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The conceptual: framework on which backscattering. spectrometry is based
& was erected in the years following the discoveries of Rutherford and of Geiger
- A and Marsden (1909-1913). A rapid succession of milestone developnients then
S ' . v brought order into the structure of the atom. The nucleus began.to attract the at-
€ S tention of increasing numbers in the physics community. Particle accelerators
- ' : were’ developed (o probe the inner workings of that nucleus. After World War
ek II, the number of accelerators in the 1-3 MeV range increased rapidly. Why,

then, did it take about 20 more years before these accelerators came to be used
in solving problems outside of the field of nuclear physics? There is probably
no single answet to this question. The growth and evolution of interdisciplinary
fields of science and technology follow patterns of their own. The rules that

A govern them and the guidelines one should follow to further such evolutions
&) ‘ can perhaps be learned from the study of cases such as that of backscattering
& o : spectrometry.

. L
First, one must observe that the nuclear physicists who used these accelera-

tors were fully aware of the analytical power of Rutherford backscattering from
the very beginning. For example,. it was (and still is) common practice to rec-
ognize contaminants of: the target by an:analysis of backscattered: particles.
Also, there was: a constant trickie of publications over those 20. years to prove

J xi
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that invéstigators were always conscious of the analytical possibilities that
Rutherford backscattering could offer, Throughout the 1960s, applications of
the method were proposed by a steadily increasing number of authors. By the
end of that decade, backscattering had taken a foothold.

Another development took place independently. In the early 1960s, the chan-
neling of fast particles moving in a crystalline lattice was rediscovered after
having been anticipated by W, H, and W. L. Bragg and by J. Stark in the
1910s. The phenomenon attracted attention and brought particle accelerators
into the arena of solid-state physics through the other door. By the time back-
scattering spectrometry was finding acceptance, channeling had already become
an integral part of the method.

Clearly, the idea of using Rutherford backscattering had always been alive,
The obstacles in the way of its immediate introduction as an analytical tool out-
side of nuclear physics were elsewhere, )

One difficulty was instrumental. At the outset, the only detectors with good
energy resolution were the magnetic spectrometers, which are bulky and time-
consuming to operate. Around 1960, solid-state detectors became available.
These relatively inexpensive devices promised good resolution, good linearity,
fast response, and simultancous analysis over a wide energy range. Their devel-
opment was correspondingly rapid. At present they constitute the preferred par-
ticle detectors in the energy range of interest (o backscattering spectrometry.

Another major experimental improvement occurred in the electronic systems
for data handling and processing. Speed, accuracy, stability, and generous
capacities for data storage and handling became available at reasonable cost. In
combination with a solid-state detector, such a system transformed an accelera-
tor into a rapid and efficient analytical instrument,

Planar technology was first introduced to make semiconductor devices in
1960. Because of its inherent advantages, this technology found rapid accep-
tance, but with it came numerous novel problems in the formation and control
of thin layers used for masking and contacting. The fact that backscattering
spectrometry was an ideal tool with which to investigate these problems went
unnoticed. The problems existed, but those equipped to solve theni remained
unaware of them, and those seeking answers overlooked the (ool.

A direct link between planar technology and backscattering spectrometry was
finally established with ion implantation. It offered accurate control of the
dopants and uniform surface density over a whole wafer, and thus superior

'yields. The need arose to establish the depth profile of an implanted atom and
the amount of disorder produced by the energetic ions. Backscattering spec-
tromelry came as a fairly natural solution to those familiar with ion beams and
ion implantation. In early applications an attribute of backscattering spec-
trometry that had not been fully appreciated became evident, namely, its ability
to provide a depth scale to the elements detected. It is this ability more than any

Preface X111
other that gives backscattering spectrometry its unique analytical power. The
great success of the method in connection with thin films, their structure, com-
position, and reactions, demonstrates this fact very clearly. Actually, a prf)fes-
sional society exists whose purpose is to promote the specific field of particle-
solid interaction, of which backscattering spectrometry is a recognized part.

Finally, the pressure to bring MeV accelerators to bear on the problems
arising in the semiconductor industry came from the semiconductor industry.
Typically, it was not the scientists who had already mastered the tool who
sought out the problems, but rather the scientists with the problem who sought
out the tool. Without the magnanimous response of those in charge of the
accelerators, the interdisciplinary effort would not have unfolded. Where the
intellectual curiosity for the solution to a problem at hand overruled the man-
made subdivisions of scientific disciplines, the barriers fell and backscattering
spectrometry rose (o success. 4

So far, the main beneficiary of the technique has been the semiconductor
industry, where thin-film and ion implantation problems abound.. In sorts,
backscattering spectrometry pays. a tribute it owes. It was the semn‘conductor
industry's earlier efforts that had readied the MeV accelerators for this task by
providing them with suitable detectors and electronic systems.
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Chapter

1

Introduction

1.1 INTRORUCTION

To obtain measurable effects, an intense pencil of alpha particles is
required. It is further necessary thal the path of the alpha particles
should be in an evacuated chamber to avoid complications due to
the absorption of scattering in air.

This is how Geiger and Marsden (1913)" describe the principal conditions
that their experiment had to meet. With it they unambiguously confirmed
the validity of the new model of an atom proposed by their leader Ernest
Rutherford. Figure 1.1 shows a drawing of the simple apparatus that they
built to meet these requirements. The year was 1911, The purpose was to
test (and prove) a theory.

Figure 1.2 is a sketch of a similar apparatus, It is taken from the final report
of the Surveyor Project (Turkevich et al., 1968) and shows the sensor head of

t Relerences are listed al the end of each chapter. We use the year of publication to identify
a reference, followed by a, b, . . ., il necessary Lo ayoid ambiguitics.

1



1. ’_Introduct;ioni

Fig. 1.1  Drawing of the apparatus used by Geiger and Marsden in 1911-1913 to test and
confirm the new madel of an atom conccived by Rutherford in 1911, “The apparatus. . . consisted
of aslrong cylindrical metal box B, which contained the source of alpha particles R, the scattering
foil F, and a microscope M to which the zinc-sulphide screen S was rigidly attached. The box
was fastencd down to a graduated circular platform A, which could be rotated by means of a
conical airtight joint C. By rotaling the platform the box and microscope moved with it, whilst
the scattering foil and radiation source remained in position, being attached to the tube T,
which was fastened to the stand L. The box B was closed by the ground-glass plate P, and

" could be exhausted through the tube T." [from Geiger and Marsden (1913).]

v

ALPHA DETECTORS (2) IDENTIFY LUNAR SURFACE
ATOMS BY MEASURING ENERGY OF ALPHA PARTICLES
REFLECTED FROM NUCLE! OF ATOMS

RADIOACTIVE
SOURCES (6}
OF ALPHA
PARTICLES

| ~—— PROTON DETECTORS (4)

DENTIFY LUNAR SURFACE

ATOMS BY MEASURING ENERGY
QOF PROTONS SPLIT OFF

NUCLE! OF ATOMS 8Y

ALPHA PARTICLES

ALPHA PARTICLES PENETRATE SURFACE ~ 25 um

Fig. 1.2 Diagrammatic’ vicw of the internal configuration of the alpha-seat(ering sensor
head deployed on the surface of (he moon for Lhe first analysis of the lunar soil; exceuted: as
part of the scientific mission of Surveyor V after its soft landing on Septembet. 9, 1967. [from
Turkevich et al. (1968).] This experiment was the first widely publicized application toa problem’

* ol nonnuclear intetest of the coneept of Rutherford scatlering introduced some 50 yeurs carlier.

,[r
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the “alpha-scattering experiment” which was part of the scientific payload of
Surveyor V. The year was 1967, The purpose of the alpha-scattering experi-
ment was Lo analyze the composition of the lunar soil. This experiment prob-
ably constitutes the first widely publicized practical application of the idecas
of Rutherford, Geiger, and Marsden to a problem of nonnuclear interest.

In the rest of this introduction, we paint an overall picture of the analytical
technique of backscattering spectrometry as it exists today. We do not dwell
on the details, but rather present the idea of the method; what it can and what
it cannot accomplish. The purpose of this chapter is to give a gencral picturc
of backscallcring spectrometry, a few basic concepts, and some “rules of
thumb” to guide in interpreling or reading spectra. Details arc given in the
following chapters as outlined in Section 1.7. However, the contents of this
chapter are intended (o convey an impression of the relative strengths and
weaknesses ol backscattering spectrometry in the [ramework of materials
analysis.

1.2 CONCEPT OF A BACKSCATTERING
EXPERIMENT AND ITS LAYOUT

Both in its concept and in its clementary execution, Ruthetford scaticring
is quite a simple experiment. A beam of monoenergetic and collimated alpha
particles (*He nuclei) impinges perpendicularly on a target. When the sample
that constitutes the target is thin, as in the experiment of Geiger and Marsden,
almost all of the incident particles reappear at the far side of the target with
some slightly reduced energy and only slightly altered direction; that is, the
beam is transmitted through the thin target with only very little loss: of
particles. The situation is sketched in Fig. 1.3. The few alpha particles that
are lost undergo large changes in energy and direction, changes duc to close
encounters of the incident particles with the nucleus of a single target atom.
If the sample is thick, only the particles scattered backward by angles of
more than 90° from the incident direction can be detected. This is the situation
that prevailed in the Surveyor V experiment (Fig. 1.2). It is also that which
is adopted in the analytical technique discussed in this book, hence the name
backscattering spectrometry.t

The typical experimental system used today for routine backscattering
analyses is considerably more elaborate thah the setups shown in Figs. 1.1
and 1.2. Figure 1.4 gives a schematic outline of the major components of¥

t'Ati alternative name is Rutherford backscatiering spectronietry. Howevcer, since the scatlering
cross scetion can deviate from that given by the Ru(herfold formula; we usc the more gcncml
term backscattering spectionetry,
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a particle
source

R T /.

Zinc
sullide
screans e

Scattering of
a porticles

Fig, 1.3 Conceptual layout of a scattering experiment. In the experiment of Geiger and
Marsden (Fig. 1.1) the source was a thin-walled glass tubce filled with radon and enclosed in a
lead box, shown shaded in the diagram. The collimator consisted of u simple diaphragm. In the
experiment of Surveyor V, the six sources were of 242Cm which emits alpha particles of 6.1 MeV.
A short tubular extension of the stainless sleel capsule that contained the curium acled as the
collimator, The collimator opening was covered with a thin film of aluminum oxide plus
polyvinylstyrene, totaling about 1000 A in thickness, to prevent contamination of the lunar
soil or the apparatus by radioactive material.

Ion source

Accelerator

Outpuis
Display
Analog @
and digital
Plotter I:}\elec!ronics .
i l i——— Quadrupole .
Printer ikl
magnet I
Compuler
11— Slits
: : Preamplifier
' ' and deteclor (
™ f \ Magretic
P analyzer
Sample Slits
N ~ _ N - S, N g ,

Data handling Scattering chamber Beam generation

Fig. 1.4 Schematic diagram of a typical backscattering spectrometry system in use today.
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Detector ~__ T \
~ arge
holdef

Preamplifier —_

Mu]llchonnet
analyzer

-~
Detector
Incident supply

beam

-
Vacuum ~
pump

Fig. 1.5 Layout of the target chamber and electronics of a backscattering system. The ions
impinge on the target in the vacuum chamber. Backscattered particles arc analyzed by the
detector, and the detector signal is magnificd and reshaped in the prcamplifier. The clectronic
cquipment in the rack provides power to the delector and preamplificr and stores the data
generated by the detector in the form of the backscattering spectra.

such a system. Charged particles are generated in an ion source. Their energy
is then raiscd to several megaclectron volts by an accelerator, usually a van
de Graall (or a similar kind). The high-energy beam then passes through a
series of devices which collimate or focus the beam and filter it for a selected
type of particle and encrgy. This equipment replaces the simple source-and-
diaphragm arrangement of Figs. 1.1 and 1.2. The immensc advantage of this
system over the natural source-and-diaphragm apparatus is that the beam
parameters can now be varied over a wide range. In particular, higher
particle fluxes can be oblained as compared to natural sources; this drastically
shortens the measurcment time. The beam then enters the scattering chamber
and impinges on the sample to be analyzed (Fig. 1.5). Somc of the back-
scattered particles impinge on the detector, where they generate an electrical
signal. This signal is amplificd and processed with last analog and digital
electronics. The final stage of the data usually has the form of a (digitized)

‘spectrum, hence the name backscattering spectrometry.

In spite of the sophistication in the beam-generating parts and the data
collection end of a backscattering spectrometry system, the chamber in
which the backscattering experiment is performed remains simple (Fig. 1.6).
Apart from the box and the sample themselves, it has only three elements:
the beam, the detector, and the vacuum pump. The requirements on the

-~
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|
-
A S
! A
} \\ / 1Vgcuum pump
|\\:~___,/////|

Fig. 1.6 Even in a sophisticated backscaltlering spectromelry systemn, the scattering chamber
where the analysis/experiment is actually performed remains simple. Apart from the box
forming the chamber and the sample, there are only (hree otlier elements: the beam, the detector,
and the vacuum pump.

vacuum arc quite modest by today’s standards: 105 Torr is expedient, and
107° Torr is quite adequate. Such vacua allow simple handling procedures .
and rapid turn-around times for unloading and reloading samples. A well-

functioning backscattering spectrometry system can analyze many samiples
a day. As a research tool, one system is able to satisfy the demands of a
number of people and projects at a time. As a tool for routine surveys, a
system can easily be automated for both the execution of the experiment
and the reduction of the data.

1.3 BASIC PHYSICAL PROCESSES

The translation of individual signals in a backscattering spectrum to depth

distributions of atomic concentrations in a sample rests on simple physical

principles. Imagine a single self-supporting layer with two elements M and
m in equal amounts, 10'% atoms/cm? each, as shown in Fig. 1.7. Imagine
further that a flux of *He particles of 1-MeV energy impinges on this layer.
Those lew *He particles that do undergo close encounters will be deflected
because of the enormous Coulombic force they encounter. If the energy of

1.3° Basic Physical Processes ' » : 7

10'% atoms /cm?
euch

AHe Beam
IMeV (=Eg)

Detector

L4444 Abid

\\J
0.
) 94170° 552,7keV  922.5 keV

Fig. 1.7 The kinematic factor K,, gives the ratio of the energy alter (E,) to that before
(Ey) an elastic collision of the. projectile (here *He) with an atom of mass M (197 amu for Ay,
27 amu for Al). The heavier mass reflects the incoming patticle more complctely, encrgetically,

- than the lighter mass, as is the casc with billiard balls. Two cxamples are shown and actual

values are given,
"

the incident *He ion is not too high, nuclear reactions czin be ruled out during
the collision process as well. The collision then must be an elastic one. The
phenomenon is similar to the collision of two hard spheres and can be solved
exactly. The kinematic lactor K is the ratio of the encrgy of the projectile after
to that before the collision. It is listed in Tables 11 and 111 for 'H and *He as
projectiles.! As an example, assume that the two elements are Au and Al,
whose alomic masses arc 197 and 27 amu, respectively (sce Table 1), For a
scattering angle of 170°, we find from Table Il that K 4,,= 09225 and K, =
0.5527. A 1-MeV *He particlc therefore, has an encrgy of 922.5 keV alter a
collision with Au, and an energy of 552.7 keV after-a collision with Al
The probability that a collision will result in a detected particle is given by
the differential scattering cross section da/dQ), which is tabulated for all
elements with “He as a projectile in Table X. For Au, do/dQ is 32.81 x 10724
cm?/sr for each atom; for Al, dg/dQ is 0.8512 x 10~2* cm?/sr. To find the
average scattering cross section g over the ficld of view of lh(, dc(ccldr we.
must_multiply this. differential scattering cross section with the solid angle
of detection Q, which we shall assume to be 1073 sr {a typxcal order of

‘magnitude for real systems). Addmg up the scattering cross’ scctlon of all

atoms in the layer (10'5 atoms/cm? each), we find for Au, 3.3 x 10~ ! and
for Al, 8.5 x 107 '3, These dimensionless numbers give the probability that
a “He projectile will undergo a close encounter with Au or Al in the layer®
and end up in the detector. Assume that the integrated current of 1-MeV
‘He* ions during the exposure of the layer was 1 uC (which is a typical

¥ Tables 1-XI are given in A;chndix I

S
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number uscd to oblain a backscattering spectrumy); the total number of *He
ions that fcll on the sample was then 6.2 x 10'2 The probable number of
events counted after scattering [rom Au atoms is therefore about 200, and
the number from Al is about five. Note that the charge state of the particles

in the ion beam, whether “He* or *He* * (alpha particles), relates integrated |
p

current to number of incident particles but does not influence scatiering
or energy loss cross sections,

Now imagine that the sample is a self—supporling Au film 1000 A thick
and that the analysis bcam consists of 2.0-MeV *He ions (see Fig. 1.8). A
scatlering event at the front surlace of the film is detected at an energy KyEy;
the same event at the rear surface is registered at a lower energy. The energy
difference AE = 133 keV is nearly ten times the energy resolution of standard
particle detection systems, and hence it is straightforward to determine
whether particles were scattered at the front or rear surfaces of the film.
Scattering events that take place somewhere between front and rear surfaces
arc recorded at some intermediate encrgies. Since the beamn is unattenuated,
the scallering probability at any depth is proportional to thc number of
atoms of a particular kind present there. This is the way a concentration
profile of a given element is translated into a signal of corresponding height
and decreasing energy in the backscattering spectrum,

e Beam
2MeV (= Eg)

Detecior

X; A

>%
8=170°7
L 1712 keV 1845 keV
1 10004 AE = 133 keV

1 A |
Fig. L8 A swift particle that passes through a densc medium loses some of its encrgy. As a
consequence, a parlicle scallered back at the rear surface of a film has less energy when it is
detected than a particle scattered at the front surface. Actual values arc given for a 1000 A-thick
Au film.,

The fact that the signal of *He particles scattered from the Au film has a
finitc cnergy width reflects the encrgy loss of the particles along their inward
and W Such energy losses can be calculated from thc..sluppdug
"cross section &, which is given for *He ions in Table VI in units of electron
volts per 10'% atoms per square centimeter; for 2.0-MeV “He ions, the value
of 4™ = 115.5. To determine the energy lost along the inward track to the rear

1.4 Examples and Applications C. 9

surlace of a film of thickness ¢ and atomic density N, one takes the product
ol ¢ and Nt, where Nt represents the number ol atoms per square centimeter
in the film. For the Au film (where N, = 5.9 x 10?? atoms/cm? as given in
Table 1) the value of Nt = 5.9 x 10'7 atoms/cm? and a particle would losc
68.1 keV along the inward path.

Mwigz d;fTelence between particles scattered from the front
and back surfaces of the film is given by the product of Nt and [&], where
“Values of [}’Tlhc stopping cross seclion factor, are listed in Table VIII for
scattering anglmgaqglkn\'l"?ﬁle VIII, the units of [, ] are clectron volts
per (103 atoms per square cenfimetey) and the valu;?[?[u(,]"" = 226.2. For
a film with 5.9 x 10'7 atoms/om?, the energy width AE = 133.4 keV. This
energy width could also have:been found directly from the values of the
_energy loss factor [S] given in Table [X for “He in units of electron volts per
angstrom. However, thc usc of an cnergy- -lo- dcpth conversion with units of
electron volts per angstrom overlooks the fact that backscatteri ing spectrom-
ctry reflects the number of atoms per square centimeler traversed by a
particle rather than the physical depth in centimeters. The conversion be-
tween the two is direct if the atomic density of the sample is known.

