
Chapter 3. Plasmas 

ln Chapter 2, we introduced the idea of a plasma as a partially ionized gas con­
sisting of equal numbers of positive and negative charges, and a different number 
ofun-ionized neutral molecules. As we progress through this chapter, further 
requirements will be made of the gas in order to qualify it as a plasma. 

ln the type of plasmas discussed in this book, the degree of ionization is 
typically only 10-4

, so the gas consists mostly of neutrals. Although the 
Coulomb interaction between charges is both strong and long-range, it is possible 
to assume for an undisturbed plasma that the charges move around as free 
particles, since the sum of all the interactions tends to cancel, analogous to the 
role of a conduction electron in a solid. But also, to pursue the analogy, there 
are situations where the Coulomb interaction becomes dominant, as for example 
when the plasma is perturbed. 

ELECTRON AND ION TEMPERATURES 

To simplify, assume that the charged particles are singly charged positive ions 
and electrons. ln addition, descriptions of the plasma will be made in the context 
of the glow discharge processes being considered. The essential mechanisms in 
the plasma are excitation and relaxation, ionization and recombination. To 
maintain a steady state of electron and ion densities, the recombination process 
must be balanced by an ionization process, i.e. an external energy source is 
required. ln practice, that energy source is an electric field, which can act 
dírectly on the charged partícles only. Let me and mi be the mas~és of the 
electron and the ion respectively. Consíder an electric field & actíng on an ini­
tially stationary ion. The work done by the electric fíeld, and hence the energy 
transferred to the íon, will be &ex where x is the distance travelled in time t. 
But: 

X= ~ft2 

where fis the acceleratíon dueto the field (Figure 3-1), given by 

&e=m/ 
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hence: 

l &e 2 _ (&et)2 

Workdone = &ex= &e--t - --
2 mi· 2mi 
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A similar relationship holds for the electrons, but since mi~ me, the acti~n of 
the field is primarily to give energy to the electrons. The argument above ignored 
collisions and we can always choose t to be short enough that this is so. But we 
have seen' that, in general, collisions abound in plasmas. Electrons collide with 
neutral atoms and ions, but only a very small energy transfer to the heavy 
particle can take place; this is what the energy transfer function (_q.v.) ':~s about. 
ln tum the neutral atorrís and ions share their energy efficiently m colhs10n 
process,es and likewise lose energy to the walls of the chamber. The ne~ result is 
that electrons can have a high average kinetic energy, which might typ1cally be 
2 - 8 e V. The ions, which can absorb justa little energy directly from the 
electric field, have an average energy not much higher than that of the neutral 
molecules, which gain energy above the ambient only by collisions with ions 
(effectively) and electrons (ineffectively) and remain essentially at room tem­
perature. We saw earlier that for the neutral gas atoms: 

.!.mc2 = 2kT 
2 2 

The average energy is characterized by the kT term and although this would 
conventionally be measured in ergs, it is more convenient here to work in 
electron volts. It is useful to remember that kT has a value of 1/40 e V at 290 K, 
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Figure 3-1. Energy transfer from the field to the electrons and ions 
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i.e. about room temperature. The concept of temperature applies to a random, 
i.e. Maxwell-Boltzmann, distribution. Can we apply this concept, then, to the 
energetic electrons? Based on an expectation of a large number of electron­
electron collisions and other interactions, and very efficient energy sharing 
amongst the electrons because the energy transfer function takes all values 
between O and 1 for equal mass particles as the impact angle 8 varies, a Maxwell­
Boltzmann distribution seems quite reasonable. We assume this now and 
consider it again later. Since 

1 - 3 
2mée

2 
= 2kTe 

applies to electrons too, we can associate an effective temperature Te with the 
electron motion. Measurements on glow discharge plasmas yield average electron 
energies around 2eV, which corresponds to an electron temperature of 23200 K! 
That doesn't mean that the containingvessel will melt, and that is because the 
heat capacity of the electrons is too small; we just have to think more carefully 
about the temperature concept. Since the ions are able to receive some energy 
from the external electric field, their temperature is somewhat above ambient; 
500 K is representa tive. 

PLASMA POTENTIAl 

So three sets of particles exist in the plasma - ions, electrons, and neutrals -
varying by mass and temperature. ln addition, we saw in Chapter 1 that 
e= (8kT/rrm)Yi, as in indicated for the typical parameters shown in Figure 3-2 
base d on argon. The electron density and ion density are equal ( on average); 
this number, which is much less than the density of neutrals, is often known as 
the plasma density. The average speed of the electrons is enormous compared 
with those of the ions and neutrals, due to both the high temperature and low 
mass of the electrons. 

