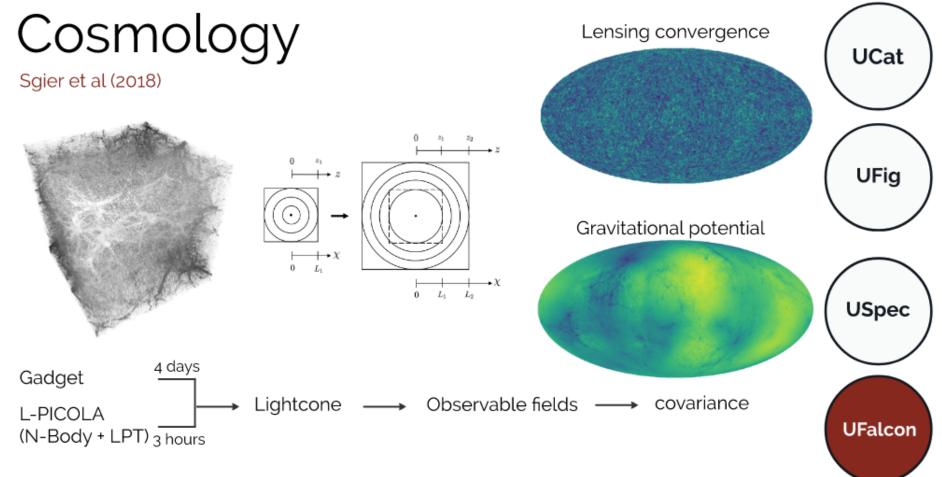
Herbel et al 2018

UFig includes modeling of several instrumental and observational features. One important example is the PSF:





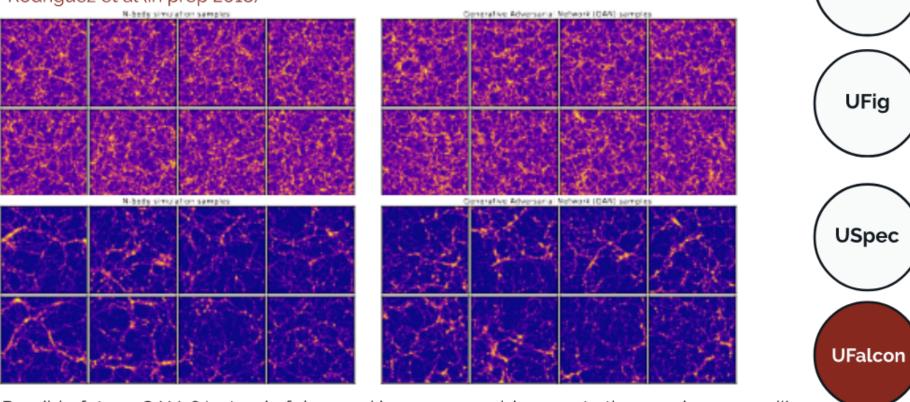




Tassev, Zaldarriaga, Eisenstein (2013), Howlett et al. (2015)

Cosmology

Rodriguez et al (in prep 2018)



UCat

Possible future: GANs? Instead of days and hours, we could generate thousands a second!!

Astronomical data

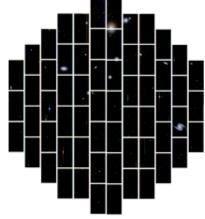
In a **multi-probe**, **multi-experiment** era, we need to combine several data sets.

The Dark Energy Survey

First light 12 September 2012

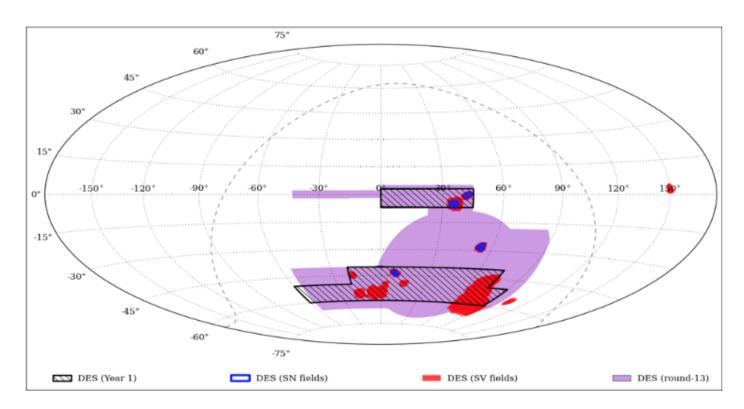
Cosmology targeted experiment





Sloan (Spectra)

Survey footprint



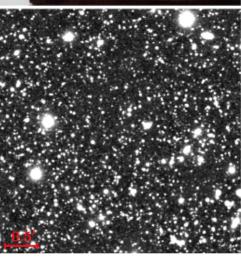
Deep Broad Band

Publically available data e.g. Suprime-Cam of COSMOS field

- 1.85 square degrees
- four bands (g+, r+, i+, z+)
- depth in r band ~27

(for more details see Capak et al 2008)





