TABELA DE TEMPERATURAS E DE MATERIAIS DE SUPORTE TABLE 4 Temperatures and Support Materials Used in the Evaporation of the Elements | Element and predominant vapor species | Temp, °C | | Support materials | | | |--|--------------|----------------------|-------------------------|--|--| | | mp | $p^* = 10^{-2}$ Torr | Wire, foil | Crucible | Remarks | | Aluminum
(Al) | 659 | 1220 | w | C, BN,
TiB ₂ -BN | Wets all materials readily and
tends to creep out of containers.
Alloys with W and reacts with
carbon. Nitride crucibles | | Antimony
(Sb ₄ , Sb ₂) | 630 | 530 | Mo, Ta,
Ni | Oxides, BN,
metals, C | preferred Polyatomic vapor, $\alpha_v = 0.2$. Requires temperatures above mp. | | Arsenic
(As ₄ , As ₂) | 820 | ~300 | | Oxides, C | Toxic Polyatomic vapor, $\alpha_r = 5.10^{-5}$ – 5.10^{-2} . Sublimates but requires temperatures above 300°C. Toxic | | Barium (Ba) | 710 | 610 | W, Mo,
Ta, Ni,
Fe | Metals | Wets refractory metals without
alloying. Reacts with most
oxides at elevated temperatures | | Beryllium
(Be) | 1283 | 1230 | W, Mo,
Ta | C, refractory
oxides | Wets refractory metals. Toxic,
particularly BeO dust | | Bismuth
(Bi, Bi ₂) | 271 | 670 | W, Mo,
Ta, Ni | Oxides, C,
metals | Vapors are toxic | | Boron (B) | 2100
±100 | 2000 | | С | Deposits from carbon supports are
probably not pure boron | | Cadmium
(Cd) | 321 | 265 | W, Mo,
Ta, Fe,
Ni | Oxides,
metals | Film condensation requires high
supersaturation. Sublimates.
Wall deposits of Cd spoil vacuum
system | | Calcium (Ca)
Carbon
(Ca, C, C2) | 850
~3700 | 600
~2600 | w
 | Al ₂ O ₂ | Carbon-arc or electron-bombard-
ment evaporation. $\alpha_v < 1$ | | Chromium
(Cr) | ~1900 | 1400 | W, Ta | | High evaporation rates without
melting. Sublimation from
radiation-heated Cr rods pre-
ferred. Cr electrodeposits are | | Cobalt (Co) | 1495 | 1520 | W | Al ₂ O ₃ , BeO | likely to release hydrogen
Alloys with W, charge should not
weigh more than 30 % of filament
to limit destruction. Small sub-
limation rates possible | | Copper (Cu) | 1084 | 1260 | W, Mo,
Ta | Mo, C,
Al ₂ O ₂ | Practically no interaction with re-
fractory materials. Mo pre-
ferred for crueibles because it
can be machined and conducts
heat well | | Gallium (Ga) | 30 | 1130 | | BeO, Al ₂ O ₃ | Alloys with refractory metals. The oxides are attacked above 1000°C | | Germanium
(Ge) | 940 | 1400 | W, Mo, Ta | W, C, Al ₂ O ₃ | Wets refractory metals but low
solubility in W. Purest films by
electron-gun evaporation | | Gold (Au) | 1063 | 1400 | W, Mo | Mo, C | Reacts with Ta, wets W and Mo. Mo crucibles last for several evaporations | | Indium (In)
Iron (Fe) | 156
1536 | 950
1480 | W, Mo
W | Mo, C
BeO, Al ₂ O ₃ ,
ZrO ₂ | Mo boats preferred
Alloys with all refractory metals.
