TABELA DE TEMPERATURAS E DE MATERIAIS DE SUPORTE

TABLE 4 Temperatures and Support Materials Used in the Evaporation of the Elements

Element and predominant vapor species	Temp, °C		Support materials		
	mp	$p^* = 10^{-2}$ Torr	Wire, foil	Crucible	Remarks
Aluminum (Al)	659	1220	w	C, BN, TiB ₂ -BN	Wets all materials readily and tends to creep out of containers. Alloys with W and reacts with carbon. Nitride crucibles
Antimony (Sb ₄ , Sb ₂)	630	530	Mo, Ta, Ni	Oxides, BN, metals, C	preferred Polyatomic vapor, $\alpha_v = 0.2$. Requires temperatures above mp.
Arsenic (As ₄ , As ₂)	820	~300		Oxides, C	Toxic Polyatomic vapor, $\alpha_r = 5.10^{-5}$ – 5.10^{-2} . Sublimates but requires temperatures above 300°C. Toxic
Barium (Ba)	710	610	W, Mo, Ta, Ni, Fe	Metals	Wets refractory metals without alloying. Reacts with most oxides at elevated temperatures
Beryllium (Be)	1283	1230	W, Mo, Ta	C, refractory oxides	Wets refractory metals. Toxic, particularly BeO dust
Bismuth (Bi, Bi ₂)	271	670	W, Mo, Ta, Ni	Oxides, C, metals	Vapors are toxic
Boron (B)	2100 ±100	2000		С	Deposits from carbon supports are probably not pure boron
Cadmium (Cd)	321	265	W, Mo, Ta, Fe, Ni	Oxides, metals	Film condensation requires high supersaturation. Sublimates. Wall deposits of Cd spoil vacuum system
Calcium (Ca) Carbon (Ca, C, C2)	850 ~3700	600 ~2600	w 	Al ₂ O ₂	Carbon-arc or electron-bombard- ment evaporation. $\alpha_v < 1$
Chromium (Cr)	~1900	1400	W, Ta		High evaporation rates without melting. Sublimation from radiation-heated Cr rods pre- ferred. Cr electrodeposits are
Cobalt (Co)	1495	1520	W	Al ₂ O ₃ , BeO	likely to release hydrogen Alloys with W, charge should not weigh more than 30 % of filament to limit destruction. Small sub- limation rates possible
Copper (Cu)	1084	1260	W, Mo, Ta	Mo, C, Al ₂ O ₂	Practically no interaction with re- fractory materials. Mo pre- ferred for crueibles because it can be machined and conducts heat well
Gallium (Ga)	30	1130		BeO, Al ₂ O ₃	Alloys with refractory metals. The oxides are attacked above 1000°C
Germanium (Ge)	940	1400	W, Mo, Ta	W, C, Al ₂ O ₃	Wets refractory metals but low solubility in W. Purest films by electron-gun evaporation
Gold (Au)	1063	1400	W, Mo	Mo, C	Reacts with Ta, wets W and Mo. Mo crucibles last for several evaporations
Indium (In) Iron (Fe)	156 1536	950 1480	W, Mo W	Mo, C BeO, Al ₂ O ₃ , ZrO ₂	Mo boats preferred Alloys with all refractory metals. Charge should not weigh more than 30 % of W filament to limit destruction. Small sublimation rates possible
Lead (Pb)	328	715	W, Mo, Ni, Fe	Metals	Does not wet refractory metals. Toxic
Magnesium (Mg)	650	440	W, Mo, Ta, Ni	Fe, C	Sublimates
Manganese (Mn)	1244	940	W, Mo, Ta	Al ₂ O ₃	Wets refractory metals

TABLE 4 Temperatures and Support Materials Used in the Evaporation of the Elements (Continued)

Element and predominant vapor species	Temp, °C		Support materials		8
	mp	p* = 10 ⁻² Torr	Wire, foil	Crucible	Remarks
Molybdenum (Mo)	2620	2530			Small rates by sublimation from Mo foils. Electron-gun evapo- ration preferred
Nickel (Ni)	1450	1530	W, W foil lined with Al ₂ O ₃	Refractory oxides	Alloys with refractory metals; hence charge must be limited. Small rates by sublimation from Ni foil or wire. Electron-gun evaporation preferred
Palladium (Pd)	1550	1460	W, W foil lined with Al ₂ O ₃	Al ₂ O ₃	Alloys with refractory metals. Small sublimation rates possible
Platinum (Pt)	1770	2100	W	ThO ₂ , ZrO ₂	Alloys with refractory metals. Multistrand W wire offers short evaporation times. Electrongun evaporation preferred
Rhodium (Rh)	1966	2040	w .	ThO2, ZrO2	Small rates by sublimation from Rh foils. Electron-gun evapora- tion preferred
Selenium (Se ₂ , Se _n ; $n = 1-8)^{63}$	217	240	Mo, Ta, stainless steel 304	Mo, Ta, C, Al ₂ O ₃	Wets all support materials. Wall deposits spoil vacuum system. Toxic. $\alpha_{\theta} = 1$
Silicon (Si)	1410	1350		BeO, ZrO ₂ , ThO ₂ , C	Refractory oxide crucibles are attacked by molten Si and films are contaminated by SiO. Small rates by sublimation from Si filaments. Electron-gun evapo- ration gives purest films
Silver (Ag)	961	1030	Mo, Ta	Mo, C	Does not wet W. Mo crucibles
Strontium (Sr).	770	540	W, Mo, Ta	Mo, Ta, C	are very durable sources Wets all refractory metals without alloving
Tantalum (Ta)	3000	3060			Evaporation by resistance heating of touching Ta wires, or by draw- ing an arc between Ta rods.
¥					Electron-gun evaporation pre- ferred
Tellurium (Te ₂)	450	375	W, Mo, Ta	Mo, Ta, C, Al ₂ O ₃	Wets all refractory metals without alloying. Contaminates vacuum system. Toxic. $\alpha_v = 0.4$
Tin (Sn) Titanium (Ti)	232 1700	1250 1750	W, Ta W, Ta	C, Al ₂ O ₃ C, ThO ₂	Wets and attacks Mo Reacts with refractory metals. Small sublimation rates from resistance-heated rods or wires. Electron-gun evaporation pre-
Tungsten (W)	3380	3230			ferred Evaporation by resistance heating of touching W wires, or by draw- ing an arc between W rods. Elec-
Vanadium (V).	1920	1850	Mo, W	Мо	tron-gun evaporation preferred Wets Mo without alloying. Alloys slightly with W. Small sub-
Zine (Zn)	420	345	W, Ta, Ni	Fe, Al ₂ O ₃ , C, Mo	limation rates possible High sublimation rates. Wets refractory metals without alloy- ing. Wall deposits spoil vacuum
Zirconium (Zr)	1850	2400	w		system Wets and slightly alloys with W. Electron-gun evaporation pre- ferred