Suppose we suspend a small electrically isolated substrate into the plasma. 
Initially it will be struck by electrons and ions with charge fluxes, i.e. current 
densities, predicted in Chapter 1 to be (Figure 3-3): 

je 
enece 

4 

ji 
eiliCi 

4 

};lut ce is much larger than S· For the values shown in Figure 3-2, 

je ~ 38 mA/cm2 

ji ~ 21 µA/cm 2 
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Figure 3-2. Typical parameter values for a glow discharge plasma 
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Since je ~ ji, then the substrate immediately starts to build a negative charge and 
hence negative potential with respect to the plasma. Immediately the quasi­
random motions of the ions and electrons in the region of our object, are 
disturbed. Since the substrate· charges negatively, electrons are repelled and ions 
are attracted. Thus the electron flux decreases, but the object continues to 
charge negatively until the electron flux is reduced by repulsion just enough to 
balance the ion flux. We shall show shortly ("Debye Shielding") that the plasma 
is virtually electric field free, except around perturbations such as above, and so 
is equipotential. Let's cal! this potential the plasma potential V P' also some times 
known as the space potential. Similarly, we can associa te a jloating potential V f 
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with the isolated substrate. [ln the case of a plasma container having insulating 
walls, these walls also require zero steady state net flux, so that wall potential 
and floating potential are related terms.] Since Vfis such as to repel electrons, 
then V f <V p. ln the absence of a referen~e, only the potential difference 
V p - V f is meaningful. Because of the charging of the substrate, it is as though a 
potential energy 'hill' develops in front of the substrate (Figure 3-4). However, 
it is a downhill journey for ions from the plasma to the substrate, but uphill for 
the electrons, so that only those electrons with enough initial kiiletic energy 
make it to the 'top', i.e. the substrate. 

SHEATH FORMATION ATA FlOATING SUBSTRATE 

Since electrons are repelled by the potential difference V p - V f, it follows that 
the isolated substrate (assumed planar for simplicity in Figure 3-3) will acquire 
a net positive charge around it. This is generally known as a space charge and, in 
the context of glow discharge plasmas, forms a sheath. The sheath has a certain 
density of charges, known as the space charge density p. Poisson's equation 
relates variation of potential V with distance x across regions of net space 
charge: 
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Figure 3-3. lnitial particle fluxes at the substrate 
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Figure 3-4. Variation of the electrical potential (upper) and of the potential energies of 
electrons and positive ions (lower), in the vicinity of an electrically floating 
substrate 

This is the one-dimensional form for MKS units, where e0 is the permittivity of 
free space. Since electric field & is given by 

then 

d V & = 
dx 

d& =_E_ 
dx e0 

and this just says that the electric field across a gap changes as we go through · 
regions of net charge, consistent with experience. 

If the sheath acquires a net positive charge, it follows that the electron density 
decreases in the sheath - we shall obtain a quantitative expression for the 
decrease below. But one of the obvious features of a discharge is that it glows, 
and as we have already seen, this is due to the relaxation of atoms excited by 
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electron impact. So the glow intensity depends on the number density and 
energy of the exciting electrons. Since the electron density is lower in the 
sheath, it doesn't glow as much. So we can actually see the sheath as an area of 
lower luminosity than the glow itself - the substrate is surrounded by a 
(comparatively) dark space, a feature common to the sheaths formed around all 
objects in contact with the plasma, even though the sheath thicknesses may vary 
greatly. 

Let us now try to get an idea of the magnitude of V p - which represents a 
barrier to electrons. To surmount this barrier, an electron must acquire 
e(V p - V f) of potential energy (Figure 3-5). Hence, only electrons that enter 
the sheath from the plasma with kinetic energies in excess of e(V p - V f), will 
reach the substrate. The Maxwell-Boltzmann distribution function tells us that 
the fraction n~/ne that can do this is: 

1 

e(Vp - Vf) ~= 
ne exp - kTe 
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Figure 3-5. A space charge sheath develops in front of a floating substrate (upper), and 
establishes a sheath voltage (lower) 
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lf the density n~ just achieves charge flux balance at the object, then 

née6 _ lliCi 
4-4 
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One might at first think that the n~ electrons close to the substrate would have a 
lower mean speed ce than the ne electrons in the plasma, since the n~ electrons 
suffer an e(V p - V f) loss of kinetic energy in crossing the sheath. However, one 
must also bear in mind that the n~ electrons that reach the substrate were not 
'average' electrons, but had energies greater than average. ln fact, the average 
energies of the ne and n~ groups of electrons are the sarne, i.e. they are at the 
sarne temperature. This·can be shown from the Maxwell-Boltzmann distribution 
which, in a region of potential energy e</J, becomes: 

( )3/2 (Yzmece2 + e</J) 
dn~ = 41Tne 2:~e Ce2 exp -

kTe 
dce 

exp (-:t)dne 

'2 
= Jce2 

exp (-::e) dne 
Ce2 Ce 

/exp(-::e)dne 

Furthermore, by integration 

, ( e</J ) e(Vp - Vf) 
ne = ne exp - kT e = ne exp - kT e -

Returning to the charge flux balance equation, and substituting for n~ and c~, 
then 

e(V - V f)) Ce = lliCJ 
ne exp - kT e 4 4 

But ne = ni and e= SkT (Chapter 1, "Mean Speed e"), and so charge ( )

Yz 

balance requires 1Tm 

Yp _ Vf = kT e Qn ce 
e Ci 

= kTe Qn(miTe) 
2e \me Ti 

(When we have learned a little more about sheath formation, in "Sheath Forma­
tion and The Bohm Criterion", we shall need to modify this result slightly .) 
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ln our example (Figure 3-2), (Vp - Vf) shouldhave a value of+l5 volts, which 
is of the right order to agree with observation. Note the polarity, which is to 
make the plasma positive with respect to the floating object, and indeed, positive 
with respect to almost everything. The rapid motion of the electrons, relative to 
the ions, means they can easily move away from the plasma. But in doing so they 
lease the plasma more positive which hinders the escape of the negative electrons 
and makes the process self-limiting. 

