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194 Cryogenics 

ELECTRICAL CONDUCTIVI 

Certainly one of the most outstanding properties of metals, i.n fact a 
property often used in the definition of a metal, is electrical conductivity. 
When an electi:'ic field is applied to a metal, its quasi-free conduction elec
trons are accelerated, resulting in the transport of electrical energy. If we 
adopt once again the point of view that this transport process by ele~tron 
"particles" is limited by processes of collision, we can quickly denve a 
general expression for the electrical resistivity. 

The mean time spent by an electron in free travel is 

r=L/u 

where L is again the mean free path, and u is the random mean thermal 
velocity. During this time the electron is given an acceleration in the direc
tion of the field. From Newton's second law this (constant) acceleration, 
a, is 

a= eE/m 

where e is the charge on the electron, m is its mass, and E is the electric 
fiel d strength. The electron therefore goes from zero velocity to ( eE / m) 
(L/u) in the direction of the field in this time, and its average velocity in 
this direction is therefore 

lld = t(eE/m) (Llu) (7.19) 

This "drift velocity" is superposed on the randomly directed thermal 
velocity of the electrons. 

If there are n participating electrons per unit volume, then the current 
density, j, is given by 

j = neua 

and Ohm's law allows us to arrive at the resistivity, p, by substitution: 

p = E/j = 2mu/(ne'L) (7.20) 
Here n is not the total number of free electrons per unit volume, but only 
those capable of exchanging energy with the applied field or the lattice in 
collision processes. We have already seen that this number is only a fraction 
of the total-those within about kT of the Fermi level. 

The values of m and e are, of course, constant, and for a given metal 
n is also constant. Furthermore, u is only slightly dependent on temperature 
because of the degeneracy of the conduction electrons, a fact we are already 
familiar with fróm the section on thermal conductivity in this chapter. To a 
good approxímation, therefore, the problem of electrical resistivity reduces 
to one of considering the mechanisms limiting the mean free path. 

ln the previous section on thermal conductivity in metals we noted that 
the mean free path of electrons is limited by collisions with phonons and 
with imperfections in the crystal lattice. The first is a dynamic scattering 
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u"'"""''"rn""' the second, static. As in the case of thermal these 
scattering mechanisms can be considered independent to a very good 
approximation, and we can write for the electrical resistivity, p: 

p = p1 + Pr (7.21) 

Here Pi is the resistivity caused by phonon scattering in a perfect crystal 
lattice, i.e., the resistivity of an "ideal" crystal, and pr is that caused by 

the "residual" resistivity of a real at OºK when 
phonon scattering has become inoperative. The lattice vibrations 
on temperature, and lead to a term with a temperature dependence in the 
electrical resistivity. The number of impurities and defects are independent 
of temperature, and lead to a term with no temperature dependence. This 
additive expression is Matthiessen's rule, formulated empirically from early 
observations on metals of different purity. 

At high temperatures, roughly greater than 8n, scattering of electrons by 
phonons in pure metals predominates over imperfection scattering. Since 
the effectiveness of phonon scattering is directly proportional to temperature 
in this range, we expect a linear relationship between electrical resistivity 
and temperature. 

At low temperatures, where phonon scattering becomes less and less 
important, the resistivity is governed by imperfection scattering, and since 
this is independent of temperature, the resistivity levels off at a constant 
value at low temperatures. The resulting curve for a relatively pure metal 
is illustrated in Figure 7.14. From a linear region at higher temperatures, 
the resistance becomes constant at low temperatures, the constant or residual 
value depending on the degree of perfection of the lattice. 

From a theoretical analysis by Bloch and an independent semiempirical 
treatment of experimental observations by Grüneisen, the following ex
pression for electrical resistivity due to phonon scattering was evolved: 

T5lflDJT X5e"dX T5 (ºR) 
p=KoR• (e'-l)" KfJR.J' T (7.22) 

ln this expression K is constant for a given metal, ()R is a characteristic 
temperature for electrical resistance that compares conceptually with On 
for thermal processes, and the other symbols are clear from Eq. (7.2). 
lt is instructive, in fact, to compare these two equations for their similarity, 
and to use an analysis of Eq. (7.22) similar to that used before. For T /8R 
greater than about 0.5, Eq. (7.22) becomes very nearly 

p=AT/fJR2 

which is the required linear relationship to temperature at high temperatures. 
For T/8R less than about 0.1, Eq. (7.22) becomes approximately 

p = BT"/011º 
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Figure 7.14. The electrical resistance of gold at low tem
peratures. Higher resistance curves are for gold of lesser 

purity. (Van den Berg, Thesis, Leiden, 1938) 

and predicts that the resistance will have a T5 dependence at very low 
temperatures. The validity of the Bloch-Grüneisen relation is illustrated 
in Figure 7.15, where the ratio of the resistance of five metals to their 
resistance at OºC is plotted vs reduced temperature, which is the tempera
ture divided by the appropriate {) R for the metal. The relation has been 
observed to hold best for monovalent metals such as sodium, lithium, 
potassium, copper, silver, gold, etc., although to fit the data properly {)R 

must be considered a function of temperature rather than a constant. This 
situation is similar to the procedure found necessary for {)D when considering 
thermal processes on the basis of the Debye model. Other metais show a 
less satisfactory agreement with the Bloch-Grüneisen theory, and in fact 
some of the simpler metals in slightly impure form even show a resistance 
minimum at low temperatures. 

The electrical resistance of alloys has a much different temperature de-
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Figure 7 .15. The reduced resistance 
of five metais at low reduced tem
peratures. [After Meissner, "Hand
buch der Experimental Physik," Vol. 

11, Pt. 2, p. 30, 1935] 

pendence than that of relatively pure metals, but this presents no difficulty 
to the basic ideas of the theory we have given. Alloys and cold
worked metals represent materiais in which the disorder of the lattice is 
so that the scattering of electrons by overshadows that 
by phonons even at room temperature. The electron mean free path is 
therefore relatively constant, and consequently the electrical resistivity is 
roughly independent of temperature. As mentioned in Chapter 3, however, 
there are some alloys that show an unexplained decrease in resistivity with 
temperature, but the decrease is not more than about 20 per cent of the 
total in going from 300ºK down to 4ºK. 

At present it is not possible to discuss a quantitative theory of 
fection scattering of electrons. Generally, severe cold working of a metal 
wm affect its electrical resistance through the generation of dislocations 
and other lattice imperfections but a metal that already has a resistance 
is not greatly affected by cold work. This is not true, however, of thermal 
conductivity, since the conduction of heat at low temperatures takes 
largely by phonons, the scattering of which is more sensitive to extended 
defects in the lattice than to point defects. The increase of extended defects 
( dislocations, etc.) produced by cold work can therefore decrease the 
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thermal conductivity of an alloy at low 
leaving its electrical resistance unaffected. 
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