PAU - Physics of the Accelerating Universe

PAU Survey Collaboration

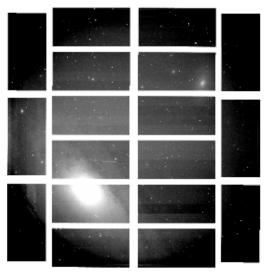
using PAUCam - 40 narrow band imaging (13 nm wide in steps of 10 nm)

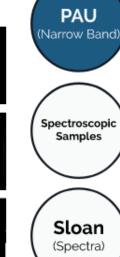
target:

- 100 square degrees
- iAB ~ 23-24

On going data collection (mostly TAC)

for more details see Castander et al 2012)





VIMOS VLT Deep Survey

DES (Broad Band)

Publically available redshift sample

Three magnitue limited sub-surveys:

- VVDS-Wide: 17.5 < magi < 22.5
- VVDS-Deep: 17.5 < magi < 24.0
- VVDS-Ultra-Deep: 23 < magi < 24.75

Sample at the level of 10k galaxies

(see Le Fevre et al 2004 for more details)

Full spectra

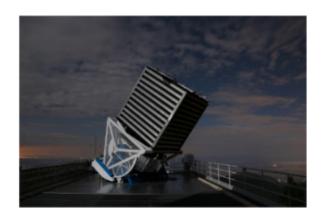
Public data as part of SDSS DR13

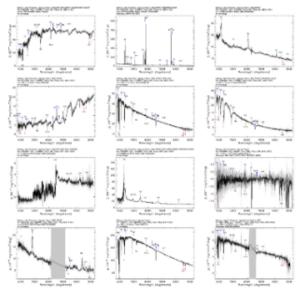
Imaging and spectroscopic data

BOSS survey (part of SDSS III)

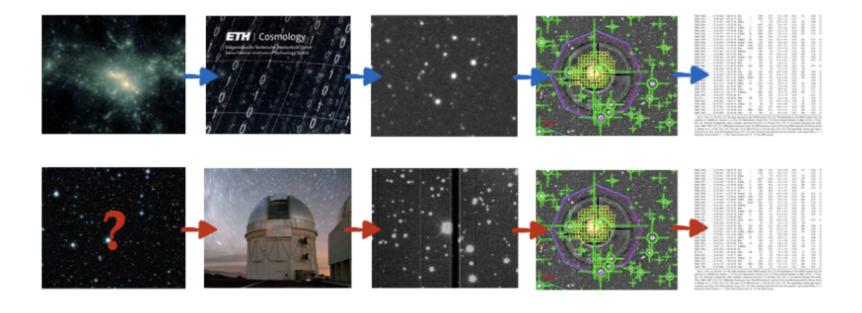
~400 nm -> ~1000 nm

(for more details see Smee et al 2013)





ABC



The problem: Comparing catalogs, it is hard to calculate a likelihood. So how do we do a proper probablistic analysis? -> **Approximate Baysian Computation** (ABC)

Recap of Baysian analysis

$$p(\theta|x) = \frac{p(x|\theta)p(\theta)}{p(x)}$$

Requires a calculation of the likelihood, which accounts for the error model.

Often, we cannot calculate the likelihood, but we can simulate the data (called either forward modelling or generative models)

if x is the data and x' is the simulated (generated data):

$$p(\theta|x) \approx p(\theta|\rho(x,x')) \le \epsilon$$

Seems like magic, but it is right

A simple example where we want to measure the mean of a Gaussian IID process, with flat prior.

Baysian result:

$$p(\theta|x) = \left(\frac{n}{2\pi\sigma^2}\right)^{1/2} \exp\left[-\frac{n(\theta-\bar{x})^2}{2\sigma^2}\right]$$
 $\operatorname{var}[\theta] = \frac{\sigma^2}{n}$

ABC result:

$$p(\theta|\rho<\epsilon) = \frac{1}{2\epsilon} \left[\Phi\Big(\frac{\bar{x}-\theta+\epsilon}{\sigma/\sqrt{n}}\Big) - \Phi\Big(\frac{\bar{x}-\theta-\epsilon}{\sigma/\sqrt{n}}\Big) \right] \quad ; \quad \text{var}[\theta|\rho<\epsilon] = \frac{\sigma^2}{n} + \frac{\epsilon^2}{3} \qquad \lim_{\epsilon\to 0} \qquad \text{Baysian result}$$

$$\Phi(t) = \left[1 + \text{erf}(t/\sqrt{2})\right]/2$$

Challenges

ABC method is powerful and simple, but it can be computationally challenging. The key (again) is fast generators, efficient distances choices and clever algorithms.

Brute force:

random samples from the prior and rejection Simple, robust, but very time consuming (see Herbel et al 2017 for an example)

· ABCPMC:

Population Monte Carlo that reduces the threshold in steps Efficient but difficult to implement (see Akeret et al 2015 for an example)

· qABC:

ABC accelerated with quantile regression Excludes very unlikly parts of the prior, increases efficiency (see Kacprzak et al 2017 for more details)