Since the charging of the floating substrate serves to repel electrons, it also . 
attracts positive ions. This does not increase the flux of ions, which is limited by 
the random arrival of ions at the sheath-plasma interface - in terms of the model 
in Figure 3-4, it doesn't matter how steep or high the hill is (this isn't quite true, 
as will be discussed later). However, the voltage across the sheath does directly 
influence the energy with which the ion strikes the substrate. The ion enters the 
sheath with very low enérgy. It is then accelerated by the sheath voltage, and, in 
the absence of collisions in the sheath, would strike the substrate with a kinetic 
energy equivalent to the sheath voltage. 

ln practice, the sheath above an electriéally isolated substrate varies from one 
or two volts upwards. The resulting kinetic energies must be compared with 
interatomic binding energies in a thin film or substrate of typically 1 - 10 e V, 
so that it is easy to imagine that a growing thin film or an etching process on an 
electrically isolated surface in the plasma might be much affected by such 
impact. 

DEBYE SHIElDING 

If the numbers of ions and electrons in the plasma are equal and very large, then 
it is not surprising that their net Coulomb interaction with a particular charge 
sums to zero. But although this must be true on the average, we might expect 
that the instantaneous potential at a point due to some disturbance is both non­
zero and time dependent. Let's consider this case (in 1 dimension, for simplicity) 
by assuming that the potential at x =O is ÃV0 (measured relative to the plasma), 
and then see how the potential ÃV(x) varies with x (Figure 3-6). ln thinking 
about the problem assume that ÃV0 is less than Yp, i.e. more negative. Then a 
net positive space charge will form in front of the charged surface, since only 
energetic electrons can enter, as in the previous example. To a first approxima­
tion, the ion density in the sheath will be Ili as in the undisturbed plasma, since 
the ions are too massive to react rapidly to the space charge. This would not be 
true if the potential . .6. V 0 were maintained for a long time, but the random fluc­
tuations that causé À V 0 often happen on a very short time scale. And even when 
the potential perturbation is semi-permanent, this only serves to make ni de­
pendent on x, changing the argument in detail only. 
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Figure 3-6. Variation ofpotential around a perturbation 

If the electron density varies as ne(x), then Poisson's equation becomes: 

d2V = - ~ (ni - ne(x)) 
dx2 Eo 

This is actually the MKS units version of Poisson's equation, where Eo is the per­
mittivity of free space, having the value 1 /(36n l 09

) farads/metre. The purpose 
of using the MKS form is to avoid the cgs units of charge for the electron, and to 
avoid confusing myself; I always find the wrong answers when I use other units 
for this calculation! 

Using the Boltzmann relation again: 

ne(x) = exp _ e Á V(x) 

ne kTe 

Substituting into Poisson's equation, and remembering that ne =ili in the undis­
turbed plasma, we obtain 

d
2

V = _ eni (i _ exp _ eÁV(x)) 
dx2 Eo kTe 

There is a difficulty here in that this equation can be simplified and solved when 
Li V(x) <{ kT e· But in many cases that arise, this inequality does not hold for all 
x. However, if one solves the equation more exactly (Mitchner and Kruger 1973, 
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p. 133), and then numerically compares the resulting solution with that obtained 
using the inequality above, then apparently there is good agreement; this is be­
cause the major variation of LiV(x)is near x =O, where it varies very rapidly. So 
using the inequality Á V(x) <{ kT e to expand the exponential, then 

d2 V e2 ni 
-

2 
::::-- LiV(x) 

dx kTe E0 

This approximate differential equation has a solution (also approximate ): 

where 

LiV(x)= LiV0 exp -~ 
Ào 

This quantity Ào has the dimensions of a length, and is known as the Debye 
length. The spatial dependence of Li V(x) tells us that if the potential in the 
plasma is perturbed, then the plasma reacts to oppose that change. The Debye 
length tells us how rapidly the potential perturbation is attenuated in the 
plasma; over a distance Ào the perturbation is reduced to 0.37 (1/e) ofits initial 
value. For the example we have chosen (ni = ne = 101 0 /cm 3 and kTe = 2 e V), 
Ào has the value 1.05 10-2 cm, or 105 µm. 