If the energy loss that the particle suffers as it traverses the sample werc
independent of encrgy, the relationship between the depth of the collision
and the energy of a detected particle would be linear. As a matter of fact, the
success of backscatlering spectromelry in the analysis of thin films is partly
attributable to the small relative change in the energy of the beam as it
traverses the {film. The energy dependence of the stopping cross section can
then be replaced by two fixed values, one along the inward path and one
along the. backward path across the film. For very thick films where this
approximation fails, the analysis of a spectrum is not as simple. However, a
large part of this book discusses suitable approximations.

The fact that the projectile loses energy as it penetrates into the sample
has another consequence. Scattering cross sections depend on the energy of
the impinging projectile as (energy) ™ 2. Deeper down in the sample, where

the cnergy of the projectile decreases, the scattering probability increases. *

The signal of an element which is uniformly distributed in depth is thercfore
not flat-topped, but rises toward lower energies. This, too, complicates the
quantitative analysis of a spectrum,

’

1.4 EXAMPLES AND APPLICATIONS

Applications date back to some of the early nuclear investigations with
accelerators, when it was common practice to recognize contaminants of the
target by an analysis of backscattered particles (Tollestrup et al., 1949). The

earliest applications to problems of nonnuclear interest were the analyses of -

smog (Rubin and Rasmussen, 1950)-and of the bore surlaces of gun barrels

1
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(Rubin, 1954). Other: contributions were those of Rubin et al. (1957) and
Mazari et al. (1959), who detected trace elements on thick and on thin targets,
respectively, and of Sippel (1959), who measured the diffusion of Au into Cu;
In 1960, 5 K. Allison suggested the method for the remote analyms of surface
composxt;on Followmg his suggestion, Turkevich (1961) proved in pre-
liminary investigations that the method was feasible, and Patterson et al.
(1965) laid the groundwork that culminated in the compositional analysis of
the moon’s soil by Surveyor V in 1967 (Turkevich et al., 1968).

In this section, however, we present three more recent examples to give a
feeling.for backscattering spectrometry. The first deals with the detection of
contaminants on the surface of Si, while the second shows the depth distri-
bution of a dopant in Si, and the third shows examples of thin film analysis.
Other examples are given in Chapter 5. *

1.4.1 Surface Impurities

Asa first example, we present in Fig. 1.9 a schematic energy spectrum of
*He backscattered from a Si target with Cu, Ag, and Au on the surface, each
in the amount of about 10'® atoms/cm?. This is of the order of one monolayer
of surface coverage. The spectrum was taken with a *He beam of incident
energy Eq = 2.8 MeV. The lower abscissa gives the energy scale of the back-
scattering spectrum, The upper abscissa gives the mass M associaled with

. the positions KyE, lor the three impurity elements and flor Si. Note that the

mass-to-energy conversion established via K, is unique, but nonlinear. Au

is the only element in this example that has only one stable isotope (see Table

I) and produces only one signal in the spectrum. The two signals of the Ag
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Fig. 1.9 Schemalic encrgy spectrum of *He backscattered from a Si substrate with about
© 10'% atoms/cm? each of Cu, Ag, and Au (equivalent to approximately one monolayer of cover-

age). Projectile: *He* of 2.8-McV incident énergy; scaltering angle of detected particles; 170°;

solid-angle of detection: 4 mse; total dose (integrated current ol incident beam): 10-1C; energy:

per-channels 5 keVyresofution: 125 keV (FWHM). The ordinate for the sighals of Cu, /\g, g
Au is magnified ﬁvc times.
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isotopes calmot be distinguished, because the energy resolution of the de—‘
tection system is too coarsg. The signals of the two Cu isotopes arc just
barely resolved.

The area under each lmpurlty peak is proportional to the number of
impurity atoms per unit alea and (he scattering cross section of the element.
Since the surface coverage is about equal for all three impurities, the size of
the signals reflects the change in cross sectlon ‘We are thus able to determme

Nlle_/exaéﬂt ratio of atoms per square gglltxmcter b
dividing the area Lof the signals U through the resp

scatlcx ing cross sectlons

“and obtain quantltatxve results without using standards of calibration. The
“signals of the two Cu isolopes indicate dircctly their relative abundance. The

Si part of the spectrum is characteristic of a thick sample. Here it is the height
of each step at the appropriate energy edge KuEq that is proportional to
the isotopic abundance (92.2, 4.7, and 3.1 {from Tablc I).
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Fig. 1.10  Schematic energy spectrum of 2.4-McV “He backscattered [part (a)] from a Si
substrate doped with As. The As signal is magnified in a separate plot [part (b)], where the
axis of energy (bottom) is converted to depth below the surface (top) and the axis of yicld (left)
is converled to alomic volume concentration (right). The spectrum was measured with the same
system paramelers as those given in Fig. 1.9, except lor the incident energy (Eq = 2.4 MeV) and
the dose (20 pC).

-~

1.4.2 TImpurity Distribution in Depth

As a second example, Fig. 1.10 shows a schematic energy spectrum of*He
backscattered from a Si sample implanted with As and then heat-treated to
diffuse As deeper into the sample. The conversions of the backscattering
yield of As to an As concentration as well as the encrgy axis {o onc giving
the depth of As in Si are given in the enlarged part of the figure. Both con-
yersion scales are linear with only minor corrections.

The concentration scale for the As signal conveys an idca of the scnsitivity
of backscattering spectrometry in detecting impurities. Compared Lo other

Y




12 1. Introduction

methods—for example, neutron activation analysis or secondary ion mass
spectroscopy—Dbackscallering spectrometry is not very sensitive. However,
backscattering spectrometry is capable ol quantitative measurements with-

out recourse to standards. It can also [urnish depth profiles without layer

removal by ion sputtering or chemical stripping, which is generally required
wilh other profiling methods.

. 1.4.3 Thickness Measurements

The measurement of film thicknesses is an obvious way of making use of
backscattering spectrometry. Figure 1.11 shows schematic spectra of “He
backscattered from Ta films of various thicknesses. Several spectra are plotted
on the same axes to illustrate the relation between the energy shilt and the
film thickness: they are nearly proportional. The accuracy ofl the thickness
measurement is directly determined by the accuracy of the energy loss
_values used for the analysis. Here we have used the values listed in Table IX.
“As stated prevnously, the area under each signal is proportional to the total
number of Ta atoms in the film. Consequently, one can obtain the film
thickness from the arca of a signal as well.
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' Fig. 111 Display of five backscatlering spectra combined to show how the width of the
signal from a thin film reflects the thickness of the films, The incident encrgy of the *Hc ions is
2,0 MeV and the five targets were Ta films deposited on SiO, substrates (the substrate signals
arc not shown in the spectra).

1.5 STRENGTHS AND WEAKNESSES OIF
BACKSCATTERING SPECTROMETRY

The strength of backscattering spectrometry (BS) resides in the speed of
the technique, its ability to perceive depth distributions of atomic species
below the surface, and the quantitative nature of the results, Furthermore,
with single-crystal targets, the effect of channeling also allows the investiga-
“tion of the crystalline perfection ol the sample.

P,
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The speed of the data collection is possible in part because the modest
requirements on the vacuum permit fast sample changing, The modest
vacuum is admissible only because BS measures the bulk of the sample not
its surface. Since the typical depth resolution of 100 to 200 A precludes a
study of the first few monolayers, vacua of 10772 or 107'° Torr, which truc
sutface techniques demand, are unnccessary for BS.

The great increase in sensitivily for heavy clements is an asset for the de-
tection of these clements, but a severe limitation for the detection of light
elements. Carbon, nitrogen, and oxygen are ubiquitous elements and there-
fore of great significance in the near-surface regions of a solid; yct BS is
nearly blind to trace quantitics of them. This disadvantage is often overcome
in studies of thin films by depositing the film on a low atomic mass substrate
such as carbon. This approach allows ready identification of signals from
oxygen contaminants, for example. Another weakness is the lack of specificity
in the signal. After a scattering event, all backscattered particles are alike,
save for their energy. Two clements of similar mass cannot be distinguished
when they appear together in a sample. This lack of specificity of the signal
can be resolved by other analytical tools, such as Auger electron spectroscopy.
Finally, onc must realize the stringent requirements on lateral uniformity
that a sample must meet before the full capability of BS can be utilized. A
typical ion beam diameter used for backscattering is 1 mm?. Il the range of
depth analyses is 2000 A, the width of the beam spot is a factor of 5 x 103
larger than the thickness of the layers. Scratches, cavitics, dust particles, and
any other surface nonuniformitics can drastically modifly the spectrum, if
present in sullicient amounts, even if they arc of a submicron size. The lateral
uniformity ol a sample must therefore be assured on the surface as well as
in depth.

The most convenicnt way to establish this uniformity is scanning clectron
microscopy (SEM), which has excellent lateral resolution and thus con-
stitutes the normal complementary tool for BS. Unfortunately, SEM provides
surface topography, without vision below, and with little clemental specificity.
X-ray attachments can provide the missing clemental spccificity. In this
respect, an clectron microprobe is an cven superior counterpart to BS be-
cause it combines good clemental specificity and good lateral resolution.
The dirawback of the clectron microprobe is that the x-ray signal reflects the
average composition over depths quite large compared to the depth resolu-

tion of a backscaltering spectrum,

Another limitation of BS is that chemical information is totally absent.
X-ray diffraction of various sorts, in particular the Read camera, has been
found most uselul for the determination of crystallographic paramecters.
Usually the combination of atomic composition ratios furnished by BS and
the knowledge of diffraction patierns give convincing cvidence of the actual
nature of the compound present.
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- Auger electron spectrometry (AES) and secondary ion mass spectroscopy
(SIMS) are two other techniques. that complement BS well. Both have
clemental specificity; but their main drawback is their reliance on ion
sputtering for depth profiling. lon sputtering can modily the sample under
investigation ‘and lead to crroncous conclusions (c.g., laterally dissimilar
crosion rates or preferential spultering). The consequences can be particularly
severe in AES, where the signal emanates from the uppermost layer of the
sputtered area. AES, on the other hand, can be quantified by comparison
with reference samples, In SIMS, quantification is still more difficull because
the fraction of the ionized (and hence detected) atoms sputtered from the
substrate depends on the chemical surrounding of that atom in the samplc
and on the sputtering gas. In sensitivity, however, SIMS far surpasses most
other analytical technigucs.

One of the advantages of BS is that it provides depth distributions without
the requirements for destruction of the sample by layer removal as in the
case of sputter sectioning used with AES or SIMS. However, BS will in-
troduce damage. Whether BS should be considered destructive or not de-
pends on the object analyzed and also on the questions asked. A shallow pn
junction, for inslance, is rapidly destroyed by small doses of irradiation il
one looks at the reverse current, but remains essentially unaltered if one
considers the doping profile. As a rule, metallurgical structurcs are quite
inscnsitive to the irradiation doses used in BS,

It is clear that for a full characterization of a sample every ‘possible tool
must be brought to bear because cach tool has limitations, Only a combina-
tion of techniques—Ifewer if those applicd are well adapted to the problem
or wisely sclected and more of them otherwise-—-can permit hard conclusions.
BS occupies a select place among these tools, in spite of having been a late-
comer in the scene, because it is fast, ideally suited for large surveys or routine
applications, and quantitative, i

'

1.6 HOW TO READ A BACKSCATTERING SPECTRUM

Qne of the advantages of backscattering spectrometry is that the spectrum
can be interpreted rather easily. In this section, we show how the form of a
backscattering spectrum provides insight into the composition of a sample.
Which physical process is actually responsible for the various characteristics
of a spectrum does not concern us at this point. We shall actually proceed
backward and assume that the composition of the sample is known, and
show by what basic rules this information is translated into a backscattering
spectrum, In a practical case, of course, the process is reversed. ‘

Consider a thin film composed of a uniform mixture of two elements, as in
the case of a binary compound or {wo fully miscible solids. To reduce the ex=
ample to its simplest form, we shall ignore the substrate. For backscattering
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‘ing spectrometry, the massgs of the two clements and their atomic numbers

are highly significant, We ghall therefore characterize the two clements by
their masses M and m, rather than by their chemical symbols. To start with,

let us assume that the two ¢lements are present in the film in the same pro-

portion; i.c., the atomic concentrations of both elements are (he same. This
state ol aflairs is represented graphically in Figs. 1.12a and b. The profile of
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Fig. 1.12 () Transtation of concentration profiles Lo signals in a backscatlering spectrum,
demonstrated for the example of a thin homogencous filfn of a binary compound with clements
of a heavy M and a light m atomic mass. {b) The atomic concentrations are the same for both
clements. (c) In the backscattering spectrum, the two profiles reappear as two separate signals:
The light mass gives a signal at low energics with a low yicld, The heavy mass produces a signal
at high encrgics of a high'yicld. The high-cnergy edge of cach signal (arrows marked mv and M)
is pegged on the energy axis of the spectrum to the value given by the kinematic factor K, where
E, is the energy of the incident particles. The yield. ratio of the two signal heights is given
(approximately) by the ratio ofthe scatlering cross scction ay/a,, of the two clements, which is
proportional o (Z/2)%, the square of theratio of the alomic numbers Z and z of the heavy and
light elements.
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atomic concentration versus depth given in Fig. 1.12b translates into the
_corresponding backscattering spectrum’of Fig. 1.12¢ as follows:

1. The rectangular profile of the element with the heavy mass (M, say)
reappears in the backscattering spectrum as a rectangular signal located
on the energy axis at high energles the profile of the element with the hght
mass (m, say) gets a placc in the backscatlering spectrum at low energies.
The rule for the translation of the abscissas thus is lieavy masses go to high
energies; light masses to low energies.

2. Atomic concentrations of the same valué in Fig. 1.12b are plotted at
different levels on (he yield axis of the backscattering spectrum in Fig. 1.12c.
If the atomic number of the clement is high, the yield is high too, and il the
atomic number of the element is low, the yield is low. The rule for the transla-
tion of the ordinales reads: High atomic numbers give high yield; low atomic
numbers give low yields. 1n effect, these two rules amount Lo saying that cach
element has its own coordinate system in the backscaticring spectrum,

The discussion so far is qualitative. The power ol backscaltering spec-
trometry now resides in the fact that the two translations just described can
be formulated in quanlitative terms. For the x axis of the backscattering
spectrum, for instance, there is the so-called kinematic factor K, which
states where, exactly, the signal of an element of any given mass has its
high-cnergy edge. (The high- -energy edge, or “leading” cdge, of the signals
of the elements of mass M and m in Fig. .12 arc indicated by arrows marked

M and m.) The location of the high-energy edges are indicaled by the length
of the arrows labeled K, Eq below the energy axis of the spectrum of Fig.
1.12c.

In very similar lashion, the scatter ing cross sectiofl o gives the scaling
factor for the yicld axis ol diffcrent clement(s. The leLlWe concentration

ratio of two elements transforms into relative yields by d ratio g,wen essen-
tially by the cross scction ratio of the elements or by (Z/2)%. Somc corrections
must be applied. These are usually small (less than 10%;), but the fact that

they do exist has much to do with the reason this book is written, For
nd m occupy_ in__..

cxample, the thicknesses that the two _atomic species M

the film (Figs. 1. 12a and b)

the signals of these

lwo clcmcn(s oecupy on lhc encx;,y lcn m;, SpCLll'um are

“on the cnergy axis of the spectrum, but lha( llIlClle is not quntc the same
for each signal. Il both intervals were identical, the scaling factor for the
two yields would be correctly given by the ratio of the scatlering cross
scctions of the two clements. Generally the intervals differ but not by much
(about 10% or less); hence the correction on the yields.
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To summarize, the translation of the concentration profiles of the two
elements in the film (Fig; 1.12b) into the two signals of the backscattering
spectrum of Fig. 1.12c may be viewed in the following way (sce Fig. 1.13):
There is a coordinate system for each mass in the target plotting the atomic

surface of the samp]e on whxch the andlyzmg bedm impinges. deh ploﬁle
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g, 1,13 (a) Translation of concentration profiles to signals in a backscattering spectrum,
demonstrated for the example of u thin homogencous film of u binary compound with clements
ol a heavy M (solid tine) and a light m (dashed line) atomic mass. (b) The atomic concentration
profiles with depth are the same for both clements. (¢) In the backscattering spectrum, the (wo
profiles reappcar as (wo separate signals. The position of the coordinate systems for the two
signals, and the scaling factor for their ordinales are as described in Fig. 1.12. However, the
conversion of the abscissas from depth to energy is generally not the same for the (wo signals,
and the conversion is not exactly lincar cither, Usually, the nonlincaritics are insigniﬁczmi and
the difference in the two scales is not more than 10%,.
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is reproduced independently of the other in the backscattering spectrum
and generates the signal of that mass. The final backsmttermg spcctrum is
a lincar superposition of these signals. When a concentration profile varies
with depth, the height of a signal will vary accordingly. This means that a
backscattering spectrum actually constitutes an image ‘of the distribution
with depth of the various elements in the sample. Each type of atom of a
particular mass is displayed individually. The signal of each has an accurately
defined position on the energy scale, which corresponds to the sample
surface as a reference point.

If the sample of Figs. 1.12.and 1,13 is thick, the signals of the two masses
M and m will extend down to zero energies. The spectrum then has the
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* steplike appearance shown in Fjg. [.14, Real spectra never extend to zero

encrgy, because noise in the detection system dominates at these low cnergics
and generates a huge bad(yound Thick-target yiclds are also never Nat-
topped as shown here; lhe reason is the cnergy dependence of the scatiering
cross section,

In problems ofanalysis the situption is reversed. A backscallering spectrum
is measurcd, and the clemental makeup of the sample with depth has to be
determined. We shall treat more examples in Chapter 5 to illustrate some
of the major characteristics of backscattering analysis, These examples will
also demonstrate that lmckscul:[cring spectromelry is, in cssence, mass-
sensitive depth microscopy capable of furnishing quantitative information
on the sample under investigation.

1

1.7 BOOK OUTLINE

Starting with Chapter 2 we shall repeat the three basic concepts and their
mathematical relations to the projectile and to (he target parameters in
detail. In addition to kinematics, scaltering cross scctions, and encrgy loss,
we shall discuss cnergy straggling, which sets the ultimate limit on depth
resolution.

Chapter 3 describes how the thiee basic concepts are combmcd to pro-
duce a backscattering spectrum. This concerns the rclation of energy to
depth. Also covered in the chapter is how the height of an cnergy spectrum
is related to scattering cross section and energy loss. The emphasis in this -
chapter is on bulk samples.

Chapter 4 gives backscattering analyses of thin films of various degrees
ol complications: elemental films, multilayered elemental films, compound
films, and layered compound films. Depth and compositioni analyses at
various sophistication levels arc given. Different approximations and their
justification are also given.

Many examples of backscattering analysis are given in Chapter 5. For-
mulas developed in Chaplers 3 and 4 are applied to real problems. Many
cxamples were chosen to illustrate the capability and limitation of back-
scattering. Some of the approximations given in the previous (wo chapters
are also used and compared to give the reader a feeling about the adequacy
of the approximations. Since many of the examples have becn taken from
routine experiments, readers can use them as typical spectra to check their
system and their analysis.