Charge should not weigh more
than 30 % of W filament to limit
destruction. Small sublimation
rates possible | | Lead (Pb) | 328 | 715 | W, Mo,
Ni, Fe | Metals | Does not wet refractory metals. Toxic | | Magnesium
(Mg) | 650 | 440 | W, Mo,
Ta, Ni | Fe, C | Sublimates | | Manganese
(Mn) | 1244 | 940 | W, Mo,
Ta | Al ₂ O ₃ | Wets refractory metals | TABLE 4 Temperatures and Support Materials Used in the Evaporation of the Elements (Continued) | Element and predominant vapor species | Temp, °C | | Support materials | | 8 | |---|-------------|-------------------------------|---|--|--| | | mp | p* = 10 ⁻²
Torr | Wire, foil | Crucible | Remarks | | Molybdenum
(Mo) | 2620 | 2530 | | | Small rates by sublimation from
Mo foils. Electron-gun evapo-
ration preferred | | Nickel (Ni) | 1450 | 1530 | W, W foil
lined with
Al ₂ O ₃ | Refractory
oxides | Alloys with refractory metals;
hence charge must be limited.
Small rates by sublimation from
Ni foil or wire. Electron-gun
evaporation preferred | | Palladium
(Pd) | 1550 | 1460 | W, W foil
lined with
Al ₂ O ₃ | Al ₂ O ₃ | Alloys with refractory metals. Small sublimation rates possible | | Platinum
(Pt) | 1770 | 2100 | W | ThO ₂ , ZrO ₂ | Alloys with refractory metals. Multistrand W wire offers short evaporation times. Electrongun evaporation preferred | | Rhodium
(Rh) | 1966 | 2040 | w . | ThO2, ZrO2 | Small rates by sublimation from
Rh foils. Electron-gun evapora-
tion preferred | | Selenium
(Se ₂ , Se _n ;
$n = 1-8)^{63}$ | 217 | 240 | Mo, Ta,
stainless
steel 304 | Mo, Ta, C,
Al ₂ O ₃ | Wets all support materials. Wall deposits spoil vacuum system. Toxic. $\alpha_{\theta} = 1$ | | Silicon (Si) | 1410 | 1350 | | BeO, ZrO ₂ ,
ThO ₂ , C | Refractory oxide crucibles are
attacked by molten Si and films
are contaminated by SiO. Small
rates by sublimation from Si
filaments. Electron-gun evapo-
ration gives purest films | | Silver (Ag) | 961 | 1030 | Mo, Ta | Mo, C | Does not wet W. Mo crucibles | | Strontium (Sr). | 770 | 540 | W, Mo, Ta | Mo, Ta, C | are very durable sources Wets all refractory metals without alloving | | Tantalum
(Ta) | 3000 | 3060 | | | Evaporation by resistance heating
of touching Ta wires, or by draw-
ing an arc between Ta rods. | | ¥ | | | | | Electron-gun evaporation pre-
ferred | | Tellurium
(Te ₂) | 450 | 375 | W, Mo, Ta | Mo, Ta, C,
Al ₂ O ₃ | Wets all refractory metals without alloying. Contaminates vacuum system. Toxic. $\alpha_v = 0.4$ | | Tin (Sn)
Titanium
(Ti) | 232
1700 | 1250
1750 | W, Ta
W, Ta | C, Al ₂ O ₃
C, ThO ₂ | Wets and attacks Mo
Reacts with refractory metals.
Small sublimation rates from
resistance-heated rods or wires.
Electron-gun evaporation pre- | | Tungsten
(W) | 3380 | 3230 | | | ferred Evaporation by resistance heating of touching W wires, or by draw- ing an arc between W rods. Elec- | | Vanadium (V). | 1920 | 1850 | Mo, W | Мо | tron-gun evaporation preferred
Wets Mo without alloying. Alloys
slightly with W. Small sub- | | Zine (Zn) | 420 | 345 | W, Ta, Ni | Fe, Al ₂ O ₃ ,
C, Mo | limation rates possible High sublimation rates. Wets refractory metals without alloy- ing. Wall deposits spoil vacuum | | Zirconium
(Zr) | 1850 | 2400 | w | | system Wets and slightly alloys with W. Electron-gun evaporation pre- ferred |