Another way of regarding the Debye length concept is to say that, from the 
perspective of a particular charge ata particular point in the plasma, we need to 
consider the;sum of the individual interactions with ali of the other charge d 
particles contained within a sphere centered on the particular point having a 
radius of 1 or 2 Debye lengths. Outside of this sphere, the detailed nature of the 
interaction becomes immaterial and the net interaction is zero. Hence, the un­
perturbed plasma is equipotential except for small fluctuating voltages which 
are attenuated over distances of the arder of the Debye length. 

One of the requirements for a collection of charged particles to be considered 
a plasma is that the range of these microfields must be very small on the scale of 
the total dimension of the plasma, i.e. Ào <{d where d is the characteristic 
diameter of the discharge. 

A similar argument to that used above could be made for the case where Li V 0 

is imposed on a conducting element in the plasma, by an externa! source, e.g. a 
battery. If Li V 0 is de or low frequency ac, then the ions around the object do 
have an oppoitün1ty to respond to the applied fielâ, and lli~_ecomes a function 
of x. Nevertheless, the basis of the argument is the sarne; and we again come to 
tlie conclusion that the plasma attenuates voltage perturbations by forming a 
sheath, leaving the undisturbed region, i.e. the plasma itself, equipotentiaL 
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These screening phenomena also have a bearing on our initial assumptions 
about treating the plasma as a collection of three quasi-independent ideal gases. 
Since the plasma is equipotential, then it is also electric-field-free, so none of 
the constituent charged particles is subject to any externally imposed fields, ex­
cept to the extent that the plasma will respond to any further applied voltages 
by forming a screening sheath around the relevant electrode. So the charge 
assembly does exhibit collective behaviour, a necessary criterion for its classifica­
tion as a plasma. And even within the plasma, the individual charged particle 
interactions are important over the range of a few Debye lengths, and there is 
certainly a considerable and continuous energy interchange amongst the gas 
species; hence the gases are only quasi-independent. 

Finally, we must note that the Debye shielding effect is not complete. A 
screening charge cloud forms around a voltage perturbation, but the resulting 
electric field becomes weak towards the edge of the cloud. As soon as the 
electrostatic potential reduces to the thermal energy of the electrons and ions, 
then they can escape from the charge cloud. So we come to the conclusion that 
the edge of the cloud is where t. V~ kT e, and that voltages ~ kTe/e can pene­
trate into the plasma. We shall see an effect of this later, in "Sheath Formation 
and The Bohm Criterion". Note that assuming the edge of the shielding charge 
cloud is where t. V~ kTe, contradicts the earlier assumption made in the 
derivation of Debye length that t. V<'{ kTe, which means that one has to be 
cautious in using the Debye screening length concept. 

PROBE CHARACTERISTICS 

Let us return to the simple plasma of Figure 3-2. Previously we considered what 
would happen to an electrically isolated probe placed in the plasma. Now let us 
pursue further what happens when that probe is maintained at a potential V set 
by an externai power source (Figure 3-7). To make the situation more realistic, 
introduce a conducting wall at ground potential (O V) to act as a reference volt­
age and as a return current path. The plasma potential V p is then defined with 
respect to ground. The random fluxes in the plasma are nece /4, and lliCi /4 for 
electrons and ions respectively. We have already seen that the net flux, and 
hence net current, would be zero when the probe acquires a potential Vf, the 
floating potential. So we can begin to plot a curve of probe current density 
versus probe voltage (Figure 3-8). By biasing the probe negatively with respect 
to Vp, sóme electrons are prevented from reaching the probe, but the ion cur­
rent density jj remains ata value dictated by the arrival rate of ions at the edge 
of the sheath, and this is limited to the random flux in the discharge, i.e. njcj /4. 
If V is made very negative with respect to V P' then the electron current would 
be completely suppressed. The saturation current density for negative V is then 

V 

Figure 3-7. Schematic for probe measurements in a plasma 
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Figure 3-8. Current density-voltage characteristic of a probe 
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just eniCi/4. From our earlier considerations ("Sheath Formation ata Floating 
Substrate"), the electron current density fo to the probe at voltage V should 
follow the form: 

and hence 

enece 
--exp 

4 

enece e(V p - V) 
Qnje = Qn -- -

4 kTe 

This expression is derive d on the assumption that the electrons have a Maxwel­
lian energy distribution, and it predicts that l2n je is linearly dependent on (V p 
- V). This prediction is substantiated by experimental results (Figure 3-9), add­
ing credence to our initial assumption ("Electron and Ion Temperatures") that 
the electrons do indeed have a Maxwellian energy distribution. 

The net current density to the probe, for V< Yp, is just the sum of ji and fo: 

4 4 
exp - (

e(Vp - V)) 

kTe 

By a similar argument, one would expect for V> Vp that 

eniCi ( e(V - Vp)) j = -- exp - ----
4 kTi 4 

and also, since Ti ~Te, that the ion current term would rapidly goto zero as 
soon as V exceeds V p, leaving the electron saturation current and a fairly well­
defined Vp at the knee ofthe curve. 

ln principie, this probe technique, which was introduced by Irving Langmuir 
and colleagues in the 20's (Langmuir 1923, Langmuir and Mott-Smith 1924) and 
carries his name, should be able to give us quite simply ali of the parameters of 
the plasma that we need to know - electron and ion temperatures, plasma 
density and plasma potential. But ...... . 