Chapter 6 describes the experimental sctup. If you do not have a nuclear

" physics laboratory closc by and want to set up a backscallcring laboratory,

this chapter gives the basic requirements for hardware and electronics. The

-
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chapter is also useful in understanding the data-taking system: solid-state
detector, preamp, amplifiers, multichannel analyzer, and so on, .

Chapler 7 describes the influence of beam parameters. In all the discussions
so far we emphasize megaelcctron volt *He.beams incident perpendicularly
- on the sample. In this chapter we discuss other alternatives. We shall present

mmass and depth resolutions and their relationships to the mass and cnergy
of the projectiles. Dlﬁercnt geometries for scattering and various problems
arc also discussed.

Chapter 8 is concerned with backscattering applications when combined

“with channeling effects, We start with the procedure used to align a crystal
and then proceed lo hall-angle and minimum-yicld calculations. The
channeling applications dealing with lattice disorder, amorphous layers,

" and polycrystalline film are discussed. Lattice location and flux peaking of
impurities in a crystal are also described.

In the body of the book, we assume that energy loss values are known in
the analysis of a backscattering problem. In Chapter 9 we reverse the pro-
cedure and use the knowledge of the sample (composition and thickness) to
determine stopping cross section values from backscatlering measurements.
Methods, formulas, and a few examples are given.

Chapter 10 gives a list of references on the applications of backscattering
spectrometry. The cut-ofl date on the citations is August 1976. The references
are listed according to various topics; surfaces, bulk, oxide and nitride
layers, deposited and grown layers, thin film reactions, and ion implantation
in metals and in semiconductors are the main section topics. Subdivision
of the references by topic as well as listing the title of each paper provides a
useful bibliography for a literature research.

In Appendix F, we provide tables of kinematic factors, scatlering cross
sections, and various forms of energy loss and energy loss factors. Analyses
of examples given in the book are generated by using these tables.
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2

Basic Physical Concepts

2.1 INTRODUCTION

Only four basic physncal concepts enter into backscaltering spectromctry.
Each one is at the origin of a particular capability or limitation of back-
scattering spectrometry and corresponds to a specific physical phenomenon.
They are

. Energy transler from a projectile to a target nucleus in an clastic two-
body colhsmn This process leads to the concept of the kinematic factor and
to the capability of mass perception.

2. Likelihood of occurrence of such a two-body collision. This leads to
the concept of scattering cross section and to the capability of quantitative
analysis of atomic composition.

3. Average energy loss of an atom moving through a dense medium. This
process leads to the concept of stopping cross section dnd to the Cdpdblllty of
depth perception, <.

4. Statistical fluctuations in the energy loss of an atom moving through
a dense medium. This process leads to the concept of energy straggling and
to a limitation in the ultimate mass and depth resolution of backscattering
spectrometry.

In this chapter an introductory treatment of these subjects is provided.
Key formulas are given, and functional relationships are examined. The

~
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discussion goes as far as the understanding of backscattering spectrometry '

demands. How these processes actually enter into a backscattering exper1~
ment and how they can affect a backscattering spectrum are examined in
Chaptcr 3. When the target is a single crystal, or nearly so, the processes
treated in this chapter are combined in a particular fashion, wl;nch results in
the phenomenon of channeling. This effect is discussed in Chapter 8.

2.2 KINEMATIC FACTOR K

When a particle of mass M, moving with constant velocity, collides -

clastically with a stationary particle of mass M, energy will be transferred
from the moving to the stationary particle. In backscattering analysis, mass
M, is that of the projectile atom in the analyzing beam and mass M, is that
of an atom in the target examined. The assumption that the interaction
between the two atoms is properly described by a simple clasuc collision of
two isolated particles rests on two conditions:

(1) The projectile energy Ey must be much larger than the binding encrgy
of the atoms in the target. Chemical bonds are of the order of 10 eV, so that
E, should be very much larger than that.

(2) Nuclear reactions and tresonances must be abscnt This imposes an
upper limit to the projectile energy. Nuclear processes depend on the specific
choice of projectile and target atoms, so that the upper limit of I, varies with
circumstances. With-a H* beam, nuclear effects can appear even below
1 MeV; with He*, they begiii to'appear at 2 to 3 MeV.

The simple elastic collision of two masses M, and M, can be solved fully
by applying the pnmcxples of conservation of energy and momentum. Let
Yo, Vo, and Eq = $M,v,® be the velocity, its value, and the energy of a

projectile atom of mass M before the collision, while the target atom of |

mass M, is at rest. After the collision, let v, and v, be the velocities and
E, = iM,v,?and E, = $M,v,? be the energies of projectile and target atoms,

; respectwely The notation and the geometry of this scattering problem are
given in Fig. 2.1, where the scattering angle 0 and the recoil angle ¢ are

Target otom Projectile

Fig. 2.1 . Schematic representation of an:elastic collision between a projectile of mass- M,
velocity vg, and energy Eo and a larget mass M, which is initially at rest. After the collision, the
projectile and the target mass have velocities and enérgies v, £ and v,, E,, respectively. The
angles 0 and ¢ are positive as shown, All quantities refer to a laboratory frame ol reference.

_ abbreviated by x. A plot of K versus M,/M | =
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- defined as positive numbers with the arrows as shown. All quantities refer to

a laboratory system of coordinatgs.
Conservation of energy and conservation of momentum parallel and
perpendicular to the direction of incidence are expressed by the cquations

M vt = 2M101 + 3M 0%, (2.)
M vy = M vy cos0 + M,v, cos ¢, (2.2)
0= M v sin0 — M,pv,sin¢. (2.3)

Eliminating ¢ first and then vy, gne finds
v /oo = [ +(M,? = M,zisillZU)”l + M, cos0](M, + M,).  (24)

For M| < M, the plus sign holds. We now define the ratio of the projectile
energy alter the elastic collision to that before the collision as the kinematic
Jactor K,

K =E,/E,. | 2.5)
From Eq. (2.4) one oblains

(M2~ M, *sin2 Q)Y + M, cos 0 ]? .

K h
M, = [ M, ¥ M, (2.6a)
_ (1= (M /M;)?sin?07"2% 4 (M /M) cos 0] 2 5éh
[+ (M /) o 26D

where, following frequent practice, a subscript has been added to K to
indicate the target mass M; for which the factor applies. Another custom
uses the chemical symbol of the target atom as the subscript for K (e.g., Kg;
instead ol K,g). This procedure is less accurate, because elements can have
isotopes, and isotopes have slightly different K values. In the center-ol-mass
system of reference, Eq. (2.6) can be simplified to (Marion and Young, 1968)

K =1—[2MMy/(M, + M,)*](I — cos0,), .7

where 0, is the scattering angle in the center-of-mass coordinates.

The kinematic factor depends only on the ratio of the projectile to the
target masses and on the scattering angle.0. The mass ratio M /M, will be
Land 0 as given by Eq. (2.6)
isshown in Fig. 2.2. One sees that for any combmatlon of projectile and target
mass, i.e., for any value of x, K always has its lowest value at 180°. The value
there is

K(0 = 180°) = [(M,
ALO = 90° K is ‘
K(0 = 90°) = (M, —

~ MMy + M) =[(1 =L+ x)]* (28)

M Y(M, + M) = — x)/[1 + x), (2.9)
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Fig. 2.2 The kinemalic factor K of Eq. (2.6b) plotied as a function of the scattering angie {
and the mass ratio x™' = M,/M,.

that is, the value of the kinematic factor at 0 = 180° is the square of its value
at 0 = 90°. When the projectile and the target mass are equal (x = 1), K is
zero for angles larger than 90° and increases as cos? 0 when 0 falls below 90°.
This says that a projectile colliding with a stationary atom equal to its own
mass cannot be scattered backward, but only forward. This is true also for
M;> M,y (x> 1)

In backscattering spectrometry, angles near 180° are of special interest. To
describe the behavior of K there, it is convenient to introduce the difference
5 between 0 and 180°, expressed in units of radians of arc as

s=mn—0, (2.10)

so that & measurcs the deviation of 0 from 7 in units of arc. The kinematic
factor then is approximated very well by the first term of an expansion in d:

(M, — M,\? M, L\ (1 =X\ "
co (M2 Z MV Y s L (D) (e xs?. @11
K <M2+M1> Y ) e @1

This equation describes the increase of K along the [ront edge of Fig. 2.2 for
small decreases of 0 from 180°. The approximation overcstimates K by a
relative amount which is less than §*x(1 — x) ™2 As 6 departs from 180° K
increases only quadradically with §. This increase is proportional to the mass
ratio x = M,/M,. When this ratio is small, the factor {(I — x)/A1 + x)]? can
be approximated by | — 4x, so thatin the right corner of Fig. 2.2 the kinematic
factor is approximately described by

K~ 1 —4x + §*x. (2.12)

L8
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This is a convenicnt formula to cstimate K in the region of § and x valucs
which are most relevant to backscattering spectrometry. Values of K and §°
are given in Tables 1I-V in Appendix F.

Equations (2.5) and (2.6) contain the essence of how backscaltering spec-
trometry acquires its abilily (o sense the mass of an atom. Imaginc that the
primary energy E, of the projectile atom and its mass M, are known.
Assume that the energy I, afler the clastic scattering event is measured at
a known angle 0. Then the mass M, of the target atom that prompted the
scattering is the only unknown quantity in Eq. (2.6). The valuc of M, can
thus be determined by measuring the energy E, afler the collision il £y, M,
and 0 arc known. In cflect, the technique amounts to mass spectromelry
“by reflcetion,”The method is based on the same laws that govern simple
billiard ball physics.

In practice, when a target contains two types of atoms that differ in their
masses by a small amount AM ,, it is important that this difference produce
as large a change AE, as possible in the measured energy E, of the projectile
alter the collision. As Fig. 2.2 shows, a change of AM, (for fixed M) gives
the largest change of K when 0 = 180° for all but the smallest values of M.
Thus 0 = 180° is the prelerred location for the detector. To place a normal
detector exactly at 0 = [180° is not possible because the detector would
obstruct the path of the incident particles. The detector is thus normally
positioned at some steep backward angle, such as 170°. It is this particular
cxperimental arrangement that has given the method its name of hack-
scattering spectrometry. With annular detectors, scattering angles very ncar
180° can be reached; these special solid-state detectors have a holc along the
cenler axis through which the primary beam passes before impinging on the
target. .

In quantitative terms, AE, and AM, are related to each other by

AE, = Ef(dK/dMy)AM . (2.13)
In the vicinity of 0 = 180°, i.e., 0 = n — J, K is very closely approximated by
Eq. (2.11), so that

AEl l I R AA/IZ

#EO‘Z(TJF_.\;?H“ + x6%) — 01 — x))]x T (2.14)

For M, » M, which is most often the case, this teduces further to

AE| = Eo(4 — 82} (M /M) AM ,. (2.15)

Every practical delection system has a finite resolution. I AL, falls below
this limit, the distinction between two masses is lost. To obtain good mass
resolution, it is thercfore desirable that the coefficient of AM ; be as large as

.
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possible, To accomplish this, one can

(i) Increase the'primary energy Eq; o ,
(i) Use a projectile of large mass M, (Note, however, that M, masses
smaller than M, will not produce any backscattering signal.);
(iii) Measure at scaliering angles approximately 180° (small o).

We also notice that mass resolution is inherently better for light target atoms
than for heavy ones, the effect going as M; 2.

2.3 SCATTERING CROSS SECTION o

The preceding section established the connection between the energy E,
of the incident particle of mass M and the energy Ky, E, that this particle
possesses at any angle 0 after an elastic collision with an initially stationary
mass M,. How frequently such a collision actually occurs and ultimately
results in a scattering event at a certain angle 0 remains open. ; P

The differential scattering cross section da/d€) is the concept introduced
to answer this. Its definition is derived from a'simple conceptual experiment.
A narrow beam of fast particles impinges on a thin uniform target that is
wider than the beam: At an. angle 0 from the direction of incidence, let an
ideal detector count each particle scattered in the differential solid angle dQ
(sec Fig. 2.3). If Q is the total number of particles that have hit the target and
dQ is the number of particles recorded by the detector, then the differential
scattering cross section do/d<) is defined as

dofdQ = (UNO[(Q/A/QL, . (216)

where N is the volume density of atoms in the target and ¢ is its thickness.
Thus Nt is the number of target aloms per unit area (areal density). The

w T
v

target
{N atoms /vol)

Bear
area
S

............. Pz e sz

Beam of
incident
porticles

angle ‘ - ~
Differeniol @
50 !
angle dQ Detector

Fig: 2.3 Simplified layoul of a scattering experiment to demonstrate the coricept of the
diffcrential scaitering cross section. Only primaty partictes that arc scatlered within the solid
angle d€Y spanned by thie detector are counted;
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deflinition implies that the solid angle dQ is so small that the scattering angle
0 is well defined. The definition also assumes that the thickness ¢ is minimal
and that, therefore, the cnergy loss ol the particles in the target is so small -
that the cnergy of the particles is virtually the same at any depth in the target.
Finally, the total number of incident particles @ must be so large that the
ratio dQ/Q has a well-determined value.

The differential scattering cross section do/dQ has the dimension of an area
(“cross section”) whose meaning is based on a geometrical interpretation of
the probability that the scattering will result in a signal al the detector. One
imagines that each nucleus of an atom presents an area do/dQ to the beam
of incident particles. It is also assumed that this area is quilc small and that
the atoms within the target are randomly distributed in such a way that the
differential cross sections do/dQ of the nuclei do not overlap. Let § be the
surface area of the target illuminated uniformly by the beam. Then the total
number of atoms cligible for a scattering collision in the target is SNt.V The
ratio of the total cross-sectional area of all eligible atoms SNt da/dQ) to the
area S actually exposed is then interpreted as the probability that the scat-
tering event will be recorded by the detector; that is, this ratio is sct cqual to
(1/dQ)ydQ/Q. Equation (2.16) then follows. The multiplication with ()~ "' is
introduced because doubling the solid angle dQ would obviously double the
number of counts dQ. By dividing dQ with dQ, this gcometrical contribution
to the number of counts dQ is climinated. The cross scction defined in this
way thus becomes a value per unit of solid angle; hence the name differential
scallering cross scction, and therefore the notation da/dQ. Other cqually
valid interpretations of the meaning of a differential scattering cross section
can be found in various textbooks (Leighton, 1959; Goldstein, 1959). 7

When one inquires as to the number of scattering events falling within a -
finite solid angle Q rather than a dilferential solid angle d€Q, the probability
of a successlul cvent is described by the integral scattering cross section I

T = fn (da/d€Y) dQ. 2.17)

[ts geometrical interpretation is analogous to that of the differential scattering
cross section. In backscattering spectrometry, the solid dngle Q of a typical
detector system with a surface-barrier detector is lairly small (10~ 2 sr or less)

! Onc can also conceive of situations where the picluré of randomly distribuled cross scctions ™~

over an arca S and a uniform illumination of this arca S by the incident particles breaks down.
When the target is single-crystalline; the cross sections are clusiered along sets of lines in space.
If the incident particles move in‘a direction parallel to such liries; and if the flux of these particles
is conicentrated in:the voids (“channels”) sturrounding (hese lines, the probability of a scattering
collision is- obviously: teduced. This is” the situation commonly. referred to as “channcling”
(sce Chapter 8).




28 2. Basic Physical Concepts
and the scattering angle 0 is well defined. Tt is then convenient! to introduce
the average differential scattering cross section o

o =(1/9) l, (do/dQ) <. (2.18)

For very small deteclor angles Q, o — do/dQ. The average differential scat-
tering cross section is the value ordinarily used in backscattering spec-
trometry. It,is usually called scattering cross section in the literature. We
follow this convention.

~ For the experimental condition given in Fig. 2.4, in which a uniform beam
impinges at normal incidence on a uniform target that is larger than the area
of the beam, the total number of defected particles A can be written [rom
Egs. (2.16) and (2.18) as

A=aQ Q" Nt v (2.19)
number of o total number of aumber of target
. =0gQ-|. . , ‘ ) .
detected particles incident particles atoms per unit area
This equation shows that when ¢ and Q are known and the numbers of
incident and detected particles are counted, the number of atoms per unit
area in the targel, Nt, can be determincd, The ability of backscatlering spec-
trometry to provide quantitative information on the number ol atoms present

per unit area of a sample stems from Eq. (2.19) and the fact that the average
scattering cross section ¢ of the elements is known quite accurately.

Targe!

Transmitted beom r Inciden! beam

Total number

I e e of incident particles =Q
\\ .
<
~
N Detecti
g /0 Detecting
) ~ instrument
Scaltering -
angle " Total number of particles
detected = A

Fig. 2.4 Schematic layout of a backscatlering experiment, showing a thin larget, the trans-
mitted portion of the beam, and the fraction of the backscattered beam that is intercepted and
counted by the detector.

 In nuclear physics, the symbol ¢ is used to refer (o the integral (“total™) scattering cross
scetion, called X in Eq. (2.17). The use of ¢ for the right-hand side of Eq. (2.18) is inconsistent
with this older tradition, which would have required a symbol such as {dg/dQ) instead. On the
other hand, the newer (inconsistent) convention of Eq. (2.18) simplifies the writing of many
equations to ¢Q rather than the clumsy (da/dQ)>Q.

2.3 Scattering Cross Section ¢ : : 29

To calculate the differential cross section fotr an elastic collision, the
principles of conscrvation of encrgy and momentum must be complemented
by a specific model for the force that acts during the collision between the
projectile and the target masses. In most cases, this force is very well described
by the Coulomb repulsion of the two nuclei as long as the distance of closest
approach is large compared with nuclear dimensions, but small compared
with the Bohr radius ay = fi/m.e = 0.53 A. When these assumptions are made,
the differential scattering cross section is given by Rutherford’s formula
(Rutherford, 1911; Goldstein, 1959; Leighton, 1959):

VAVAY G
‘ (da/dQ), = l: 4E, sin(0, /2)] , (2.20)
where the subscript ¢ indicates that the values are given with respect to the
center-of-mass coordinates. Here Z, is the atomic number of the projectile
atom with mass M,, Z, is the atomic number of the target atom with mass
M, e is the electronic charge (e = 4.80 x 107 1% statC)," and E is the energy
of the projectile immediately before scattering. This formula is valid also for
values in the laboratory frame of reference, but only when M| « M,. For
the general case, the transformation of this formula from the center-of-mass
to the laboratory frame of reference yields (Darwin, 1914)

do  (Z,Z,*\* 4 {[1 —((M/M})sin0)*]""? + cos0}?
AE ) sint0 [L—((M/My)sin0)] 7

Q-
A detailed execution of this transformation is given in Appendix A. Thc order
of magnitude of this dilferential scattering cross section is predominantly
given by the first factor (Z,Z,e*/4E)%. As an example, consider [-MeV He
(Z, = 2) impinging on Ni (Z, = 28); then (Z,Z,/4)? = 196. In electrostatic
cgs units, the electronic charge has the value ¢ = 4.80286 x 107 ' statC and
the unit of potential is the statV = 299.79 V. For | MeV, the value of (¢*/E)*
is therefore (¢/10° V)2 = (4.80286 x 107'% x 299.79/10%)%(statC)?/(statV)? =
2.0731 x 10726 (statC/statV)? The ratio statC/statV has the valuc of the

(2.22)

1t is customary in the nuclear physics literature to use cgs units, To avoid confusion and to
help in identifying the system of units adopted for an equation, we shall usc ¢ throughout when
electrostdtic units are assumed and ¢ throughout when mks units are used. To translate an
equation from one sct of units to another, one substitutes. .

e? 2 q*4ns, .21

where ¢ = 4.80286 x 107'° statC, where ¢ = 1.60206 x 107!° C, and ¢, = 8.85434 x 10~ !2
Asec/V m. A convenient constant to remember in connection with Eq. (2.21) is that ¢? = 1.4398 x
10713 MeV em o 1.44 x 10712 MeV cm. This permits quick estimates of do/dQ when E is
given in mega clectron volts, as usual,
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unit length 1 cm, so that (¢*/E)? = 2.0731 x 1072% cm? = 0.020731 b. Note
that the donversion e? = 1.4398 x 107 !* MeV cm yields this result directly.
The product (Z,Z,/4)? - (¢*/E)? thus is 196 x 0.020731 b = 4.06328 b for a
unit steradian. Performed in mks units, the same calculation starts from the
formula (Z,Z,q%/4nedE)?, where the electronic charge has the value g =
1.60206 x 10712 Asec and &, = 8.85434 x 107'? A sec/V m. The ratio
(¢*/4neoE)? for E = 10° gV then becomes (1.60206 x 107 '9/4n x 8.85434 x
10712 x 10)%(A sec)? /(A sec/V m)? = 20731 x 107*° m?, which is again
0.020731 b. (1 b = I barn = 10~ 2* cm?)

