TABELA DE EVAPORAÇÃO POR DUAS FONTES

TABLE 14 Two-source Evaporation, Experimental Conditions, and Types of Films Obtained

Evaporated constituents	Evaporation conditions and method of control	Sub- strate temp, °C	Films obtained	References
	Alloy and Multi	phase Film	S	
Cu + Ni	Sequential evaporation	Low	Stratified films. Annealing at 200°C yields two-phase alloy films	241
Cu, Ag, Au, Mg, Sn, Fe, Co.	Simultaneous evaporation from two sources. Ionization-rate monitor control, ±1%	-193	Binary alloy films of metastable structures	240
Cu, Ag, Au, Al, Ni, and others	Simultaneous evaporation from two sources. Rates adjusted by varying source temperatures	25-600	Binary alloy films of varying composition and structure	242
Ni + Fe		300	Permalloy films. $d' \approx 10 \text{ Å s}^{-1}$	238
Nb + Sn		25–700	Superconducting Nb ₁ Sn films. $d' \approx 2 \text{ Å s}^{-1}$, $\alpha_c \approx 1$	243
V, Nb + Si, Sn			Superconducting films of approx composition Nb ₂ Sn and V ₃ Si	237
ZnS + LiF	Two sources, rates monitored by a micro- balance. Variable impingement ratios	30-40	Mixed dielectric films of different composi- tion. $d' = 10-30 \text{ Å s}^{-1}$	244
Au, $Cr + SiO, MgF_2$		25-300	Au-SiO, Au-MgF ₂ , Cr-SiO, and Cr-MgF ₂ resistor films of different compositions	245
Cr + SiO		400	High-resistivity Cr-SiO films of variable com- position	246

TABLE 14 Two-source Evaporation, Experimental Conditions, and Types of Films Obtained (Continued)

Evaporated constituents	Evaporation conditions and method of control	Sub- strate temp, °C	Films obtained	References			
Compound Films							
Cd + S	Two effusion ovens, Cd at 400–450°C, S at 120–150°C. Cd excess	400-650	Stoichiometric CdS crystals	232			
Cd + Se	Impingement fluxes controlled by source temperature. $N_{\rm Cd} = 2 \times 10^{15}$, $N_{\rm Sc} = 10^{16}$. 10^{16} cm ⁻² s ⁻¹	200	Stoichiometric CdSe films	247, 248			
PbSe + PbTe		300	Epitaxial films of PbSe _{1-x} Te _x on NaCl crystals	233			
Bi + Te	Bi source at 750°C, Te source temperature variable. $N_{\text{Te}}:N_{\text{Bi}}=1040$	400-500	Stoichiometric films of Bi ₂ Te ₈ . n-type, 2 × 10 ¹⁹ electrons cm ⁻³	249			
Bi + Se	Rate control by quartz-crystal oscillator. Se source at 250°C; Bi source temperature variable	52	Vitreous, semiconducting films of nonstoichi- ometric composition	250			
Al + Sb	Source temperatures adjusted by quartz- crystal oscillator to yield N _{Sb} : N _{Al} ratios of 1.6-16	550	Stoichiometric AlSb films. $d' \approx 10 \text{ Å s}^{-1}$	234			
Ga + As	Ga source at 940–970°C, As source at 300°C. $N_{\rm As}$: $N_{\rm Ga} \approx 10$; Ga impingement flux: 10^{15} cm ⁻² s ⁻¹	550	Stoichiometrie GaAs films. Epitaxial on (100) NaCl, polycrystalline on quartz	251			
Ga + As	Ga source at 910°C, As source at 295°C. Deposition rate: <2 Å s ⁻¹	375-450	Stoichiometric GaAs films on GaAs, Ge, and Al ₂ O ₃ single-crystal substrates. Fiber texture to single-crystalline	252			
In + As	Incident fluxes: $N_{In} = 5 \times 10^{18} \text{ cm}^{-2} \text{ s}^{-1}$, $N_{An} = 5 \times 10^{16} - 5 \times 10^{17} \text{ cm}^{-2} \text{ s}^{-1}$	230-680	Stoichiometric InAs films; n-type	247, 248			
In + Sb	Incident fluxes: $N_{\text{In}} = 5 \times 10^{16} \text{ cm}^{-2} \text{ s}^{-1}$ $N_{\text{Sb}} = 5 \times 10^{16} - 5 \times 10^{17} \text{ cm}^{-2} \text{ s}^{-1}$	400-520	Stoichiometric InSb films; n-type	247, 248			
	Source temperatures adjusted by microbal- ance to yield N_{Sb} : $N_{In} = 1.1$	250	Stoichiometric InSb films; α_c of Sb ≈ 0.6	253			