Practical Complications 

Unfortunately, the situation with real probe measurements is much more com­
plex, for a variety of reasons. The effective current-collecting area of the probe 
is not its geometric surface area, but rather the area of the interface between the 
plasma and the sheath around the probe (Figure 3-10); and the thickness of the 
sheath, for a given plasma, is a function of the probe potential. This would not 
matter for a plane probe except that such a probe has ends where the problem 
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arises again; and the rela tive contribution of the problem is increased beca use of 
the requirement that the probe be small, so that the probe current does not 
constitute a significant drain on the plasma. With a cylindrical probe, the varying 
sheath thickness is an even larger effect. 
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Figure 3-9. Typical probe characteristíc showing a quasi-linear region where Jog j °'V - Vs 
(Ball 1972). Tantalum target, 1000 cm 2

• Argon discharge at 10 mtorr, 3kV and 
59mA. 
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Figure 3-10. Effective current-collecting areas of probes 
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Two more complications are associated with additional charge generation. 
Secondary electrons (Chapter 4, "Secondary Electron Emission") may be 
generated at the probe due directly to the impact of i0ns, electrons, and photons 
or the the heating effects caused by such impact, giving rise to additional current 
flow; electron impact ionization may occur in the sheath, agaín enhancing 
current flow. 

Yet one more problem concerns the tendency of charge d particles to take up 
orbital paths around the probe, further influencing the probe characteristics. 
Even our assumption that the ion current density at the edge of the sheath is 
equal to the random density enjCj/4, turns out to be incorrect, as we shall see 
!ater. And in the glow discharges used in sputtering and plasma etching, there 
are additional difficulties due to directed high energy electrons which flow 
through the plasma. 

Ali of these effects, and others that exist, add considerable complexity to 
proper internretation of probe data. The readeris referred to one of the many 
reviews of probe techniques, such as füose of Chen (1965), Laframboise (1960), 
Swift and Schwar (1970), and Loeb (1961 ), or more recently to articles 
referring specifically to sputtering discharges by Clements (1978), Thornton 
(1978), and Eser et ai. (1978). 

Positively Biased Probes 

Another probe effect is quite difficult to deal with: as soon as the probe poten­
tial approaches the plasma potential, the electron current density to the probe 
should approach the saturation value, enece/4. But even with a tiny probe, the 
actual current drain can easily become a serious drain on the plasma, causing a 
significant perturbation, at least for glow discharge processes, which are of 
rather low density. This current drain can be limite d by minimizing the size of 
the probe, but the following example shows that a very small probe is required. 
Use the typical plasma parameters shown in Figure 3-2 and a total current of 
10 mA. Let us estimate a tolerable electron current drain of l mA. Since the 
random electron current density is 38 mA/cm2 ("Plasma Potential"), 1 mA 
would be drawn by a collection area of 2.6 10-2 cm2

. Imagine a thin cylindrical 
wire probe 0.25 cm in length; such a collection area would correspond to a cylin­
der radius of 166 µm. But this radius corresponds to the sum of the probe and 
sheath radii (Figure 3-10) and the sheath itself is going to be ~ l Debye length, 
which alone is 105 µm for our example ("Debye Shielding")! 

The effect of attempting to draw too much electron current from the plasma 
is illustrated in Figure 3-11 where the probe circuit of Figure 3-7 is redrawn 
along with the discharge circuit. The electron current to the probe is in addition 
to the electron current to the anode. So either the ion current to the cathode 
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must increase or the electron current to the anode must decrease. Under normal 
circumstances where the probe circuit supplies very little power to the discharge, 
the latter dominates. A decrease in the electron current to the cathode is accom­
plished by an increase in the plasma potential, causing more electron retardation 
in the anode sheath. One arrives at the sarne result by arguing that the probe 
starts to drain the plasma of electrons, leaving it space charge positive so that the 
plasma potential has to rise; or by arguing that the probe becomes the new 
anode as soon as its potential exceeds that of the original anode and that the 
plasma potential is determined by the anode potential and the need to maintain 
current continuity in the circuit. Coburn and Kay (1972) have encountered just 
this difficulty of not being able to find a small enough probe for sputtering dis­
charges, and, using an independent technique to determine plasma potential 
based on measuring the energy distribution of ions accelerated across a sheath 
have found that application of positive probe voltages serves only to increase t'he 
plasma potential, in agreement with the above argument. 

So we are left with the conclusion that, at least in the rather tenuous discharges 
of sputtering and plasma etching, the plasma potential will be the most positive 
potential in the system. This becomes increasingly true with increasing size of 
the perturbing electrode. 