If we disregard (he factor (Z,7Z,e?/4E)?%, the Rutherford differential scat-
tering cross section depends only on the ratio M /M, of the projectile and
target masses and on the scattering angle 0. A plot of do/dQ versus M,/M | =
x~!and 0 as given by Eq. (2.22) is shown in Fig. 2.5. For any combination of
projectile and target mass, da/dQ always has its lowest value at 180°. Ex-
pressed in units of (Z,Z,e?/4E)?, this minimum value is [ 1 — (M /M,)*]* =
(1 — x?)2 In the vicinity of 180°, i.e., along the front edge of Fig. 2.5, where
0 = 7 — &, the Rutherford differential cross segtion increases quadratically
with §: ’

(do/dYNZ, Z,eHAE)? = (1 — x?) + Lp 62, (2.23)

whete b = 1 — 3x* + 2x°. The formula shows that near 180°, the scattering
cross scction does not change much with the scaltering angle. This fact
enables one to use the average acceptance angle of the particle detector and
still obtain an accurate value for the calculated cross section near 180° [see
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Fig, 2.5 The dependence of the Rutherford: diflerential ‘scaltering cross section given by.
Eq. (2.22) as a [uriction of the scattering angle 0 and the mass ratio x ™ "= M, /M,
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. Eq. (2.18)]. For M| « M,, ie, in the lower right corner of Fig. 2.5, the

angular dependence of the right-hand side of Eq. (2.22) can be expanded in
the power series (Marion and Young, [968)

do  (Z,Z,e"\*] . _,0 M\?
E_< B fsm 5_2E + ,

where the first omitted term is of the order of (M /M ,)*, The last expression
reveals the significant functional dependences of the Rutherford diflerential
scattering cross sections:

(2.24)

() da/dQis proportional to Z, 2. The backscattering yicld obtained from
a given target atom with a He beam (Z, = 2) is four times as large as with a
proton beam (Z, = 1) but only a ninth of that produced by a carbon beam
(Z, = 06)

(i) do/dQ is proportional to Z,2. For any given projectile, heavy atoms
are very much more efficient scatterers than light atoms. Therefore, back-
scattering spectrometry is much more sensitive to heavy elements than to
light ones.

(i) do/dQ is inversely proportional to the square of the projectile energy
(oc E~2). The yield of scattered particles rises rapidly with decreasing bom-
barding energy.

(iv) da/dQ is axially symmetrical with respect to the axis of the incident
beam; i.e., do/dQ is a function of ¢ only. '

(v)  da/dQ is approximately inversely proportional to the fourth power
of sin(f/2) when M, « M,. This dependence gives rapidly increasing yields
as the scattering angle 0 is reduced.

Values of do/dQ for various elements Z, and energies are tabulated in .

Table X. For He in the MeV energy range, Rutherford differential scattering

cross sections are typically within an order of magnitude or two of barns’

(1 b = 1072% cm?) per unit steradian. A monolayer of a solid typically con-
tains about 10' atoms/cm?. A {-MeV He particle will thus typically traverse
very many monolayers before being scattered out of its path by a nuclear

- collision.

Deviations of the differential scattering cross section from the Rutherford
formula do exist.

For 0 — 0, the Rutherford cross section, tepds to infinity, which of course
violates the initial assumption that the cross sections of the target nuclei
should be so small that they do not overlap. Small scattering angles corre-
spond to large fly-by distances between the projectile and the target nuclei,
that is, distances greater than the radius of the innermost electron shell of the
target atom. At these distances the electrostatic interaction does not take
place between bare nuclei as Rutherford’s formula assumes (do/dQ ~ Z,Z e2).

-

-
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A similar situation exists when a low-energy projectile collides with a

heavy atom. In such instances, one must use scattering cross sections derived
from a potential which includes electron screening. Examples are the Born
potential (Everhart et al., 1955), the Born—-Mayer potential (Abrahamson,
1969; Robinson, 1974) or the Firsov potential (Firsov, 1959). The validity
of the Rutherford scattering approximation has been lested by calculation
using different potentials (Everhart et al., 1955) and by measurements with
100-keV 'H", and *He* on Au (Van Wijngaarden et al., 1970). Barely
detectable departure from the Rutherford differential cross section was
obtained in the latter case. ‘

For sufficiently high energies E, the distance of closest approach between
the projectile and the target nuclei reduces to the dimensions of nuclear
sizes. The short-range nuclear forces then begin to influence the scattering
process, and deviations [rom the Rutherford scatlering cross sections appeatr.
When the scattering process is inelastic, the energy of the scattered particle
differs from KE, as well. In other cases, the scattering process is elastic still,
but the differential scattering cross section departs from the Rutherford
value, sometimes by a large factor. In either case, the value of (he differential
scatlering cross section is strongly dependent on energy, on the scatlering
angle, and on the particular combination of projectile and target nuclei.

Apparent deviations from the Rutherford diflerential cross section can
occur with electrostatic and magnetic analyzers. These analyzers are often
desirable at low encrgies because of their good resolution and precision. In
contrast to solid-state detectors, however, they detect particles of only one
charge stale at a time. The charge of the projectile atom after backscattering
and escape from the target is a strong function of the escape velocity of the
projectile (Marion and Young, 1968). Adjustments are therefore required
to correct the observed particle counts for the undetected fraction of the
scattered particles at any given energy for a given target.

2.4 ENERGY LOSS AND STOPPING CROSS SECTION

2.4.1 Energy Loss dE[dx

An energetic particle that impinges on a target will penetrate into it. This
is so because the large-angle Rutherford scattering collision discussed in
the previous section is highly unlikely. The fate of an impinging particle is
overwhelmingly determined by the processes that control the penetration
into the target, rather than by the large-angle scattering collisions. Back-
scattering spectrometry is an analytical method to secondary process; the
first-order process is the implantation of the beam particles into the target.

"The concepts used to describe how a swift particle penetrates into matter
arise from energetic considerations. As the particle pushes its way through
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Fig. 2.6 Schematic of a transmission experiment
to measure the AE/Ax loss of a swill particle in a

dense medium., Tronsmitted
particles

Incideni
particles

Thin
target

the target, it slows down and its kinetic energy E = $M,v? decreases. The
amount of energy AE lost per distance Ax traversed depends on the identity
of the projectile, on the density and composition of the target, and on the
velocity itsell. The simplest experiment that can be conceived to determine
this energy loss is to take a very thin target of thickness Ax and of known
composition. A beam of monoenergetic particles is directed at this target
(see Fig. 2.6). The cnergy difference AE of the particles before and alter
transmission through the target is measured. The energy loss per unit length,
also called sometimes the specific energy loss, and frequently abbrevialed
dIzfdx loss, at the energy E of the incident beam is then defined as
lim AE/Ax = dE
Ix

Ax—0 a

(E) (2.25)

for that particular particle and energy in that medium. Note that this ex-
pression gives an energy loss that is a positive quantity.

Since the early days of nuclear physics, measurements of the energy loss
per unit length have been performed for many projectile atoms, for a multi-
tude ol compounds, for most elements, and over a very wide range of energies.
A list of available compilations of experimental energy loss information is
given in Appendix D. For backscattering spectrometry, it is the encrgy loss
of *He in the elements at energics between 0.5 and 3 MeV thal is of chiel
concern, because beams of *He in that energy range are most frequently used.
Typical dE/dx values for *He of that energy range lie between 10 and 100
eV/A. Additional information on the subject is provided in Section 2.4.2.

For the present we shall assume that dE/dx is known at any energy, and
we wish to establish the energy E of the projectile at any depth x below the
surface of a thick sample into which the particle penetrates with an initial
énergy E,. Generally, dE/dx is a function of energy and has the form sketched
in Fig. 2.7a. The energy E at any depth x below the surface is then given by

E(x) = Eo — fo (dE/dx) dx. (2.26)

As the functional parentheses (E) in Eq. (2.25) point out, dE/dx is defined
and normally given as a function of E, not of x. The preceding integral thus
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Fig. .7 () Typical dependence of dE/dx as o

(b)  function of the kinetic energy E of the projectile. To

74/ obtain the depth of penetration x at which the particle
1 cnergy has been reduced from By to E < E,, one
takes the reciprocal of dE/dx, as shown in (b), and
integrates this function from E to E,, as represented
in (c). In the surface encrgy approximation, dE/dx
is replaced by ils value at E, (hcavy dashed line). In

(c) the mecan energy approximation, the constant value
of dE/dx is chosen at the mean energy E = 3(E + E,).
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cannot be evaluated without the knowledge of the energy as a function of x,
E(x). But E(x) is the unknown in the equation. The difficulty is resolved by
regarding x as a function of E, rather than E as a function of x; then

dx
dx = —df(E) " dE, L (27)
so that
x= [[°(dx/dB) dE = [ (dE/dx)~" dE. (2.28)

To find x(E), one thus integrates over the function (dE/dx)~"'. The situation
is sketched graphically in Figs. 2.7b and c. Note that the upper limit E, is
fixed and the lower limit E varies; hence x increases as E decreases.

It is frequently convenient to replace the actual dE/dx function by an
approximation. The simplest procedure is to replace dE/dx by its value at
the encrgy E, of the incident particle, as indicated by the dashed line in
Fig. 2.7. Either Eq. (2.26) or Eq. (2.28) can then be used to determine x(E):

dE
E=Ey——| x ot v—(EO—E)<dE)

dx [ (2‘29)

Eqg
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- This method provides gopd estjmates only in the uppcrmost or surface

region of the target, and is thus called the surface energy approximation.
Another approximation IL])]d(CS dE/dx by its valuc-at the energy L=
1(E + E,). One then obtains, from Eq. (2.26) or Eq. (2.28),

I s
= Iy~ (l SN or =(Ey — L) <( >

dx | dx ’ (2.30)

E

so that x again increases lincarly with (E, — E). This procedurc. is called
the mean energy approximation and is sketched in Fig. 2.7 as well, The mean
energy approximation provides good estimates at intermediate depths of
penelration. Figure-2.7c shows how the two approximations arc related to
the exact solution given by Eq. (2.28).

The accuracy of the linear approximation can obviously be increased by
selecting the specific value for dE/dx that reproduces the magnitude of x when
this specific value is substituted for the integrand in Eq. (2.28). The dE/dx
curve takes on this specific value at some suitably selected energy E inter-
mediate to I and E,. As an cxample, Warters (1953) assumecs that the func-
tional dependence of dE/dx can be approximated by

dE/dx = CE~®, C(231)

where C is a constant and the cxponent a(E) varies only slowly, so that it
may be set to a fixed value for any given energy interval AE = Eq — E.
According to Egs. (2.28) and (2.30), thc spemﬁc value E to choose is that
which will satisfy the condition

Eo -a r-a
Ax = fﬂn_M dE/CE™" = AE/CE™" (232)

The integration over dE yields, as the condition that £ must meet,
(a+ D7IEST L — [1 — (AE/EQ)]* "'} = AE E*. (2.33)

Expanding the left-hand side to second orders of AE/E,, dividing by Eo",
and extracting the root gives :

[l — Sa(AE/Eo)]" = EJE, (234)
or L
E/Eg = | — Y(AE/Eo) + -+ - . (235)"

To the extent that Eq. (2.31) ¢ approximales dE/dx adequalely and as long as
AE « Eg, the best choice of E is thus midway between Eq and E, — AE. This
is the same value specified in the mean encrgy approximation.

-
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2.4.2 Stopping Cross Section g

The energy loss dE/dx accounts for the energy a fast particle expends as
it passes through the electron cloud of the atoms that lic along its path or
as it suffers numerous small-angle collisions with nuclei lying along its route.
The value of dE/dx can be viewed as an average over all possible energy-
dissipative processes activated by the projectile on its way past a target atom,
Ttis natural, then, to interpret d E/dx as the result of independent contributions
ofevery atom exposed to the beam. This number is SN Ax if Ax is the thickness
of the target, S is the target area illuminated by the beam, and N the atom
density in the target. The projection of all these atoms on the area S produces
a surface density of atoms SN Ax/S = N Ax. This quantity increases linearly
with Ax, as does the energy loss AE = (dE/dx) Ax. We therefore set AE
proportional to N Ax and dcfine the proportionality factor as the stopping
cross section g:

& = (I/NYdE/dx). (2.36)

The conventional unit for ¢ is clectron volts - square centimeters per atom
usually abbreviated ¢V cm?, .

The distinction between dE/dx and & is most evident when one considers
two largets made up of the same number of atoms per unit area. Assume
that in one case the atoms are closely packed and form a high volume density.
In the other case they are loosely assembled in a spongelike structure of low
volume density. The energy AE (ransferred to the target by a fast particle
must be the same in both cases as long as the energy loss is an atomic property,
that is, independent of the packing density of the atoms. A larger value of
dE/dx will be assigned to the dénser target, however, because that energy
AL is deposited over the shorter distance Ax. But AE/N Ax has the same value
in both instances since the difference in the densities is caused by the different
values of Ax in the two cases; in other words, N oc 1/Ax, so that N Ax = const.
Hence AE/N Ax = ¢ is constant in the two cases. The subject is discussed
also in Section 3.9. .

Another definition which is used predominantly in the nuclear phlysics
literature sets

e = (1/p)(dE/dx), (2.37)

where p is the mass density (grams per cubic centimeter) of the target and
¢* is usually given in units of kiloelectron volts * square cenlimeters per gram,
The symbol ¢* is introduced here to distinguish between the two definitions
of Egs. (2.36) and (2.37), buit the literature does not make that differentiation.
Which definition applies in a particular case can always be established from
dimensional considerations. The two quantities can be converted into each
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other by the relationship
p = N(M/N), (2.38)

so that ¢* = ¢Ny/M. Here M is the atomic weight (grams per molc) of the
element and N, = 6,025 x 10%? atoms/mole is Avogadro’s number.

The advantage of using the stopping cross section ¢ rather than the dE/dx
is evident when one comparcs the energy loss of neighboring elements in the
periodic table. Table 2.1 lists data for Na and Al for 2-MeV *He. The ratios
of the atomic numbers Z, and of the atomic masses M, are within 4% of the
¢ ratio, but the dE/dx ratio is larger by more than a factor of two. It is mainly
the difference in the atomic.density of Na and Al that is responsible for this
difference. Atomic densities vary over almost an order of magnitude. Inter-
polations [rom one element to another are thus much more reliably performed
on ¢ than on dE/dx when direct information is unavailable.

TABLE 2.1
Comparison of Energy Loss per Unit Length dE/dx and
Stopping Cross Section « for 2.0-MeV *He in Na and Al

N c dE/dx
Z, M, (atoms/cm?) (cV cm?) (cV/A)
Na 1’ 22,99 2.65 x 1022 39.6 x 10713 10.5
A3 2698 602x 10 443 x 1075 266
Al .
ratio 1.18 117 2.27 1.12 2.53
Na

For backscattering spectrometry, interest in stopping cross-section valucs
centers predominantly on “He because this is the most frequently used ion
for the analyzing beam. Ziegler and Chu (1974) have surveyed the litcra-
ture and tabulated semiempirical tables of stopping cross sections for *He
in all elements and from 0.4 to 4.0 MeV. Their tables arc reproduced as
Table VI of Appendix F. A graphical display ol the values from 0.4 to 2.0 MeV
is shown in Fig. 2.8. As can be seen, the stopping cross section of all elements
vary with energy in much the same way. The curves have a broad maximum
somewhere near [ MeV. For constant energy, ¢ tends to increase with Z,,
but there are slrong variations superimposed on this trend. In their fine
structure these variations are irregular, but their overall features are closely
correlated with the electronic configuration of the element. This is particularly
pronounced at 400 keV, where the three transition metal groups show up
as regions of reduced ¢ values.
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B! ! ‘

(: 8 2 g 8 8 3 8 ? Q o ’ Many scctions of this figure have been obtained by interpolation to fill
T 2 in nonexistent data, and sqme of the data available may be revised in the

future. Details in Fig. 2.8 w‘ll then change; but it is clear that as a whole the
dependence of the stopping cros§ section on energy and target element in
the range of interest to backscattering spectrometry is complicated. This is
the reason why theoretical calculations of stopping cross sections turn out
to be difficult to do accurately. The following subsection therefore presents
in detail only the simplest classical picture of electronic energy loss. The
approach offers some physical insight but no quantitative accuracy.

T S Y

2.4.3 Physical Models

The theory of the fast patticle interaction in dense media began with the
work of Bohr (1913) and is still an active field of investigation. Much is now
known, particularly for amorphous materials. For the light projectile atoms
and the energy range of interest to backscattering spectrometry, the two
dominant processes of cnergy loss arc the interactions_of the moving ion

“ with the bound or free electrons in the target, and the interactions of the
moving ion with the screened or unscreened nuclei of the target atoms. One
can thus set T

i &= 8o + By (2.39)

Figure 2.9 shows schematically how these two contributions depend on the
projectile.cnergy. Nuclear stopping originates from the multitude of small-
angle scattering collisions of the projectile with" the atomic nuclei of the
target, Electronic stopping comes from the “frictional resistance™ that the
projectile encounters on its pass through the electron clouds surrounding
each target atom.

0.4 to 2.0 MeV. The plot gives the semiempirical values of the tables of Ziegler

ts from

!
|

| Bethe - Bloch
region

Fig. 2.9 Typical dependences of electronic ¢, and
nuclear &, contributions to the stopping cross section
« as a function of the incident particle energy E. The
Bethe-Bloch equation [Eq. (2.46)] is a good appro-
ximation only at high energies beyond the maximum
in the stopping cross section, &
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2. 2.8 Stopping cross sections for *He in all elemen
and Chu (1974), here reproduced as Table VI in Appendix F.

