TABELA DE EVAPORAÇÃO DIRETA DE COMPOSTOS INORGÂNICOS TABLE 10 Direct Evaporation of Inorganic Compounds | | | | William Company of the th | | |---------------------------------------|--|--|--|--| | Com-
pound | Vapor species
observed (in
order of decreas-
ing frequency) | mp, °C | T , °C, at which $p^* = 10^{-2}$ Torr | Comments on actual evaporation temperatures, support materials used, and related experience | | | | Oxide | es | | | Al ₂ O ₃ | Al, O, AlO, Al ₂ O,
O ₂ , (AlO) ₂ | 2030154 | ~180017,169 | From W and Mo supports at 1850–2250°C, 159 With telefocus gun at 2200°C, no decomposition 152 From W support: Al ₂ O ₃ films have small oxygen deficits, 153 O ₂ -dissociation pressure at 1780°C: 1.5 × 10 ⁻¹⁸ Torr ¹⁵³ | | B ₂ O ₃ | B ₂ O ₃ ¹⁵¹ | 450154 | \sim 1700154 | From Pt and Mo supports at | | BaO | Ba, BaO, Ba ₂ O,
(BaO) ₂ , Ba ₂ O ₃ ,
O ₂ 159 | 1925154 | 154017,154 | 940–1370°C151
From Al ₂ O ₃ crucible at 1200–1500°C.159 From Pt crucible with only slight decomposition, p_{O_2} (1540°C) = 3.5 × 10 ⁻¹⁸ Torr ¹⁵³ | | BeO | Be, O, (BeO) _n ,
n = 1-6,
Be ₂ O ¹⁵¹ | 2530164 | 2230154 | From W support at 2070–2230°C. 151 With telefocus gun at 2400–2700°C, no decomposition 152 | | Bi ₂ O ₃
CaO | Ca, CaO, O,
O ₂ 151 | 817 ¹⁵⁴
~2600 ¹⁵⁴ | $^{1840^{153}}_{\sim 2050^{17}}$ | From Pt support ¹⁵³ Support materials: ZrO ₂ , Mo, W. The latter two form volatile oxides, molybdates, and wol- framates at 1900–2150°C ¹⁵¹ | | CeO ₂ | CeO, CeO ₂ ¹⁵¹ | 1950163 | | From W support without decomposition 153 | | In ₂ O ₃ | In, In ₂ O, O ₂ ¹⁵¹ | 2 ch 2 ch 1 ch 1 ch 1 ch 1 ch 1 ch 1 ch | | From Pt support with only little decomposition. 153 Vapor species observed at 1100-1450°C. At 1000-1450°C from Al ₂ O ₃ crucible, more In ₂ O than In ¹⁵¹ | | MgO | Mg, MgO, O,
O2 ¹⁵¹ | 2800154 | ~1560152 | Mo or W supports at 1840–2000° form volatile oxides, molybdates, and wolframates. With telefocus gun at 1925°C, no decomposition. From Al ₂ O ₃ at 1670°C 159 | | MoO₃ | $(MoO_3)_3,$
$(MoO_3)_n,$
$n = 4.5^{155,159}$ | 795184 | 610155 | From Mo oven at 500–700°C, the trimer is the main species. Above 1000°C, there is some decomposition into $MoO_2(s) + O_2(g)$. The oxygen-decomposition pressure is 1.1×10^{-14} Torr. 151 | | NiO | Ni, O ₂ , NiO, O ¹⁵¹ | 2090163 | 1586153 | From Pt at 530-730°C ¹⁵⁸ From Al ₂ O ₃ crucible at 1300- 1440°C. ¹⁵¹ Heavy decom- | TABLE 10 Direct Evaporation of Inorganic Compounds (Continued) | Com-
pound | Vapor species
observed (in
order of decreas-
ing frequency) | mp, °C | T , °C, at which $p^* = 10^{-2}$ Torr | Comments on actual
evaporation temperatures,
support materials used,
and related experience | |-----------------------------|--|---------|---|---| | <u> </u> | | Oxid | es | | | $\mathrm{Sb}_2\mathrm{O}_3$ | | 656184 | ~450154 | position with $p_{0_2} = 4 \times 10^{-1}$ Torr at $1586^{\circ}C^{153}$ Lower oxides result if evaporated from W supports. Pheaters do not produce de | | SiO | SiO | | 1025156,157 | composition ¹⁵³ Usually evaporated from Tror Mo heaters at residuagas pressures below 10 ⁻¹ Torr and at temperature between 1150 and 1250°C Dissociation into Si and O | | SiO ₂ | SiO, O ₂ 159,158 | 1730152 | ~1250152 | begins above 1250°C and may lead to oxygen-deficient films ¹⁵² With telefocus gun at 1500-1600°C, no decomposition. The same attacked by SiO and contribute volatile oxides. The same at | | SnO_2 | SnO, O ₂ 151 | | | 1630°C, SiO ₂ vapor specie