Ano de Cathode 

,____--11 I 

Figure 3-11. Schematic of probe and discharge circuits 

SHEATH FORMATION AND THE BOHM CRITERION 

Earlier in this chapter, in the section on "Plasma Potential", we calculated the 
random ion current density niCj/4 which flows in the plasma and found that it 
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had a value of 21 µA/cm 2 for a typical plasma of density 1O 1 0 /cm 3 and ion 
temperature SOOK. We further reasoned, in "Sheath Formation ata Floating 
Substrate", that the ion current density to any object more negative than the 
plasma potential should be equal to the random ion current density. ln that 
section, the substrate was electrically floating so that the net current flow was 
zero. However, it is a simple matter to extend the arguments given there to 
include the case where there is a net ion current to the object, and one would 
still expect to find a current density of 21 µA/cm 2

• But if we measure the cur­
rent density at the target in a de sputtering glow discharge, as in Figure 4-1 of 
Chapter 4, we find that the current density is larger, of the order of a few tenths 
of a milliamp per square centimetre. Although we shall learn in the next chapter 
that some of this latter current is dueto the emission of electrons from the 
target, there is apparently a discrepancy in these two values of current density. 
Although the ion temperature which we used to derive q was only an estimate, 
this estimate can't be far out, and anyway Ci. varies as the square root of the ion 
temperature, which is rather a weak dependence. So the reason for the discrep­
ancy must lie elsewhere. 
~ The problem turns out to be due to an oversimplification of the model for the 
sheath. We had assumed that the sheath terminated at the plane where the ion 
and electron densities became equal, to become an undisturbed plasma again 
(Figure 3-5). ln fact, between these two regions there is a quasi-neutral transition 
region of low electric field (Figure 3-12), and the effect of this region is to 
increase the velocity of ions entering the sheath proper. The existence of this 
velocity change was demonstrated by Bohm (1949) and the resulting criterion 
for sheath formation has come to be known as the Bohm sheath criterion, and is 
demonstrated as follows: 

ln Figure 3-12, we assume a monotonically decreasing potential V(x) as ions 
traverse the positive space charge sheath; x =O corresponds to the boundary be­
tween the two regions so that nj(O) = ne(O), i.e. space charge neutrality at x =O. 
We also assume that the sheath is collisioriless and the consequent absence of 
ionization ensures that the ion current e nj(x) u(x) is constant. 

Conservation of energy for the ions requires that 

Yzmiu(x)2 = Yzmiu(0)2 
- e[V(x)- V(O)] 

( )
Yz 

u(x) = u(0)2 _ 2e[V(x~~ V(O)] 

and ·( ) _ ni(O)u(O) 
n1 x - u(x) 

n·(O) l _ 2e[V(x) - V(O)] ~ )
-Yz 

l illjU(Ü)2 
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Figure 3-12. Potential variation near a negative eiectrode. Density nj(X) and potential V(x) 
at X;;:. 0 

By the Boltzmann relation for the electrons 

ne(x) = ne(O) exp e [V(x) - V(O)] 
kTe 

Poisson's equation is then 

d2 
<P e 

-d 2 = - (ne(x) - nj(x)) 
X Eo 

= ene(O) (xp e[V(x) - V(O)] _ (1 _ 2e[V(x) - V(O)])-Yz) 
\ kTe ~ mju(Q)2 

But ifthis is to be a positive space charge sheath, then d2 V/dx2 must be negative 
for all x >O (and zero for x =O) 

i.e. (i _ 2e[V(x) -V(O)])-Yz > exp e[V(x)- V(O)] 
mju(0)2 kTe 
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Squaring and inverting, then 

2e[V(x) - V(O)] > l _ 2e[V(x) - V(O)] 
exp - kT e miu(0)2 

We now restrict out attention to the beginning of the space charge sheath where 
V(x) - V(O) is very small compared to kT e so that we can expand and approxi­
mate the exponential thus: 

l _ 2e [V(x) - V(O)] > l _ 2e [V(x) - V(O)] 
kTe mju(0)2 

i.e. u(O) > ~~; ( )

Yz 

This says that the Í9B_~elocJty on entering the sheath must be greater than 
(kT e/mi)Yz, i.e. is <:Ietermined by the electron temperature, which is a rather 
peculiar result and demonstrates how the ion and electron motions are coupJ~. 
Chen (1974) demonstrates (Figure 3-13) that the physical significance of the 
criterion is that the acceleration of ians in the sheath and repulsion of electrons 
there both of which decrease the relevant particle volume densities, must be 
such ~hat the ion density decreases less rapidly than the electron density across 
the sheath. This is equivalent to the requirement that d2 V/dx2 is negative, and 
it is clear from Figure 3-13 that this requirement is most stringent at the begin­
ning of the sheath where V(x) - V(O) is very small, as we had assumed. 

Qn n 

o V(x)-

Figure 3-13. Variation of ion and electron density with potential V(x) in a sheath, for two 
cases: u

0 
greater than and u 0 less than the critical velocity (kTe/111j)Y2

. From 
Chen 1974. 
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How do the ians acquire thls velocity? There must be an electric field across 
the transition region so as to give the ians a directed velocity of u(O) towards the 
electrode. If we assume that the ion temperature is negligibly small so that the 
random motion of the ians can be neglected, then since the potential at the 
boundary is V(O) with respect to the plasmà, 

Yzmi u(0)2 = eV(O) 

V(O) = mi u(0)
2 

= mi kTe _ kTe 
2e 2e mi 2e 

The existence of a field in the transition region does not contradict our earlier 
claim that the plasma is equipotential, since that claim was qualified then to the 
extent that voltages of the arder of kTe/e could 'leak' into the plasma, and here 
we see an example of this. 