In very simplified terms, both interactions may be viewed as taking place
between two isolated particles that interact electrostatically. Assume that

; "y b \

: E T = the direction and speed of the incident particle are perturbed only slightly

Y " Y : === o by the interaction. If the projectile has a mass M, acharge Z e, anda velocity

D 3 ) ? E) @ 2 Qoo 2 vy, and if the target particle of mass M, and charge Z,e is initially stationary,

[tawo/sworo01)/A°]  NOILD3S SSO¥O ONIJJOLS °H, then the momentum transferred to the mass M, in a dircction perpendicular
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to the path of the projectile is
P, = AZ,Z,e*/bv)) (2.40)

for this simplified model. Here, the impact parameter b is the distance of
closest approach between the two particles if the mass M, were held fixed

" in place while the projectile flew past it along a straight trajectory. The energy
transferred to the stationary particle thus is

. E, = P.%2M, (2.41)
= (2/MNZ\Ze%/bvy)>. (2.42)

The encrgy lost by the projectile is very closcly cqual to E, when the pertur-
bation is small, as presently assumed. 1t is thus evident (hal electrons with
their light_mass (M, = m,) absorb much more energy per encounter AL
“the nuclei do.

From this value of E, one can readily obtain the electronic energy loss AL
incurred by the projectile over a length Ax of the target. Statistically, the
probability of an encounter with the impact parameter between band b + db
is 2nh db per unit area, since the electron may lic anywhere on a circle of
radius 2nb around the particle track, The number of electrons per unit area
over the length Ax of the track is NZ, Ax. The average number d An(E,) of
encounters that will generate a quantum E| ol encrgy loss is therefore

dAn(E,) = NZ,Ax - 2rbdb. C(243)

Together, these losses contribute the average dillercntial amount dAE to
the total energy loss AE across Ax; hence,

dAE = NZ, Ax[2Z e /mo 212n (dbf). (2.44)

If the impact parameter can range [rom b, (0 Dy, and Ax tends to the
limit dx, one finds alter integration:

(dE/dx) l = NZ,[4n(Z *)* /im0, * ] In(Byax/Duin)- (2.45)

This result closely matches the Bethe—Bloch formula (2.46).

This simple picture of scattering in a cloud of free clectrons neglects the
fact that electrons are bound to atomic nuclei. Even-in a metal, most electrons
are bound to atoms. The ionization energy required (o separate the electron
from the atom has to be accounted for, and the scattering process becomes
an inclastic one. The correct calculation of the average energy transferred
to an clectron is thus a pnoblcm for which we must consider every possible
cenergetic state of an electron in the target and which depends addmonaﬂy

_on the aver age populatlon of each of these statcs Also, the “problem has to
be treated quantum mechanically.

A number of approximations have been developed over the years to per-

“form this averaging, They provide very useful analytical expressions [or

+

A}
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dE/dx],. A well-known result is that the electronic stopping can be cast in
the general form .

(dE/dx)|, = NZ,[4n(Z,¢*)*/my,*IL, (2.46)
where L is-called the stopping number. According to quantum-mechanical
calculations of Bethe (1930), its value is given by

L=In@mu ), (2.47)

s

where the energy I is an average over the various excitations and ionizations
of the electrons in a target atom. Exact calculations of this mean excitation
potential are difficult to perform, and [ is usually regarded as an empirical
parameter. Bloch (1933) also made a quantum mechanical analysis and
showed that I is approximately proportional to Z,; that is, | = KZ,, where
K is an empirical parameter known as Bloch’s constant and is of the order
of approximately 10 ¢V. Equation (2.46) is commonly referred to as the
Bethe-Bloch formula for the specific energy loss. The formula describes the

experimental energy loss well only afl energies beyond the maximum of the
dE/dx curve (see Fig. 2.9). Equations (2.46) and (2.47) state that for any cle-
mental target the electronic component of dE/dx has the gencric form
dEfdx|, = NZZ e f(v?) -~ (2.48)
= NZy(Z,e)[(E/M)), V (2.49)
where f(E/M,) is a function that depends only on the target clement, not
on the type of projectile, and also describes the energy dependence of dE/dx|..
Equation (2.49) states that dE/dx is proportional to the atomic density N
(as discussed in connection with Table 2.1). The equation also states that in
any given element the electronic energy loss of *He (M, =4, Z, = 2) at an
encrgy E is four times larger than the energy loss of protons at an energy
E/4. Neither statement is exactly correct, but both are very useful rules.
Electronic stopping depends on the electronic states in the target so that,
in principle, the gascous, liquid, and solid phascs of the same element must
have different stopping cross sections. The nature of the chemical binding
in a target affects the electronic states and should thus also affect electronic
stopping. Such eflects, although they have been reported (Matteson et al.,
1976) are weak. They are ignored in the theoretical treatments previously
discussed. These effects are expected to be significant mainly at low projectile
energies and for light targets, where the number of core electrons are few.
One theoretical model of dE/dx|, actually assumes that the valence electrons
may be treated as a Fermi gas with a plasma frequency o, = (4nn.e*/m,)'"’?,
where n, is the density ol the electron gas (Lindhard et al., 1964). The analysis,
performed in terms of a complex dielectric constant, again leads to Eq. (2.46)
for high encrgies, where NZ, stands for n, and L now has the value In(2m v, ?/
hw,). Recent calculations based on wavelunctions ol a Hartrec-Fock-Slater

~
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mpdel have proven fruitful in explaining the systematic variatjons of dE/dXIe.
with Z, for a fixed projectile (Rousseau et al., 1971; Chu and Powers, 1972),

as shown for *He in Fig. 2.8, The rather remarkable decrease in the stopping
cross section shown in Fig. 2.8 from Ca to Cu, Nb (0 Ag, and past Xe is due
to the fact that when d-shell electrons are added in the sequence of transition
clements, the clectron density near the atom increases enough to. reduce
the average electron density seen by an energetic particle traversing the
material. . ‘

/'\s long as the particle moves through matter so fast that the velocity
vy is large compared with the speed Z, v, of its electrons in their innermost
orbit, where vy = €?/h = 2.2 x 10® cm/sec, the particle is effectively stripped
of clgclrons and moves as an jon through the medium. At these velocitics
the simple model of charge Z e interacting clastically (or inclastically) with
free (or bound) electrons in the target applies [Eq. (2.49)]. As the particle
slow§ dqwn, however, the probability that an electron is captured by the
moving ion increases (Bohr, 1940, 1941; Northcliffe, 1960) and the effective
charge of the projectile decreases. Also, the most tightly bound electrons of
the target atoms play a gradually declining role in the stopping process.
As a result, dE/dx|, increases less rapidly with falling energy E, and even-
tually turns around and actually decreases. The maximum of the stopping
curye lies in the general vicinity of the “Thomas-Fermi” velocity Z¥*v, and
usually somewhat above it. This velocity is a convenient reference point
when comparing the electronic energy loss of different projectiles.!

At these low energies, the Bethe-Bloch formula [ Eq. (2.49)] breaks down,
T}le reduction of the number of electrons contributing to the energy loss

gives very large corrections. Also, the neutralization probability of the
‘projectile becomes large. In this low energy range, the electronic energy
loss becomes proportional to the velocity of the projectile, Lindhard et al.,

(1963, abbreviated as LSS in the literature), and Firsov (1959) gave theoretical
descriptions for this energy range. The LSS expression is based 'on clastic
scattering of free target electrons in the static field of a screened point
c'harge which describes the projectile. Firsov’s expression is based on a
simple geometric model of momentum exchange between the projectile and
.the target atom during the interpenetration of the electron clouds surround-
ing the two colliding atoms: Both theories adequately describe the general
behavior of the stopping power with regard’to the energy dependence and
the magnitude. o

! The velocity vy = €?/h = 2.2 'x 10° cm/scc imparted to one nucleon corresponids to 25 keV
of encrgy. The Thomas-Ferini velocity Z}/3e?/h thus corresponds to ZH3 % 25 keV. per nticleon
of-the projectile. This amounts to 25 keV-for-' H-and 250 keV for-*He: Maxima' of electronic
stopping for “He bcour more typically at 0.6 to 1.0 MeV (see Fig, 2.8).

“by electrostatic interaction between the screened charges
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. At very low velocities, an additional energy loss process occurs. Energy
can be transferred [rom the nucleys of the projectile to that of a target atom

This nuclear energy Cicisustally called, may be viewed as an clastic
“interaction belween (wo [rge particles, except for the very last collisions,
where (he chemical binding energly (~10¢V) must be considered. As sug-
gested by Bohr (1948) and later developed by Lindhard et al. (1963), the

nuclear cnergy loss bcconwsﬂunolher major component of Vgg},ﬁcjﬁgy,ﬂ,,lQSsﬂ, aL-
“low cnergics, especially for heavy projectile atoms, To a good approxima-
“tion, nuclear and electronic energy loss ard roughly independent of each
other, as is stated by Eq. (2.39). :
With regard (o megaelectron volt backscattering spectrometry, the situa-

1 and “He as projectiles, nuclear stopping is negligible

cverywhere cxeept at the very fowest energies, that is, at the very end of

~In summary, it is fair to say that accurate numerical predictions of stopping

cross sections from theory are diflicult, at best, because of the large number
of possible interactions that can conceivably take place. Atomic collisions
are violent disturbances of atoms, and one would expcet that cflects duc to
chemical bonding and shell structure should normally be of minor impor-
tance. 1t has indeed turncd out that approximale results come out rather
casily, but accurate calculations arc exceedingly diflicult to obtain, The
most trustworthy values of ¢ arc therefore semicmpirical compilations that
combinc theoretically cvaluated dependences with the most reliable experi-
mental data, such as the recent table of Zicgler and Chu reproduced in
Table VI of Appendix F.

A number of reviews and reports on the subject of encrgy loss of charged
particles in matter have been written over the years, The rcader is referred
to these and their references for further information on the subject (Bohr,
1948 Fano, 1963; Lindhard et al., 1963; Lindhard, 1969; Northclifle, 1963;
Datz et al., 1967; Sauter and Bloom, 1972; Schigtt, 1973) and to the bibli-
ography of published tables given in Appendix D.

Special ellects occur in dE/dx when the beam is channcled in a single
crystal target. The subject is treated in recent reviews (Gibbons, 1968
Mayer et al., 1970; Dearnaley et al., 1973; Gemmell, 1974).

.

2.5 LINEAR ADDITIVITY OF
STOPPING CROSS SECTIONS (BRAGG’S RULE)

The preceding scction on energy loss is restricted lo clemental targets.
The present section deals with energy loss in compound targets.

“
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To a simple approximation, the process by which a particle loses energy
when it moves swiftly through a medium consists of a random sequence of
independent encounters between two particles: the moving projectile and
an electron attached to an atom in the case of electronic energy loss, or the
moving projectile and an alomic core in the casc of nuclear energy loss.

*To the extent that this picture is correct, the situation presented by a target
that contains more than one element differs only with respect to the type
of atoms the prOJectlle encounters. The energy lost to the electrons or to
the atomic core in each encounter should be the same at a given projectile
velocity, regardiess of the furthér surrounding of the target atoms, since the
interaction is considered to take place with only one atom at a time. This
is, in cssence, the idea contained in the principle of additivity of stopping

cross sections, accordmg to which the energy loss in a medium composed of _
> bSO

various atomic species is the sum of the losses in the ¢ 1stituent elements,
_various atomic §

‘weighted pr opomonalely to their ‘abundance in the ‘compound, The punmple
“was postulated first by Blagg and Kleeman (1905) for the special case of
molecules. Their postulate is now known as Bragg's rule. It states that the
stopping cross section " of a molecule A,,B, or a mixture with an equiv-

alent composition of A,,B, is given by'

CA"'B" — ,"8/\ -+ ”(;B, (2.50)

where ¢* and &P are the stopping cross sections of the atomic constitutents
A and B. Let the volume density of the molecular units A,,B,, in a compound
be N5 then the specific energy loss of the material is

dEAmBn/dx —_ NA"'B"BA"'B". (2'51)

: . .
This formula, completely analogous to Eq. (2.36) for an element, states that
the energy dE dissipated over the distance dx is proportional to the number
of molecular units A,B, traversed over this distance, the proportionality
constant being g* . Olten, to simplify notation, the clumsy form A,B, as
a superscript or subscript is abbreviated AB, e.g., £*® for ¢* P or NAB [or
for NABu: the symbol AB then refers to a molecular unit of the compound
composed of aloms of A and B.

For high-velocity protons (v> v,), the rule is valid within about 1%
(Fano, 1963; Burlin, 1968). For *He in the 1 -2-MeV range, good agreement
has been reported in metallic alloys and compounds (Feng et al., 1973;

t We prefer superscripts to denote the stopping medium, Subscripts then always indicate
the identity of the partner in a collision (as in K g, [£]§1°2). Since this convention is not followed
consistently in the literature, some care is indicated when formulas of different sources are
compared.
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Baglin and Ziegler 1974). There are indications that violations can occur
in gaseous organic compounds (Lodhl and Powers, 1974) and in oxides,
nitrides, or other compounds in which one element is a gas in elemental
form (Ziegler et al., 1975). Generally, the departures are 10%; or less.

2.6 ENERGY STRAGGLING

An energetic particle that moves through a medium loses energy via many’
individual encounters. Such a quantized process is subject to statistical
fluctuations. As a result, identical energetic particles, which all have the
same initial velocity, do not have exactly the same energy after passing

_ through a thickness Ax of a homogencous medium. The cnergy loss AE is

subject to fluctuations. The phenomenon, sketched in Fig. 2.10, is called
energy straggling. Energy straggling places a finite limit for the precision
with which energy losses, and hence depths can be resolved by backscattering
spectrometry. The ability to identify masses is also impaired, except for
atoms located at the surface of the target, The reason is that the beam energy
E before a collision with a specific mass M, at some depth within the target
is no more monoenergetic, even il it was so initially, so that the ratio E,/E,,
and hence the identification of M,, become uncertain as well. For these
reasons, it is important to have quantitative information on the magnitude
of energy straggling for any given combination of energy, target material,
target thickness, and projectile.

Thin
target
|
—| Ax =
1
Transmilled Incident
parlicles particles
/ T \
| |
—>1' JAY e .
l * L4
SAE ’\ !
— |
Eo Eo
ENERGY ENERGY

Fig. 2.10 A monocnergetic beam of energy E, loses energy AE in traversing a thin film of
thickness Ax. Simultancously, energy straggling broadeuns the energy profile.

~



46 . . 2. Basic Physical Concepts

Light particles such as 'H or *He in the megaclectron volt range lose
energy primarily by encounters with the electrons in the target; as discussed
in Section 2.4, Onc would thus expect that the dominant contribution to
energy straggling is the consequence of these elecuomc interactions too.
This is indeed the case. One can therefore calculate the main contribution
to energy straggling with the help of the same classical model employed in
Scction 2.4 (o describe the process of clectronic encrgy loss. It is shown
there [Eq. (2.43)] that the average number dAn(E,) of encounters that
generate an energy loss E; over the distance Ax is NZ, Ax - 2rb db, where
b is the impact parameter for such an encounter. The actual number of
encounters will fluctuate statistically about this average value dAn(E,). I
one assumes that the actual numbers of these encounlers have a Poisson
distribution, the standard deviation of dAn(E, ) is [dAn(E )]/ In turn, the
deviation of these numbers from their average value causes deviations from
the average differential value dAE that these encounters contribute to AE,
Let the deviations from the average contribution dAE be called dSAE. Their
standard deviation will be E, [dAn(E,)]"?. The variance of encounters
with an impact parameter between b and b + db is therelore

d{(SAE)*Y = E,2NZ,Ax2rb db. (2.52)

Encounters with other impact parameters produce similar lluctuations. As
long as these fluctuations are independent, their corresponding variances add
up incoherently, and the overall variance (SAE)?) of SAE will be given by
(BAE) = NZ, Ax 2n f " g 2 db, (2.53)

Tmax

For an impact parameter b, the energy loss E, has the value E | =
(2/m)NZ €*/bv,)? [see Eq. (2. 42)]. The integral thus yields

@A =Nz A D e sy

2 max
ey

where me and E,;, are the energy losses corresponding to encounters

with minimum and maximum impact parameters b, and D iax » TESpectively.

The largest possible encrgy transfer in a collision between the ion of mass
M and an electron of mass m, « M, is 2m,0,2, so that if B in < By, then

{SAE)?Y = NZ, 4n(Z,e?)* Ax. (2.55)
This result was first derived by Bohr (1915) with the help of the same simple

= classical model discussed here. It is usually referred to as the Bohr value
: Q,, of energy straggling.! For a layer of thickness t, Boht straggling thus

! The common notation in the literature is 0. We use Q;, to distinguish between the standard

deviation of an encrgy distribution Q and a solid angle of detection Q.
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has a variance

= 4n(Z e*)INZ,t. (2.56)
We introduce the abbreviation
2 = 4n(Z,e})?NZ, .57
with which the Bohr value ol energy straggling has the simple .form ’
- Q2 = st T (2.58)
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Fig. 211 The value of the variance Q,? = 4nZ,2¢*Z, Nt for ¢t = 1000 A for cnergy.straggling
according (o the classical model of Bohr for electronic energy loss versus the a(o.mlc nu.mber
of the target atom, The pronounced structure reflects the difference in the atomic density of ‘
the elcments.

Bohr'’s theory predicts that energy straggling does not depend on the
energy of the projectile and-that the rms value of the encrgy variation in-
creases with the square toot of the electron densuy per unit area NZ,t in
the target. A plot of Q2 as a function of Z, is given in Fig. 2.11. The pro-
portionality with the number of electrons per atom Z, accoun}ts for the
general increase of Q% with Z,, but the pronounced structure in the plot
is caused by the differences in the density N of the elements. This variation
is removed by considering Q5%/N¢t. On finds that this quantity is numer.lcally
equal to Z, within 4% when expressed in units of 1072 (¢V cm)?. This fact
can be remembered for quick estimates of energy straggling.

-
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TABLE 2.2
Experimentally Observed Values of the Standard Deviation Q,, of
“Energy Straggling Comparcd to the Encrgy Loss AE of *He Traversing IFilms of
Al, Ni, or Au at an Encrgy E of 1.0 and 2.0 MeV?

Thickness Ax

traversed

- AE gcxp chp/AE (EI/AE)”2 E

(kgm/em?) (A) (keV)  (keV) () VA (MeV}
AL 120 4300 125 7.0 5.6 4 2.0
Ni 180 2000 125 5.6 4.5 4 2.0
Au 370 1900 125 5.1 4.1 4 2.0
Al 60 5900 200 70 35 2.2 1.0
Ni 260 2900 200 5.6 2.8 2.2 1.0
Au 520 2700 200 5.1 2.6 2.2 1.0

v N by
" The film thicknesses are chosen to produce the same AE in all three clements. Experi-
mental values are derived from Harris and Nicolet (1975a).