is present ¹⁵⁹ From SiO ₂ crucible at 975
1250°C. ¹⁵¹ Films directly
evaporated from W suppor
are slightly oxygen- | | SrO | Sr, O ₂ , SrO ¹⁵⁹ | 2460154 | ~176017 | deficient ¹⁵³ From Al ₂ O ₃ at 1830°C. ¹⁵⁹ Evaporation from Mo or V at 1700–2000°C produce volatile Mo and W oxides molybdates, and wolframates ¹⁵¹ | | TiO ₂ | . TiO, Ti, TiO ₂ , O ₂ 153,159 | 1840154 | | TiO ₂ source material decomposes into lower oxide upon heating. ^{152,153} po ₂ a 2000°C is 10 ⁻¹⁰ Torr. Nearl stoichiometric films by pulse | | WO₃ | . (WO ₃) ₃ , WO ₃ ¹⁶⁵ | 1473154 | 1140155 | electron-beam heating 189 From Pt oven at 1040— 1300°C. 185 From Pt support at 1220°C. 189 From W heater with only sligh decomposition; pog at 1220°C is 2 × 10710 Towns. | | ZrO ₂ | . ZrO, O ₂ | 2700154 | | 1120°C is 3 × 10 ⁻¹⁰ Torr ¹⁵⁵ From Ta support at 1730°C volatile TaO. ¹⁵⁹ From W support, oxygen-deficien films. ¹⁵³ ZrO ₂ source ma terial loses oxygen when heated by electron beams ¹⁵ | TABLE 10 Direct Evaporation of Inorganic Compounds (Continued) | Com-
pound | Vapor species
observed (in
order of decreas-
ing frequency) | mp, °C | T, °C,
at which
$p^* = 10^{-2}$
Torr | Comments on actual
evaporation temperatures,
support materials used,
and related experience | |---|--|--|---|--| | | | Sulfides, Selenide | es, Tellurides | | | ZnS | | 1830^{168} ($p \approx 150 \text{ atm}$) | 1000154 | From Mo support. Minute deviations from stoichiometry if allowed to react with residual gases. From Ta at 1050°C1** | | ZnSe | | 1520168 | 820160 | | | | | $(p \approx 2 \text{ atm})$ | | | | CdS | S ₂ , Cd, S, S ₃ ,
S ₄ ¹⁵¹ | $(p \approx 100 \text{ atm})$ | 670161 | From Pt oven at 740°C. 181
Films tend to deviate from
stoichiometry. 185 Suitable
support materials: graphite,
Ta, Mo, W, SiO ₂ , Al ₂ O ₂ -
coated W; evaporation at
600–700°C 187 | | CdSe | | 1250168 | 660162,163 | | | CdTe | Te ₂ , Cd ¹⁶⁴ | 1100168 | 570164 | From Ta boat at 750-850°C;
film stoichiometry depends
on condensation tempera-
ture ⁷⁶ | | PbS | PbS, Pb, S ₂ ,
(PbS) ₂ ¹⁵¹ | 1112454 | 675154 | From quartz crucible at 625–
925°C. ¹⁵¹ From Mo sup-
port. ¹⁵³ Purest films from
quartz furnace at 700°C; Fe
or Mo boats react and form
volatile sulfides ¹⁶⁵ | | Sb ₂ S ₃
Sb ₂ Se ₃ | Sb ₁ , (SbSe) ₂ , Sb ₂ ,
SbSe ¹⁵¹ | 546154
611166 | 550153 | From Mo support ¹⁵³ From graphite at 725°C, ¹⁵³ From Ta oven at 500– 600°C, fractionation and | | | | -270 | | films of variable stoichiome-
try 166 | | | 3 1 | Halid | es | 700 | | NaCl | NaCl, (NaCl)2, 151 | 801154 | 67017,154 | From Ta, Mo, or Cu ovens at | | KCl | (NaCl) ₃ | 772184 | 63517,154 | 550-800°C ¹⁵¹
From Ni or Cu ovens at 500- | | AgC1 | | 455154 | 690154 | 740°C ¹⁵¹
At 710–770°C. ¹⁵¹ From Mo | | | ingor, (ingor) | 100 | 000 | support, $p^* = 10^{-2}$ Torr at 790°C153 | | MgF ₂ | MgF ₂ , (MgF ₂) ₂ ,
(MgF ₂) ₃ ¹⁵¹ | 1263154 | 1130154 | From Pt oven at 950-
1230°C. 151 From Mo sup-
port. 153 Very little dis-
sociation into the ele-
ments 158 | | CaF ₂ | CaF ₂ , CaF ¹⁵¹ | 1418154 | ~1300154 | From Ta oven at 980–
1400°C. ¹⁵¹ From Mo sup-
port. ¹⁵³ | | $PbCl_2$ | | 678154 | ~430154 | Direct evaporation pos-
sible 153 |