We can pursue the exercise further to calculate the ion flux at the sheath 
boundary. Since the potential there is V(O) with respect to the plasma in which 
the electron density is ne, then using the Boltzmann relation again, 

ne (O) 
V(O) 

ne exp - -­
kTe 

ne exp - Yz 

0.6 ne 

since V(O) = kT e/2. But ne (O)= Ili (O), and so the ion flux is given by 

(
kT )Yz. 

ni(O) u(O) = 0.6 ne mie 

Substituting in the values from Figure 3-2 again, we obtain an ion current den­
sity of O. 2 mA/cm2

, which is more like reality. However, this derivation is still 
not quite realistic since it assumes that the ion temperature is zero, whlch is 
never so; and that there are no collisions in the sheath, which is not true for the 
sheaths that form in front of our glow discharge cathodes, although it is reason­
ably true for the much thlnner sheaths that form in front oflow voltage anodes 
and probes. We also know that the cathode current depends on the cathode volt­
age in practice, and the ion current expression derived above does not explicitly 
include the electrode voltage except to the extent that the elect!ode voltage does 
control the electron temperature and plasma density, as we shall see when we 
explore how discharges are maintained, in the next chapter. 

The Floating Potential - Again 

The effect of the Bohm criterion is to increase the ion flux to any object nega­
tively biased with respect to the plasma. ln particular it will change the ion flux 
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to a floating substrate. We had calculated the floating potential earlier in the 
chapter, and apparently we must now change this to allow for this changed ion 
flux. Using a similar derivation to before, the criterion. for net zero current 
becomes: 

exp -
) 

Vi 
e(Vp - Vf) ce = Ili 0 _6 (kTe) 

kTe 4 mi 

Vp-Vf kT e (kT e) Vi (nme) Vi - - Qn 2.4 - --
e mj 8kTe 

kTe 

2e ( 
m· ) Qn __ 1_ 

2.3 me 

In our example (Figure 3-2), Vp - V[Should have a value of 10.4 V compared 
with 15 V as derived earlier. The larger ion flux requires a larger electron flux for 
current neutrality, and so a smaller electron retarding potential. The logarithmic 
dependence minimizes the change in potential dueto the increased ion flux. 

PLASMA OSCILLATIONS 

One might at first think that in a de plasma, all parameters would be time inde­
pendent. This is not the case. Although the electrons and ions are in equilibrium 
as a whole, this is only the average result of the many detailed interactions. If a 
plasma, or even a small section of it, is perturbed from neutrality for any reason, 
then there will be large restoring forces striving to re-establish charge neutrality. 
Because of the large mass difference between ions and electrons, it will be the 
electrons which will first respond to the restoring forces. We shall find that these 
restoring forces are proportional to displacement, which is just the condition for 
oscillations. 

Electron Oscillations 

The frequency of oscillation can be found in the following way. Consider a slab 
of plasma of thickness L and density n (Figure 3- l 4a) and then suppose that all 
the electrons are displaced a distance .6. along the x axis by some externa! force 
(Figure 3-14b). The regions between x =O and x = L, and for all x < - .6., will 
remain space charge neutral. However, the electrons between x = - .6. and x = O 
will give rise to a space charge there. By Poisson's equation, since the electron 
density is n, 

d& 
dx 

Integrating, 

ne.6. 

Eo 

But the action of the field & is to exert a restoring force on the electron: 

d.6. 
me ili- -e& 

ne2 

-- .6. 
Eo 

When released, the inertia of the electrons will cause them to óvershoot their 
original po~itions, and they will continue to describe motion determine d by the 
sarne equat10n, where .6. now becomes a function of time. 

(a) 

(b) 

x=O x=L 
! 

1 

+ + + + + + + + + 
-:- - - - - - - t ~ + + + + + + + 
' - t + + + + + + + t + 
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+ + + + + + + + + 
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Pigure 3-14. When a uniformly distributed plasma (a) is displaced (b), oscillations may 
result 
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This is just an equation of simple harmonic motion of angular frequency we 
given by 

- ( ne2 \ili 
We - ---1 

mefo/ 

which corresponds to a plasma frequency of 8 .98 103 ne Yz Hz, where ne is the 
density per cm3

. So for a plasma density of 101 0 /cm3
, the plasma frequency is 

9 108 Hz, which is very much higher than the 13 .56 Mhz with which rf plasmas 
are usually driven (see Chapter 5). 

The period of these oscillations, about 1 nS in our example, tells us the re­
sponse time of the plasma to charge fluctuations. Since the frequency is deter­
mined by the interaction between the ions and the electrons, it is not too sur­
prising to find that we is relate d to the Debye length À.o. 