Another useful relationship can be obtained by comparing the variations
in AE given by the value of Q, with AE itsell. For an estimate, one uses the
Bethe— Bloch formula [Eq. (2.46)] for dE/dx and substitutes some average
value v,? for thie velocity along the track, say, E = 1M ,0,2, and compares
this with the value of Qy; the result is

Qp E 3 me\'"?
AE \AE LM, ' (2.59)

For *He, the ratio (m,/M)"/? is about 1072 In this case, neglecling the |

factor 2/L, one thus finds
Qu/AE ~ (E/AE)"? x 1072, " (2.60)

so that Q, itsell is approximately 1% of the geometrical mean of AE and E.
Helium ions of 2 MeV undergoing an energy loss of 125 keV thus have a
standard deviation of energy straggling that is about (2.0/0.125)"/2% = 4%,
Table 2.2 shows the experimentally observed values of (Q.,,/AE)"/? for this
and another example, with Al, Ni, and Au as targets. As can be scen, this
ratio is indeed quite constant; it agrees in the order of magnitude predicted
by the formula above, although the actual value differs from the estimate.
The formula is thus a good rule of thumb, but does not yield quamlt'\tlvcly
trustworthy numbers.

Bohr’s model assumes that an individual energy transfer takes place be-
tween a [ree stationary electron and a fully ionized pmjecule of charge Z,e.
These assumptions are [ulfilled only in the Bethe-Bloch region (see Fig. 2.9).
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At energies in the vicinity of the maximum of the dE/dx curve and below,
the assumption of a fully ionized projectile is no longer valid. The fact that
electrons are bound to atoms and are nol free and stationary, as assumed,
also becomes increasingly important as the projectile energy decreases. To
account for this, Lindhard and Scharfl (1953) extended Boht's theory and
derived a correction factor for low- and medium-energy projectiles. They
obtained

2

i

W00

p’zlix)  for y <3,

2

(2.61)
B for x >3,

2

00

where %, a reduced energy variable, is
y = 0}/ Z 002 ; (2.62)

Here v is the velocity of the projectile, vy = ¢?/h = 2.2 x 10® cm/scc, and

L(x) is the stopping number, which appears in the Bethe-Bloch formula,
Eqg. (2.46). Bondcmp and Hvelplund (1971) have improved Lindhard and
Scharfl’s expression by using a more refined description than had been
used previously for the atomic charge distribution and for the process of
energy straggling. They compare their calculations with experimental re-
sults of energy straggling for 'H and *He in various gases (Bonderup and
Hvelplund 1971; Hvelplund, 1971) and conclude that the Lindhard-Schar(l
formulation gives a fair account of the observed overall energy dependence
of straggling. They also observe that when one plots Q2,,/Nt against the
projectile energy for various gases, the curve exhibits oscillations versus 2,
similar to those observed in Fig. 2.8 for the stopping cross sections. Thesc
oscillations have been explained both for dE/dx (Chu and Powers, 1972)
and for energy straggling (Chu, 1976) by using atomic charge distributions
of the Hartree—Foch-Slater type and incorporating them into the theory
of Lindhard and Winther (Lindhard and Winther, 1964) for dE/dx, and the
theory of Bonderup and Hvelplund (1971) for energy straggling. Where the
measurements of energy straggling are sufficiently reliable, an acceptable

agreement with these calculations is obtained.

In the energy range 1-2 MeV, which is of primary interest to backscatlering
spectrometry, almost all of the available experimental data on energy
straggling pertain to 'H in gases. The advent ofbackscattcrmg spectrometry
as an analytical tool has generated renewed interest in expcnmcnlal infor-
mation on straggling in this encrgy range, particularly for *He in solids.
Presently, the only data available are for Al, Ni, Pt, and Au (Harris and
Nicolet, 1975a,b). The results show only a weak energy dependence which
is in qualitative agreement with the theories of Lindhard and Scharfl, of
Bonderup and Hvelplund, and of Chu. Numerically, Bohr’s value Qy is
within 409 of the data. Until more experimental data are available, the
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standard deviation Q, thus is the most appropriate value to use m estimating

energy stragglmg in solids in.the | to 2 MeV range.

Boht's theory of energy straggling not only gives the qumdmd devintion
Q, of a beam which has traversed a medium, but also predicts that the dis-
tribution is Gaussian. This is a consequence of the assumption that the
number of collisions is large and follows a Poisson distribution. The result
is clearly approximate, as a Gaussian has a finite amplitude at any energy,
but the transmitted beam surely cannot contain particles of €nergy larger
than E,. An accurate description of energy straggling must therefore neces-
sarily lead to a distribution function that is not symmetrical with respect
to the mean. This is born out by theoretical studies ol energy straggling in
beams passing through very thin absorbers (Landau, 1944; Vavilov, 1957,
Tschaldr, 1968; Kolata, 1968; and others; for a recent contribution, with
references, see Bichsel and Saxon, 1975; Deconninck and Fouilhe, 1976), and
by recent transmission measurements of protons through Si. In the energy

range of 1 to 2 MeV for 'H and *He, the effect is below the resolution of

conventional solid-state detection systems. For the purposes of backscat-
tering spectrometry, the Gaussian distribution thus describes energy strag-
gling satisfactorily (also see Appendix B).

08 T T T * T T T
(a) o
06| i i
0.4f- / \ N
_____ [agyen
: <) QFWHM 8 :
0.2} X N
[¢] 1 i . 1 1 [l
2 5 -l | 105 0 05 i 15 2
| X
i 7z
L [
~/in % ./1.,‘2‘
| T T T T V
08l (b) 8% g4 |
0.6} 4 i
0.2\ . ] i
12, Y2 18% ]
[o] e ‘-/I : L L L
-2 -5 .- -05 0. 05 1 15 2
%

Fig. 212 Plot of () the Gaussian distribution (2nQ%)~ "2 exp[ — (x3/2Q%)] with Q = 1//2,
and (b) the corresponding error function mlcgml erf(x) = 2rnQ%) ™72 £, exp[ =(x3/2Q%)] dx
with @ = 1//2.

2.7 Linear Additivity of Energy Stragglinig

" Backscallering spectra mast often display the integral of the Gaussian
distribution, the error functign

erf(x) = (2rQ?) "2 J_\m exp| —(x2/2Q%)] dx - (2.63)
rather than the Gaussian distribution
(2nQ?) Y2 exp| — (x2/2Q%]. (2.64)

The relation between the two is graphically shown in Fig. 2.12a and b for
Q? =1, As can be seen, the full width at hall maximum (FWHM) of a
Gaussian corresponds to the 12 (o 88% range of the error function and the
+Q points in the Gaussian correspond to the 16 to 849 points. The FWHM
is wider than Q by a factor of 2(2In 2)V/? = 2,355,

2.7 LINEAR ADDITIVITY OF ENERGY STRAGGLING

Experimental data on encrgy straggling below 2 MeV for 'H and *He in
solid elemental targets are few. For solid compound targets, no experimental
data exist at all. The need for information is obvious. Until such results
become available, statements on energy straggling in solid compounds must
necessarity be conjeclural.

The most obvious suggestion as to how energy straggling bchavcs in a
compound or a mixturc A,,C, proceeds as follows (Chu, 1976). Let N, and
N¢ be the volume densitics of the individual clements A and C, and let.
NACe be the volume density of compositional units A,,C, in thc mixture
or compound. Assume that for a thickness ¢, the energy straggling in clements
A and C individually is [ Bq. (2.56)]:

Q") = 4n(Z ) NAZpt, (2.65)
(D)2 = 4n(7 02N T . (2.00)
This means that (Q,")2/NAZat = (QsC)*/NcZct = 4n(Z,e?)? is independent
of the target, the ratio being simply the square of the energy variance per
clectron in a unit arca of the (arget with thickness 1. An extension of Boh's

model to a compound target then predicts that this quantity should apply
independently of the composition of the target, or

’

(@’
number of electrons per unit
arca of the target of thickncss ¢

= 4n(Z,e?)?, (2.67)

and therefore

Q) = dn(Z, 2 NACH(Z + nZ)t. (2.68)
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The last three factors give the number ol clectrons per unit area in the l'ug,ct
This cquation can also be written as
(Qpr©n)? Qh)? Q%

- == ) -+ - s
NAnCny Nat . Net

(2.69)

which clearly bears out the assumption of additivity. Until measurements
are made, these equations must be considered as hypothetical and should be
used as guidelines only. Their validity has yet to be tested.
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Chapter

3

Concepts of :
- Backscattering Spectrometry

The purpose of this and the following chapter is to describe in principle
how a backscattering spectrum is generated and how it is interpreted in
terms of the basic concepts introduced in Chapter 2. The concern here is
with general notions. In Chapter 4 these concepts are applied to thin films
and layered structures. Detailed examples are presented in Chapter 3.

i
3.1 INTRODUCTION

The components ol a backscattering system are shown in Fig. 3.1. The
source generates a beam of collimated and monoenergetic particles of energy
E,. A typical case is a current of 10 to 100 nA of 2.0-MeV He* ions in a

Incident
particles Energy \ Beom
Sample Eo source
Backscatiered
particles
Particle

analyzer system

Multichannel
analyzer

Fig. 3.1 Conceptual layout of a backscattering spectrometry system.
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1-mm? area. These particles impinge on the sample (or target) which is the

object to be analyzed. Almast all (jfthc incident particles come to rest within
the sample. A very few (much less than one in 10%) are scattered back out of
the sample. Of these, a small frac{ion is incident on the arca defined by the
aperture of an analyzing systemf The output of that system is an analog
signal. This signal is processed by a multichannel analyzer, which subdivides
its magnitude into a series of equal increments. Each increment is numbered
and referred to as a chamnnel. Modern multichannel analyzers contain
thousands of channels. An event whose magnitude falls within a particular
channel is registcred there as a count. At the termination of the experiment,
each channel has registered a certain number of counts. The output of the
multichannel analyzer is thus a series of counts contained in the various
channels.

A segment of such a series from channels 132—-136 is shown in Fig. 3.2.
We shall refer to the counts contained in channel i as H;. This digital in-
formation can be recorded in various ways, The graphical display is advan-
tageous for quick interpretation. Digital outpuls are used for numerical

QOulput
Channel \" Counis
number
(i} (H)
132 001244
133 001224
134 oo1t78

135 ool1172
136 001143

/:/(u)\.\

Grophical Digital
} BN Print
AN Paper lape
= \\ Magnetic tape
% .
e . Other

L ;__‘w____ﬁw_k_‘:\sk
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YiEL

136
CHANNEL NUMBER, i
: (b)Y
Fig: 3.2° Bisic content of a'backscattcring spectrum and some metliods of fecordinig: (a) The
otdinal number (left) identifics cach’ channel, which ,cont'ains a cerlain number of counts.
(b) Variotis ways of recording a spectrum, t
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analysis. Computer facilities with graphical display terminals can combine
both. Such a series of counts versus channel number constitutes a back-
scattering spectrum. In the graphical display, the ordinate is frequently
labeled yield or backscattering yield. ' ' '
The analog signal generated by the analyzer contains quantitative in-
“formation on one particular parameter of the detected particle. As shown
in Fig. 3.3, there are a number of parameters—energy, momentum, etc.—that
i« can be used to characterize the backscattered particles. For example,
magnetic spectrometers measure momentum. The backscattering spectrum
obtained with such an analyzer is a backscattering momentum spectrum. A
semiconductor particle detector produces an analog signal proportional to
the energy of the backscattered particle. Correspondingly, a spectrum
obtained with such a detector is a hackscattering energy spectrum.

Parameler Analyzer Amplifier Multichannel
) analyzer
Energy
Momentum
Velocitly Qutput
——]
Charge
Mass
. Particle Analog Analog Digital
signal signal signal

Fig. 3.3 The particle analyzer system of Fig. 3.1 may measurc any one of several distinct
parameters that characterize a backscattered particle. This analyzer generates an analog signal.
The multichannel analyzer measurcs that signal and registers the value as a count in the
appropriate channel, ,

The particular analyzing system assumed in the rest of this book consists

of an energy-sensitive analyzer followed by amplifiers and a multichannel
analyzer, as shown in Fig. 3.3. This analyzing system is the most cominonly
used in backscattering spectrometry, but there are other methods to obtain
a spectrum, For instance, the multichannel analyzer can be replaced by a
single channel whose position is changed sequentially so as to scan the range
of the parameter measured. Regardless of their inner working, the common
feature of all such syslems is an output consisting of a set of counts corre-
sponding to a sequcnce of channels. ‘

In general, whatever the analyzer, there should exist a one-to-one cor-
respondence between the channel number and the magnitude of the particle
paramecter to be measured by the analyzer, The most desirable property of
this relationship is that it be exactly linear and stable in time. Additionally,
for convenience, one likes fast acquisition of data and detectors of small
physical size. The semiconductor surface-barvier detector combined with a

3.1 Introduction: ' 57

charge-sensitive preamplifier meets these criteria best amon g current oplions,
It is therefore used almost universally in backscattering spectrometry. Con-
sequen'tly, in this book we shall be concerned almost exclusively with back-
scattering energy spectra. The descriptive term, “backscattering energy
spectrum,” will thus often be shortened to backscattering spectrum or
spectrum. In those rare cases where energy is not displayed, one should
explicitly identily the parameter measured.

The relation between the energy of a backscattered and detected particle
and the channel number in which that particle is counted is a characteristic
of t!le‘syslem and must be determined experimentally (as described in
Section 5.2). Figure 3.4 shows this relation schematically. The abscissa gives
the channel number 7. The ordinate gives the energy E, of a detected particle,
where E; ; is the energy of particles that produce counts in channel i, We
shall assume a linear relationship, as indicated in the figure. The slope of
the line will be denoted by &, the ehergy interval corresponding Lo one channel.
The offset of the line is always adjustable by changing the gain scttings of
the electronics in the analyzer system. This allows one to display a sclected
part of the energy spectrum over the full range of the multichannel analyzer.
(Typical numbers for & are about 4 keV with megaclectron volts He ions
an@ the offset is some hundreds of kiloelectronvolts.) As defined previously’
& is the slope of a straight line, and hence constant. In the rest of the book’
we shall assume that this holds in a given experimental situation. When &
isa function of energy, i.e., when the relation between channel number and
particle energy is not a linear one as shown in Fig. 3.4, equations describing
an energy spectrum must be modified.

£y 13671
Ey 132

PARTICLE ENERGY, |,

T0Offset

0 |-t
0123 132 136

CHANNEL NUMBER, i

Fig. 3.4 Ideally, in an analyzer that senses cncrgy, the encrgy E, of a detected particle is
.rclulcd cxactly lincarly to the channel number that identifies the channel in which the event
is registered as one count. The slope of the line is characterized by the energy interval & of
one channel,

-
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Fig. 3.5 The conversion of channel number to energy E, (shown in Fig, 3.4) transforms the
abscissa of a backscattering spectrum (as shown in Fig. 3.2) from channel number to energy
E,, where E, gives the energy of the incident particles and Ky Eq is called the edge of element X
in the spectrum.

With the relation of channel number to energy established, one can convert
the abscissa of a backscattering spectrum from channel numbers to particle
energy E, as shown in Fig. 3.5, This plot is a typical form ol a backscaltering
energy spectrum. Sometimes spectra ate plotted in terms of channel numbers
only. In such a case, one should specify & and the energy oﬂset otherwise
the information provided is not complete,

One frequently interprets such a spectrum in terms of a continuous
function H of the continuous variable E,.! The expression H(E,) then stands
for the counts H, in channel i which corresponds to the energy E; ;. The
terms H; and H are both referred to as the height of the spectrum. The terms
yield and backscattering yield are sometimes used with the same meaning,

In Section 2.2 it is shown that the energy of particles scattered from an
atom at rest cannot have energies above KE,, where E, is the enérgy of the
incident particle. For particles backscattered {rom a monoisotopic elemental
sample, the spectrum has a step at an energy E, = KE, corresponding to

scattering from surface atoms; this step is referred to as the edge of the

_element and is frequently indicated with an arrow or a line, as in Fig. 3.5. In

the vicinity of KE,, the height of the spectrum is frequently called the

surface height.

If there is more than one element in the sample, the spectrum contains
counts generated by particles scattered from the different elements. The
counts generated from a given element are called the signal of this element
in the spectrum.

t Certain analyzing methods actually generate a permanient continuous record whose ordinate
gives an analog signal of H (e.g., photographic records). A digital output can then be formed by
subsequent digitalization and multichannel analysis,
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The. purpose of l)(leSCg\llClll]g spectromelry is to extract quantitative
information on the elemental camposition of the sample. Since the edges
are well defined; one can usually readily identify some of the clements present
in the outermost layers of [he sumple. Since the primary particles penetrate
into the sample virtually unattenuated, scattering occurs from atoms located
below the surface as well. The epergy immediately before the scattering is
less than F,, because energy is lost along the incident path. After scattering,
the particles cscaping the sample losc energy along the outward path.
Consequently, the energy of the detected particles depends on the depth at
which scattering occurred. The backscattering yield at that encrgy depends
on the number of atoms present at that depth, The problem in buckscatiering
analysis, therelore, consists of properly interpreting the measured back-
scattering spectrum in terms of distributions of atoms in depth below the
surface. This, then, is the topic to which we shall address ourselves in the
rest of this chapter.

We assume, of course that the sample is laterally uniform. When that
assumption canunol be made, the analysis of the spectrum becomes vastly
more difficult.

3.2 DEPTH SCALE FOR AN ELEMENTAL SAMPLE

This section describes how oie relates the energy E, of the detected par-
ticle to the depth x at which the backscattering event occurs in a mono-
isolopic clemental samiple. 1 Fig. 3.6 the cnergy of the incident particles
is Ey, the energy immediately before scatteriig at a depth x is E, and the
energy ol the particle emerging (rom the surface is E,. The incident beam is
smaller than the target. The incident particle, the exiting particle and the
normal of the sample are all contained in one plane, so that the scattering
angle in the laboratory framc ol reference is given by ¢ = 180° — 0, — 0,,
where (0, and 0, are the angles between the sample normal and the direction
ol the incident beam and’ of the scattered particle, respectively. Note that

| |
e —

|
Fig. 3.6 Symbols uscd in the description of /\}\///

backscattering cvents in a sample (or target) «
consisting of a monoisotopic clement, The angles £

), and @, are positive regardless of the side on _ _/ﬁ<
which they lic with respeet to the normal of the ——=x " KE< 8, KE
sample.. The incident: beam;. the  dircction - of

. 2}
detection, and the sample -normal arc coplanar. \
E
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both 0, and 0, arc defined as positive numbers whether they are located on
onc or the other of the sample normal, (Other geometrical arrangements are
described in Section 7.5.) According to Scction 2.4, we can relate the energy
15t the fength xv/eos 0 of the incident path by

sfoos 0y = = [ dE/dE/d). (3.1)

wherc the negative sign arises because E is smaller than E, and dE/dx is
taken as a positive quantity. Similarly, the path length x/cos 0, of the outward
path is related to KE and E, by
E
xfcos 0y = — [ dE/(dE/dx). (3.2)
A graphical interpretation of these two equations is given in Fig. 3.7. Part

(a) shows dE/dx as a function of energy as a light line. The heavy segments
give the dE/dx values for the inward path from Eq to E and for the outward

I Surface
energy
dE/dx | approximation
or
|
€ Meon |
- energy (I
approximation! ! Pt
' ERR
! 'I } —
PE1E
E
)
dE/dx ‘
or
(NeT

p— OE —
ENERGY

(b)

Fig. 3.7 Graphical representation of the cnergy loss of particles alonllg their inward :,md
outward paths (heavy line) through a sample consisting of a monoisotopic e]cme-.nt. Thf: light
finc is the functional form of dE/dx versus E in (a) and of (dE/dx) ™" versus E in (b). Since dE/dx =

* Ne, the plot in (a) applics to & versus E as well,
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path from K15 to 12, The difference By - Eis the energy loss along the Invard
path AE,,; similarly, KE — I is the enepgy loss along the outward path AE .
According (o Tigs, (3.1) and (3.2), it is the reciprocal of dF/dx that must be
integrated over these (wo segments. This reciprocal curve is shown in par
(1) of g, 37, with the heavy segments again indienting values for the inward
and outward paths, By Eqs, (3.1) and (3.2), the (wo shaded areas give the path

lenpths x/cos 0y for the inward path and x/cos 0, for the outward path. I

0, = 0, these two areas are cxactly cqual.

T relate the energy I8y of the detected particle (o the depth x at which the
backscattering event occurs, il is necessary to find the valuc of the shaded
areas. The problem is that the energy E before scattering is not an experi-
mentally accessible quantity, but E, and E, are. One thus desires o find x
in terms of E, and E,. There are three ways of doing this:

1. Use tabulated values of dE/dx and execute the integrations numerically
to find cotresponding sets of E and x, and subsequently KE and E,. This
approach, generally carried out with computers, is described in Section 3.4.

2. Assume that dE/dx is constant over each path. Equations (3.1) and
(3.2) can then be integrated and E can be eliminated. This is discussed in the
following section.

3. Assume some functional dependence for dE/dx. Matching pairs of [
and x and of x and E; can then be obtained analytically.

3.2.1 Energy Loss Factor |S]
and Stopping Cross Section Factor ¢

Il one assumes a constant value for dE/dx along the inward and outward
paths, the two integrals in Eqgs. (3.1) and (3.2) reduce to

x dE
E=Fy— ™ 3
® cos0, dxl|, (3-3)
and
x dE
B, = K-~k (3.4)
cos 0y dx |

where the subscripts “in™ and “out” rcfer to the (constant) values of dE/dx
along the inward and outward paths (Fig. 3.7). By eliminating E from these
two equations, we have
}x. (3.5)
oul

The energy KE, is the edge of the backscattering spectrum (Fig. 3.5) and
corresponds {o the encrgy of particles scattered [rom atoms at the surface

K dE

I dE
cos (), dx

KEo — By = [ C—os—()z dx

in

-



62 ‘ 3. Concepts of Backscattering Spectrometry

"ol the target. The cnergy E, is the measured valuc of a particle scattered

from an atom at depth x. If one introduces the symbol AE for the energy

difference between E and KE, (Fig. 3.7), ie.,

, AE = KE, — E,, (3.6)
theﬁ one can write
AE = [S]x, 3.7

[S]El: K LI«E— ] (3.8)

cosf; dx
is called the energy loss factor or S factor. An equivalent set of equations
can be given in lerms of stopping cross sections rather than dE/dx:

AE = [r]Nx, (3.9)

where
1 dE

w  cosl, dx

+

K 1 ,
B 13 3.]0
I— ] [(_,OQ() |“ ' cos 02 'mllil ( )

is called the stopping cross section factor or ¢ factor. :

The assumption of constant values for dE/dx ot & along each track thus
ledds to a linear refationship between the energy AE below the edge KE,
and the depth at which scattering occurs. One can therefore assign a linear
depth scale to the energy axis, as indicated in Fig, 3.8.

where

X Fig. 3.8 When one assumes the encrgy loss to be
constant along the inward and outward paths, then
the energy AE can be linearly related ‘to!the depth x
through AE = [S]x as indicated in the abscissa of the
backscattering spectrum.

YIELD

ENERGY E,

AE
X

This result is derived under the assumption that dE/dx or ¢ is constant

“along the inward and outward path. Since this is an approximation the

resulting depth scale also applies only approxnnately However, it is also
clear from inspection of Fig. 3.7 that for any given E, and E, a pair of unique

values of (dE/dx);, and (dE/dx),,, exist for which this linear scale gives one
exact value of depth at which scattering occurs. Thesc two particular values

- of dE/dx are those for which the product of (dE/dx)~ Yand the energy intervals

AE;, and AE,,, exactly coincide with the values of the corr espondmg integrals
(shaded areas in Fig. 3.7). In Section 3.3 an iterative procedure is described

i

B
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by which these particular values of dE/dx can be sought. By applying this

procedure point by point, an acqurate relation between the backscattering
depth and E,| can be constructed, In the next subsection, useful approxima-
tion methods of finding values of (dE/dx), and (dE/dx)y, or &, and &, are
discussed. We also use a(E,n) and &(E,,) to indicate the energy at which ¢ is
evaluated. :

Figure 3.9 describes graphicaljy the connection betwcen the epergy loss
factor [S] and the actual depth x:at which backscattering occurs for a given
energy loss AE. The exact relationship between AE and x derived from
Egs. (3.1) and (3.2) is generally not linear, The energy loss factor provides a
linear approximation [ Eq. (3.7)] which is exact at one point.

S)x

/[

7 [So]x

o
-
<
<

ENERGY LOSS, AE

BACKSCATTERING- DEPTH, x
Fig. 3.9 The solid curve shows the general refation belween: the energy toss AL and the
depth x at which backscattering occurs, The lincar relation AE = [S]x is cxact at onc depth,
The symbol [S,] refers to the surface encrgy approximation discussed in Scetion 3.2.2, with
the dashed line representing [Sy]x. The incident encrgy is Eg.

3.2.2  Approximations to [S]and [g]

a. Surface Energy Approximation. For regions near the sutrlace, the
thickness x is small and the relative change of energy along the incident path
is small also. Therefore (dE/dx),, is evaluated at E,. Similarly, (dE/dx),y, 1s
taken at KE, (see heavy dotted lines in Fig. 3.7). In this surface energy
approximation, one thus sets

[O][Kdﬂ 1 dE

coslly dx|g, cosO, dx
. ’

] BREAt)

8(KEO):I (3.12)

or

K 1
Leo] = [cos 0, o(Eo) + cos(l,

where the stopping cross sections (Ey) and e(K E,) arc evaluated at cnergics
LBy and KEy, respectively. This particular approximation is used so frequently

-
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64 3. Concepts of Backscattering Spectrometry

that the symbols [So] and [£o] are introduced (o refer to it. The connection
between [So] and the cxact AE versus x dependence is shown in Fig. 3.9.

b. Mean Energy Approximation. When the path length becomes appre-
ciable, the surface approximation degrades (Fig. 3, 9). As can be seen from
Fig. 3.7, a better approximation can be obtained by selecting a constant value
of dE/dx or ¢ at an energy E intermediate to that which the particle has at the
end points of 'each track. We define

151= |G, e, * 0 e 613
f?;l .
[£] = Lco,s<01 e(E,) + EBSL(Z li(Eom)jl. (3.14)
In the mean energy approximation, one assumes that
=3(E + Eo) (3.15)
and
E, = HE, + KE). (3.16)

The value of E in the preceding equations is unknown, but can be estimated
in various ways. General methods are described in Section 3.3.

For quick estimates one can assume that the energy difference AE =
KE, — E, is known and that this loss is subdivided symmetrically between
the incident path and the outward path, so that E is approximately E, — $ AE.
The values E,, and E,,, are then given by

Eh\ = EO - ?%AE = (317)

and AE = K€~ &,
i
E,w=~E +4+AE. (3.18)

When these values are used to complete the definitions of [S7] or [g], the
method is called the symmetrical mean energy approximation. This approxi-
mation, which is particularly good when K ~ 1 and 0, =~ (,, has the advan-
tage of simplicity. It serves well as a quick estimate of the probable crror of
the surface approximation.

33 ENERGY F BEFORE SCATTERING

In the previous section the energy E immediately before scattering at the
depth x is needed for the mean energy approximation. This energy E is
needed not only for depth calculations, but also to evaluate the scattering

il T

3.3 Energy E before Scattering ) . 6b

cross section o(E) in depth profile applications. In that latter case, fairly
accurate eslimates are requircd becausc scatlering cross scctions vary in-
versely with the square of the energy E. Cruder approximations to E suflice
for the evaluation of the depth at which scattering occurs, since dE/dx is not
a strong function of energy. In this section we enumerate methods for finding
E that have been used in the analysis of backscattering spectra.

3.3.1 Energy Loss Ratio Method

A simple but very useful procedure to obtain E as a function of E,; and E,
has been described by Lever (1976). One assumes that the ratio « of the
energy lost along the outward track AE,,, to that lost along the inward track
AE;, is independent of depth, i.e.,

o = AE,,/AE,, = consl (3.19)
(see F ig 3 7) “The energy losses AE,, and AE;, are AE,,, = KE — E, and
AE,, — E. The ratio « then is o = (KE — E)/E, — E), which gives

E=(E, +aE))(K + o). (3.20)

An approximate value for o can be determined from the surface energy
approximation, which assumes that Egs. (3.1) and (3.2) can be writlen as
(Ey — EYs(Eq)N = x/cos(l; and (KEy — E|)/e(KEgN = x/cos(),, respec-
tively, so that

U o~ [e(KEg)/e(Eo)]f, (3.21)
where
f} =cos0,/cosl,. (3.22)

This value of o can rcadily be computed from tabulated stopping cross
sections and substituted into Eq. {3.20) to find E. This method is most
accurate for the analysis of thin-film spectra where the surface approximation
holds. It is also useful for thicker films where the surface approximation is
poor, becausc the ratio o of the energy losses changes less rapidly than ¢.

3.3.2  lterative Method

This method starts with the surlace energy approximation in which

 Ei, ~ Eq and E,, ~ KE, and sets [S]=[Sy] or [&] = [&] to obtain a

zeroth-order depth x at which scallering occurs by using L. (3.7) and a
given value of AE = KE, — E,. Then, one calculates a zeroth-order E using
dE/dx or ¢ evaluated at E, [Eq. (3.3)]. With this value of E, a new and im-
proved estimate ol E;, and E,,, is obtained with Eqgs. (3.15) and (3.16). These
improved values of E,, and E,, define a first-order [S] or [7] [Egs. (3.13)
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66 3. Concepts of Backscattering Spectronhetry

and (3. 14)] The process can now be iterated to find still better estimates of -

x, E, and [§] ar [€]. The method converges rapidly and an acpurate depth
scale can be eslabllshed

333 Analytical Methods

To obtain analytical formulas for E, the functional dependepce of dE/dx
or (dE/dx)~* must be known analytically. Two methods have been described
in the literature.

a. - Taylor Expansion of ¢. Since Eo and E, are the experimentally
accessible energies, it is natural to expand & around those two points. These

_.expansions can be used to find the values of ¢ at the mean energies E,, and
E,,. Itis assumed that these energies are given by the mean energy approxi-

malion, ie., E;,, = $(E + E,) and E,,, = $(E; -+ KE). By eliminating x from
Eqgs. (3.3) and (3.4) one obtains

(EO - E) - (dE/dx)|E|., - m 1

(KE — E\) ~ (dE/dX)|s,., b (ILN,[ P (323

Note that the energy loss ratio method of Section 3.3.1 is based on the same
relationship [Eq. (3.21)] except that E,, and E,,, are evaluated at the surface
values E, and KE,.
The Taylor expansion of ¢ below E, gives
' &(E;q) = (Eo) — ‘z’(Eo — E)E'(Eo) + -+ (3.24)
where a(EO) is the derivative -of & with respect to energy taken at Eq. The
_ expansion of ¢ above E, gives, similarly,
#(Equ) = 8(E) + 3(KE = EJe(E) + . (3.25)

By substituting these expansions for the ratio &(E;,)/s(E,,,), one obtains a
quadratic expression for E: .

aE* + bE + ¢ = 0, " (3.26)
where ‘
a=%K[e(E)p~" +&(E)], (3.27)
b= [Ke(E))p™" + e(E\)] — $(KEy + EN[&(E) + e (E)p™ '], (3.28)
and

¢ =3EoB, [(Eo)p™" + ¢(E)] = EotlEr) — Ere(Bo)p~™" (329)

The coefficients a, b, and-c are expressed in terms of the known (uantities
Eg, Ei; K, f;and s and ¢' at Egand E;. Values of ¢ and & are given in Tables
VIand VII. Therefore, a, b, and ¢ can be written in terms of E4 and E;, and
E can be solved from Eq. (3.26). The method was' introduced by Chu and
Ziegler (1975).
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b. - Power Law Assumptipn for ¢E/dx.  Another way to obtain the relation

“between the energy E before scatfering and the depth x at which scattering

takes place is to assume a functipnal dependence for ¢ or dE/dx such that
the integrals in Eqs. (3.1) and (3. 2) can be solved analytically. Onc approach
(Behrisch and Scherzer, 1973) assumes that dE/dx can be approximated over
an energy region by a power law in E, as dE/dx = A,E". They assume that
the exponent v of the power dependence is a constant with values equal to
1,0, or —1 depending on the enefgy region where dE/dx is evaluated. When
this power law expression for dE/dx is substituted into Egs. (3.1) and (3.2)
and the variable x is eliminated, one obtains

E{—'V—{—/}E(l,—" (L ~v)
E:(—Eﬁrrﬁ— . (3.30)

3.4 NUMERICAL METHODS TO FIND THE
ENERGY E BEFORE SCATTERING

Numerical methods proceed from Eqs: (3.1) and (3.2) with tabulated values
for dE/dx. With the first equation, (3.1), one computes a table of x values
versus E values for the incident path. With the second equation, (3.2), one
computes E; for each pair of values of x and E. This establishes a set of
corresponding values of x, E, and E, for a given E,.

In practice, there are two different ways to do the numer ical calculation.
One approach is to divide the depth into many slabs of cqual width Ax, as
shown in Fig. 3.10. The calculation starts from the surface layer. The thickness
Ax is made thin enough so that dE/dx is practically constant over the width
Ax. The energies at the two boundaries of the (n + 1)th slab can be related
to each other by the recursion relation

dE X
E=,E— 331
(n+ 1) n ("(’ r cos 0 ( )
nt| n ves 211 N
2
E ne
e KZEK's\gEo
Fig. 3,10 Concept and symbols used in the , KnE\ \I |
numerical method of calculating the energy E \\ )
before scattering at depth x and the correspond- \\\
ing detected energy Ey at the detector. \
Ax | Bx Ax | Bx
!r

>
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68 3. Concepts of Backscattering Spectromotry

In this way one obtains the energy of the incident particles beflore scattering
at cach slab boundary. Upon scattering, the energy of the particle is reduced
by the kinematic factor K. Along the outgoing path, the energy lost in each
slab is equal to the product of dE/dx evaluated at the local energy and the
effective path length x/cos 0,. The cmerging particles will have encrgics
{Ey, 2B ..., 4Ey, and (B, etc, where ,E, is the energy of a particle
cmerging after a collision in the nth slab; therefore,

’ Ax dE
E,=K,E———— 3.32
et ! cosl, dx|xu (3:32)

The energy , B, of an emerging particle scattered alter traversing inward and
outward through two slabs is
Ax dE
k,5) €080y dx

Ax dE
E,={K,E —
2=t < ? cos 0, dx
The energy at the 1,2 interface at which the last term must be cvaluated is
identical to that given in the parentheses preceding that last term. Iterating

this procedure, one can write
Ax dE Ax dE
ki) €080y dx|u) coslly dx |y

Ax dE
D E e
oy <<<<K" cosf), dx
Ax dE )_.”’ (3.34

)

"~ cos 0, dx
where each dE/dx is evaluated at a local energy which is given in the paren-
theses preceding the term and from which it is subtracted.

The other approach is to divide the sample into thin slabs of differing
thicknesses chosen such that particles scattered [rom the two boundaries of
all slabs have a fixed energy difference & at the det¢ctor. This procedure has
the advantage that it reproduces the subdivision of the energy E, into equal
increments, as a multichannel analyzer really does.

It is also convenient to peform numerical calculations when dE/dx can be
expressed as a function of E analytically. This is usually done by fitting a
polynomial to dE/dx or g For the purpose of numerical calculations such
fits are presented in Table VII.

(cncrgy at I,Z)c (333)

interface

3.5 HEIGHT OF AN ENERGY SPECTRUM
FOR AN ELEMENTAL SAMPLE

In the previous sections we have discussed the relation between the energy
of the detected backscattered particle (abscissa of an energy spectrum) and
the depth within the target where the backscattering events occurred. in the
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next few scctions we develop the relation between the height of the encrgy
spectrum (ordinate of an cnergy spectrum) and the number of scattering
centers per unit area within the sample where backscattering occurs. In the
remaining sections of this chapter, only stopping cross sections ¢ and stopping
cross section factors [&] will be used. A conversion to dE/dx or [ S ] can always
be made [Egs. (3.7) and (3.9)].

According to the preceding sections, the energy axis of a backscattering
spectrum and the depth below the surface of a sample arc uniquely related
to each other by a functional dependence such as that shown in Fig. 3.9. Each
energy width & of a channcel i in the multichannel analyzer is thus imaged
within the sample by a slab i of thickness t; from which all the backscattcring
events recorded in channel i emanate. The number of counts H, in channel i
is thus determined by two factors: the lmab dnd the numBer®

"of scattering centers. (dtoms) in lhdt slab The basic ploblem then is to relate
“the number of counts H;to the number of scatter ing centers per unit area
Nt; in the slab of thlckness 1; at depth x; which corresponds to the cnergy
width & and the position E; ; of channel i in the energy spectrum, as indicated
in Fig. 3.11.

Ifig. 3.11  Schematic showing the correspon-
dence between (a) slab i at depth x; in a monoiso-
topic sample and (b) channel i at encrgy E, ;. The
width & of every channel is the same, but the ¢
width t; of the slabs is not,

ENERGY

" Assume for the time being that the width z; is known. (The method for
determining this width is explained later in this section.) It then follows from
Eq. (2.19) that for a beam of normal incidence the total number of particles
detected in channel i is H; = o(E)QQNr,, where o(E,) is the differential cross
section evaluated at energy E; and averaged over the finite solid angle Q
spanned by the detector, @ is the total number of particles incident on the

-~
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sample, and N is the atomic density of the sample element. This result is
correct only for a normal incidence of the beam, because then Nt; correctly
gives the number of target atoms in a unit of area perpendicular o the beam.
‘For other angles olincidence, i.c., for 0y > 0, the trajectory of the beam across
the slab i has a length t;/cos 0, not 7;, The number of aloms per unit area as
seen by the beam is therefore increased by 1/cos 0y, so that for this general
case

1’11 = O'(EI)QQN'CI/COS()I. (3.35)

It will be seen that the value and the position of 7; also change as the beam is
tilted from a normal to a slanted incidence, ¢.g., (3.35) holds for the valuc of
7 applicable to the patticular geometrical arrangement under consideration.

The shape and the height of the backscattering energy spectrum were first
treated in the early 1950s (Wenzel, 1952). Several different versions of the
analytical form of the backscattering yicld cxist and are well documented
(Wenzel and Whaling, 1952; Van Wijngaarden et al., 1970; Powers, 1961),
Although the notation diflers, all the approaches are conceptually the same,
Approximations have been applied in some cases to simplify the problem
and the mathematics. We will start with the simplified case and progress to
the general form.