À.o we = (~()_k;e)Yz (mnez )Yz = (kTe)Yz '.:::'. ce 
\ ne me fo me 

This relationship enables us to give some more physical meaning to 11.0 and we. 
(Mitchner and Kruger 1973). In the derivation of the plasma frequency, the 
time required for the electron displacement 1:. to build up would be about 
1:./ce. This displacement would be imp'eded if the response time 1 /we of the 
electrons was shorter than 1:./ce. Therefore regions of disturbance will be re­
stricted to a distance 1:. given by 

~~ 
Ce We 

Ce 
or 1:. '.:::'. À.o 

We 

This is consistent with our earlier picture of À.o as the extent of deviation from 
charge neutrality. 

Alternatively, the relationship 11.0 We.'.:::'. ce says that the electrons can move 
a distance of about 11.0 in a time of 1 / we. This means that if the plasma is dis­
turbed by an electromagnetic wave of angular frequency w, then the plasma 
electrons can respond fast enough to maintain neutrality if w < We. So We is 
the minimum frequency for propagation of longitudinal waves in the plasma. 

In our simple derivation, the resulting oscillation was stationary, but we ig­
nored the thermal random motion of the electrons, and when this is taken into 
account it can be shown that disturbances can be propagated as waves. In fact a 
plasma is very rich in wave motion. This gives a means for propagating energy 
through the plasma. There can also be energy interchange between these plasma 
waves and fast electrons which travei through the plasma. We shall need to con­
sider these energy exchanges in Chapter 4. 
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lon Oscillations 

Just as the electrons could oscillate in the plasma, so also can the ions. The mass 
of the ions ensures that their oscillations are so slow that the electrons can main­
tain thermal equilibrium. The ion frequency is more complex to find than the 
electron frequency; although we were able to ignore the ion motion when deriv­
ing the electron frequency, we cannot ignore the electron motion when deriving 
the ion frequency. However, in the case where Te is large, the ion frequency 
simplifies to the sarne form Wj = (ne2 /miE0 )16. as the electron plasma oscillation 
frequency. For our example, this would amount to 3.3 Mhz. In the more general 
case, these low frequency oscillations occur with frequencies between zero anda 
few megahertz. They can be observed (Pekarek and Krejci 1961) as striations in 
the positive column of de glow discharge tubes ( our glow discharge processes 
don't usually have positive columns - see Chapter 4). When the ion frequency is 
low enough, these striations can be observed with the naked eye as slow moving 
or even stationary regions of higher optical emission intensity. 

AMBIPOLAR DIFFUSION 

Finally, there is a topic which we won't be using much in this book, but it does 
play a significant role in plasmas and therefore we need to know of the concept. 

Whenever there is a concentration gradient of particles, the random motion of 
the particles results in a net flow down the gradient. This is the phenomenon of 
diffusion. The resulting ion and electron current densities in the presence of a 
diffusion gradient dn/dx (assumed in one dimension for simplicity) can be 
written: 

je - e De 
dne 
dx 

ji = - e Di 
dni 
dx 

De and Di are the diffusion coefficients of the electrons and ions respéctively. It 
is possible to show that the diffusion coefficient and mobility µ (the drift ve­
locity in unit electric field) are related by temperature: 

D kT 
µ e 

This is Einstein 's relation. We already know that the mobility of the electrons is 
very much greater than that of the ions, and therefore the electron diffusion co­
efficient will be very much greater than the ion diffusion coefficient. One might 
expectas a result that, in a region of concentration gradient, the electrons would 
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stream out very much faster than the ions. This is initially true, but the exodus 
of the electrons leaves the rest of the plasma more positive and sets up a restrain­
ing electric field & which grows large enough to equalize the diffusion rates of 
the ions and electrons. 

ln the presence ofboth the resulting electric field & and the diffusion gradient, 
the resulting ion and electron densities can be written as follows: 

e n1· µ1· & - e D· dnj 
1 dX 

je = - e ne µe & - e De d;e 

where µi and µe are the mobilities of the ions and electrons respectively. The 
equalization of diffusion rates is achieved by putting jj = je in our current ílow 
equations. Since Ili and ne (and hence their concentration gradients) are closely 
equal throughout the main body of the plasma, equating the current densities 
yields the following result for & : 

& ne (Vi +µe) = (Di + De) ~ 
Substituting this value of & back, we obtain the following expression for the 
current flow of ions and electrons: 

. . _ . _ (De Vi + Di µe) dne 
J1 - Je - Vi + µe dx 

So the collective behaviour of the ions and electrons causes them to move with 
the sarne diffusion coefficient. This is the phenomenon of ambipolar diffusion, 
which will apply to all motion within the plasma. 

The current density formulation that we have used in this derivation, is bor­
rowed from solid state physics where mobilities, which actually imply collision­
dominated motion, are relevant. Using mobilities in the present application is 
stretching things rather, but we can take care of this by making the mobilities 
dependent on the electric field and plasma conditions. But again we mn into the 
problem that simple concepts become rather complex when the details are 
considered. 
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