3.5.1 Spectrum Height for Scattering from
the Top Surface Layer

Consider the backscattering spectrum obtained from a thick sample and
focus attention on the backscattering events that take place either at the
surface of the sample or near the surface region. For this region the analysis
is simplified because the energy before scattering can be taken as E, and is
therelore known. Figure 3.12 gives a schematic of the backscaltering pro-
cesses in this surface region, and the resulting spectrum. The notation adopted
for the near-surface region is Ho and t, in contrast to H,; and 1, fof regions
within the sample, For the surface region Eq. (3.35) then becomes

H= (T(Eo)QQN'Co/COS()l = Ho. ' i (3,36)

'The subscript is often dropped from H because of the widespread use of this
symbol in this particular context. The thickness 7, is defined by the energy
width & of a channel. Particles scattered from atoms within t, will have
energies between KE, and KE, — &. From Egs. (3.9) and (3.12) the depth
scale at the surface is given by

The corresponding expression in terms of the energy loss factor is & = [ Sy ]to.
As stated previously, we shall retain only the formulation in terms of ¢ and

& = [eo]No. (337)
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Fig. .12 Schematic of the backscattering process in the surfuce region of a sample consisting
of a monoisotopic element (a) and the resulting spectrum (b).

[] in the femainder of this chapter. Substiytuting Eq. (3.37) in {3.36) Lo clim-
inate Ntq yiclds
Ho = a(Eq)QQ&/[ep] cosOy. (3.38)

This equation states that the height of the energy spectrum at the surface is
directly proportional to

(i) @, the total number of incident projectiles bombarding the sample;

(il o(Eo), the average differential scattering cross section between the
projectile and the sample evaluated at the incident energy Eo;

(i) Q, the solid angle spanned by the detector aperture;

(iv) &, theenergy width ofa channel, which is determined by the electronic
setting of the detecting system; and

(v) ([eo]cos0y)™", the inverse of the stopping cross section factor
evaluated at the surface for a given scattering geometry multiplied by the
cosine of the angle of incidence of the beam against the sample normal.

The direct proportionality of Hy to Q, o, Q, and & is physically evident.
The inverse proportionality of H, to [g9] cosf; can be understood by con-
sidering the energy that particles lose on their inward and outward paths
through the surface layer. Consider first the case of normal incidence. If the
stopping cross section is high, then so is the stopping cross section factor
[#0). A fixed energy is then dissipated by the moving particle over fewer
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atomic layers than if [¢,] were small. This means that the larger [g,] is, the
smaller will be the number of scattering processes lor the fixed energy interval
&. For example, compare two target materials A and B, where A has a larger
stopping cross section factor than B. For the same energy loss, the projectile
will have fewer encounters with A atoms than B. Thus there will be fewer
backscattering events that produce counts within a given channel for target
A than for target B (neglecting differences in o).

Consider mext the case of fixed stopping cross section but varying angle
x0fincidence 0;. Changing 0, has a twofold eflect: the thickness of the slab
~corresponding to the single channel of the multichannel analyzer undergoes
. a change expressed by the factor [£,] ', and the number of atoms per unit

of an area perpendicular to the beam undergoes a change expressed by the
factor (cos@,)!. These two effects tend to cancel because one of the two
terms of [ 5,] goes as (cos 0,) ™! [Eq. (3.11)]. This is the rcason for considering
the product [59] cos 0, rather than the individual terms when discussing the
dependence on the angle of incidence ¢, of the beam. In general, signal
heights depend on the product ([] cos0,)” !, whereas depth-to-energy-loss
conversions depend on [£] only [compare, c.g., Egs. (3.7) or (3.9) and (3.44)].
Because signal heights depend on the product [¢] cos 0, some authors intro-
duce the effective stopping cross section factor &, = [&] cos @, which is the
natural parameler to introduce when the interest focuses on the height of a
spectrum.

Observe that the height H,, does not depend on the atom density N of the

sample. This is a general property of backscatlering yields. The matter is
discussed in Section 3.9.

3.5.2 Spectrum Height for Scattering at a Depth

The essence of depth profiling is to relate a spectrum height H; to a slab of
material with thickness 7; and number of atoms per unit arca Nt; at depth
x;. From Eq. (3.35) the height is

H; = a(E)QQN1;/cos (. (3.39)

Thc Ccross scction a is cvaluated hcrc at the cnerg \FDof thc projectile immc-

Nr is deﬁned by the energy w1dlh é’ such | that the pamcles bdcksmucmd
from the slab will emerge from the sample with energics between £, ; and
E,; — &. 1L would be wrong to conclude therefore that the energy width &/
_of these particles immcdiately after scatlel &, The rcason is that
particles with slightly different energies after scattering at x; undergo slightly
different energy losses on their outward path, so that &' £ &. To be precise,
the energy lost along the outgoing path reduces KE; to E, ; while (KE; — &)
lis reduced to (E, ; — &). This is sketched in Fig. 3.13a. D Q

]
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Fig. 3.13  Schemaltics of and nomenclature for (a) the backscattering process at depth x;
within a monoisotopic sample in the language of discrete functions, and (b) the resulting
spectrum. (c) and (d) give the corresponding schematics and nomenclature in the tanguage of
continuous functions,

Before developing further the subject of the spectrum height for scattering
below the surface, it is appropriate at this point to introduce a more cflicient
notation. The subscript i in the preceding equations indicates that the quan-
tities considered refer to a specific slab i and its corresponding channel i at
energy E, ; in the multichannel analyzer. With this subscript, the equations
are cumbersome to read and to write. When it is understood that the quan-
titics discussed here arce really discrete, the subscript i need not be retained,
and Eq. (3.39) can be written as

H(E,) = o(E)QQNt/cos 0. (3.40)

The cross section o is now a function of a continuous variable E, the energy
of the particle immcdidtcly before scattering at any depth x within the
sample. Similarly, H is a function of the continuous variable E, the energy
of a detected particle, and t is the thickness of a slab (at any depth x) that
produces particles detected in the cnergy interval &, the cnergy width of_ a
chmnﬂ’n the multichannel_analyzer. As was previously explained, this
‘energy interval diflers from (he interval &' that these same particles span
immedialely after scattering from a slab of thickness t at depth x. These
definitions and the new notation are explained in Figs. 3.13c and d.

-
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We now return to the derivation of the spectrum height H(E,) for scat-
tering at a depth x below the surface. The surface energy approximation.
cannol be used, since the energy E belore the collision may differ noticcably
from E,. Consequently, the thickness T of a slab at depth x may differ from
that of 7, at the sutface. We shall therefore solve the problem by first cal-
culating the thickness t of a slab in terms ol the energy interval §”. Then we
shall express the energy interval & in terms of the interval & localed at an
energy E, in the energy spectrum.

To find the relation between t and &”, note that the particles scattered at
opposite interfaces of the slab at depth x can be viewed as a backscattering
nrocess at a surface covered by a layer of thickness x. The particles incident
on this surface have an energy E, and the energy difference corresponding to
scattering at the opposite interfaces of the slab there is §”. Exactly the same
condition would prevail at the actual surface of the sample if the incident
energy £, were reduced to E and the encrgy width per channel were sct to
&' rather than & at the multichannel analyzer. It therefore follows from
Eq. (3.37) that

&= [e(E)]N<. | (3.41)

The stopping cross section factor [&(E)] which appears in this equation is
defined in analogy to Eq. (3.12) as

K 1 '
(E)] = ——— 6(E) + ——— e(KE .
[e(£)] o050, s(E) + cos, #(KE) (3.42)

, sand there exists a corresponding energy loss lactor

K dE
" cosfl dx

1 dE
g cosl, dx

[S(EY]

defined in analogy to Eq. (3.11). The interpretation of this encrgy loss factor
in terms of Fig. 3.9 is as follows: [S(E)] is the slope (dashed curve) at the
origin of the encrgy loss versus depth curve, which is measured for particles
of incident energy E, rather than Eq. In other words, [ S(E)] gives the depth
scale of a spectrum in the surface energy approximation when the incident
cnergy of the particles is E. With t expressed in terms ol 6, the height H(E,)
of the spectrum becomes

H(E,) = 6(E)QQ(&"/[e(E)] cos (). (3.44)

(3.43)

KE

This expression for H is incomplele in that &' is not an experimentally
accessible quantity, while & is. The second step is thus to express £ in terms
of the energy interval € at a position E, on the energy scale of a spectrum.
The answer is obtained by considering the energy loss of backscattered
particles along their outward path. Consider two particles whose energies

+

‘energy valucs for lwo particles along their
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Fig. 3.14  Graphical inlcrpretation of Eq.
(3.46). The light linc gives 7' versus cnergy. €’
The henvy sepments indicate the &' and

inward and outward (racks. One particle loses et
slightly more encrgy than the other. A difference eNE
& in the particle encrgy immediately after
scatlering produccs an energy difference & when
the particles emerge from the sample. The two
shaded arcas for the outward paths must be
equal.

ENERGY

immediatcly after backscatlering at depth x differ by &”. The cnergy loss
along the outward path is given by Eq. (3.2) or

= By

fﬂgi}@ Nx/cosl), = —fm: dEfe. (3.45)
Since the slab t is very thin compared to the depth of scattering, one can
assume that scattering lrom the same depth with different encrgies approxi-
mates closely the real situation where particles scatler from the front and
rear surfaces of the slab. The outward path thus is essentially the same for
both patticles and the right-hand side has the same value in both cascs; hence

Ey Ey=—& .
(Prappe = (07" dpfs (3.46)

K

must hold. By assumption of the model, & and & are small compared to KE
and E, and can be treated as differentials, so that §/e(E,) = &'/e(KE), or

&'1E = ¢(KE)/s(E)). (3.47)

The graphical interpretation of this result is sketched in Fig. 3.14. Because
the two particles traverse the same layer on their outward path, it is the arca
under the ¢ ! curve that must be conscrved, Equation (3.47) then follows at
once,

I there is little difference between e(KE) and &(E,), a lincar interpolation
between these two values provides a reasonable approximation to ¢. Then
e(KE) ~ e(E,) + AE &' (Equ), where &'(E,, ) is the derivative of & with respect
to cnergy, cvaluated at some intermediate energy L, along the outward
path. When this expression for &(KE) is used for the ratio e(KE)/e(E,), one
oblains (Feng et al., 1973) T

&' AE .
— = l '"*“,‘l"‘(‘ '.l E R
7= “E (3.48)
Nx o
~] (E ) .
+oosy P Eon) (349)
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This expression shows that the difference between 8’ and & increases with
the length x/cos 0, of the outward path. 1t also shows that & > & for particles
scattered from the surface region of the sample because x is small there,

With Eq. (3.47), the yicld H(E ) from 4 slab located at depth x given by
Eq. (3.44) becomes

&  eKE)
[e(E)]cos 0 ¢(E,)"

H(E,) = o(E)QQ (3.50)

In the discrete notation of Fig. 3.13a and b, this formula takes the form
& e(KE)
[e(E)]cos 0 (k)

The physical interpretation of this result is as follows: As_he incident
beam penctrates the sample the energy of the plojcctilw decreases. As a

consequence (he sealicring cross “section a(f) increnscs, This efleel tends (0

H, = a(E)QQ 3.51)

increase the yncld ll(L,) with dccncasmg, mu ;,y T ol of thc dclcclcd ])dl llclcs

S SO

this dependence is nol as suong as lh.\t for o(E ) bul ¢ c;ms;,ﬂhcl increase or

decrease w1(h dccrcasmg values of I (Fig. 3.7). Conscquently, , (he efT eflect 9f
1e change in s on Wﬂ‘? backscattcung yxelcl may elthel cnhance or co" VVVVV

viieh & increascs wit
%e‘l‘g’i“tl% effcct is to decne'lse the yield as expressed by the mvelsc }__Lgpox-

WLLJ] The contribution from the change in the ratio r(KE)/s(E )

is of lesser importance, [The application of Ty, {3.50) will be discussed in
Scction 5.5.2.]

Alternative derivations of the thick-target yield have been given for uniform
targets (Wenzel, 1952) and for nonuniform targets (Wenzel and Whaling,
1952; Powcrs and Whaling, 1962). Recent work on the thick-target yield has
emphasized specific aspects such as the influence of energy straggling (Van
Wijngaarden et al., 1970; Brice, 1973), the influence of scattering geometry
(Jack, 1973), the dependence on encrgy loss (Behrisch and Scherzer, 1973;
Siritonin et al., 1971, 1972), and analytical formulations (Chu and Ziegler,
1975).

3.6 DEPTH SCALE FOR A HOMOGENEOUS SOLID
CONTAINING MORE THAN ONE ELEMENT
(COMPOUND SAMPLE)

In this section, we shall discuss the backscattering spectrum of a sample
composcd of a homogeneous mixture of several elements. For simplicity we
denote the material as a compound sample although it could be ecither a
mixture or a chemical compound. This case differs from that of the mono-
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isotopic elemental sample considered thus far in this chapter in two significant
ways. First, as the probing particles penetrate the film, they lose energy as
the result of interactions with more than one element. Conscquently, the
stopping cross section depends on the composition of the sample. Second,
when the probing particles with energy E are scattered at a specific depth
within the sample, the value of the kinematic factor K and the scattering
cross section ¢ will depend on the particular mass (atomic number) of the
atom they strike, Since the stopping cross section varics with cnergy, the
energy that the particles lose along identical outward tracks also depends on
the atom struck in the scatlering collision. For a compound sample, the
yield of the backscattering spectrum and the energy-to-depth conversion thus
depend on the clement struck in the collision, All counts gencrated by back-
scallering from a given element constitute the signal of this clement in the
spectrum.

[ the rest of thig seetion and in Section 3.7 we shall consider the particular
case of a sample composed of (wo monoisotopic clements A and B, The
cxlension to the general casc of a multiclemental compound sample is
straightforward, We also assume that the sample is homogencous, ic., of
uniform composition both in lateral dimensions and in depth.

3.6.1 Stopping Cross Section Factor [¢]

To relate the energy E, of the delected particle to the depth x at which the
backscaltering cvent oceurs, we shall follow the formalism described in
Section 3.2 for the depth scale of an clemental target. We use a subscript to
indicate the atom struck, so that E,, and E |, denote the energies of detecled
particles scattered from atoms A and B, respectively. Superscripts arce used
to denotg the stopping medium, so that ™ is the stopping cross scclion of
a material containing elements A and B in the atomic ratio m/n. For a com-
pound, m and n are integers; for a solid solution, for examplc, they nced not
be. In the spirit ol Section 2.5 we shall give preference to the abbreviated
notation &P for ¢*»® even if m and n are not unity. From Chapter 2, the
stopping cross section % of the sample is given by me® + ng®, assuming
that Bragg's rule for the lincar additivity of stopping cross scctions holds
true. Examples of the application of that rule are given in Section 5.4.

For the scattering gecometry shown in Fig. 3.15,-a particle penctrating the
sample to a depth x undergoes an cnergy loss AE,, along the inward path
given by

AE,, = (N*®x/cos 0,)e?, (3.52)

where NAP is the number of*molecules A,,B, per unit volume. The encrgy
loss AE,,, along the outgoing path depends on the collision partner. There-
fore, the energy dilference AE betweeir particles scattercd at the front surface




l';ig. 3.15 Symbols used in the description of
backscattering events in a comppund sample
composed of a homogeneous mixture of two
monoisotopic elements A and B,
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Fig. 3.16 Graphical representations of the energy loss of particles along their inward and
outward paths (heavy lines) through a sample composed of a homogencous mixturc of {wo
monoisotopic elements A and B. The light line is the functional form of dE/dx versus E. Since
dEfdx = NAPsAY; (he same plols apply to g% versus £ as well. Particles scattered at the two

elements cover dlﬂ”ercnt energy ranges along their outward paths, The top of the figure applies’

for scattering by the heavy atom Aj the bottom of the figure is for scatlering by the atom B
which is lighter than A, (Compare this with the corresponding parts of Fig. 3.7 for a monoisotopic
sample.)
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‘and at a depth x can have two values, AE, or ALy, dcpcndin&, on whether

the p'lrthleS scatter from gtom A or atom B. The situation is represented
graphically in Fig. 3.16 in a way qorrcspondmg to Fig. 3.7a. Notice the two
different energy regions covered by particles scattered by atoms A and B.
Thus there aré now two depth scqles, one attached to each signal, as shown
for a single ¢element in Fig. 3.8. These scales are in general different, but not
by more than 10% in most cases for megaelectron volts of *He,

In analogy with the result of Section 3.2 for an elemental sample, we thus
have

AE, = [s]ﬁ“N““x (3.53)
and

AE, = [e]3"N" x, . (3.54)

where

AB , AB , ; )
[SJ 01 Ein + cos 02 Eout,A (3 55)
KU AD 1 AR 1‘ .

= ; LV AR 3.56
[l 02 &in + cos 02 aoul,B S . ( ‘ )

!

These generalized stopmng cross section factors contain thc special case of
an elemental sample composed of elements A or B only as [¢]A or [¢]§ [see
Eq. (3.10)]. As shown in Section 3.2 for elemental stopping cross section
factors, approxnmahons can be used to evaluate the stoppmg cross sections
on the inward path £} and on the outward paths enh a and g)}  for particles
scattered from atoms A or B. The discussion given there applies to the present
case of a compound sample as well. The next section repeats this treatment
in brief.

3.6.2 Approximations to {g]

For regions near the surface, the thickness x is small and the relative
changes of energy along the incident and outward path arc small also.
Therefore, in analogy to Eq. (3.12) one gets

’

1
B AB
[eo]A® os() (Eo) + osozc (KaEo) (3.57)
and
K 1
[eal® = os0, & Eo) + g o (K o), (3.58)

k"
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where the symbols [#0]A" and [, 14" arc used to denote the surface energy
approximation to the stopping cross section factor for particles scattered
from atoms A and B, respectively. '

Similarly, one defines [#]A® and [7]4" as the mean energy approximation.
For the inward path; E;, = 3(E + E,), as given in Eq. (3.15). However, the
intermediate energy E,,, along the outward path is different for particles
scattered from atoms A and B and must be specified for cach case. Following
Eq. (3.16), :

Eoul,A = %(EI,A + I(AE) (359)
and
Eout.B = %(El,ll + ]<I}E)a (360)

where E, 5 and E, ; refer to the detected energy of particles scattered at a
depth x f[rom atoms A and B, respectively. The locations of Eouaand Eg 5
for the mean energy approximation are shown in Fig. 3.16 also.

The value of E can be found from the methods described in Section 3.3
or estimated from the symmetrical mean encrgy approximation, in which
case the values of E;, and E,,, for the signals from A and B are then given by

Eya = Eo — 1 AE, (3.61)
Eip=Eo — §AEy, . (3.62)
Egun = Eya + §AE,, (3.63)
Equp = Eip + §AEg, (3.64)

in analogy with Eqgs. (3.17) and (3.18). Note that in this case different values
of E and E;, are used for the different collision partners.

3.7 HEIGHT OF AN ENERGY SPECTRUM FOR A
HOMOGENEOUS SOLID CONTAINING MORE THAN
ONE ELEMENT (COMPOUND SAMPLE)

In the preceding scction we established the connection between the energy
of a detected backscattered particle and the depth within the homogeneous
compound sample where scattering occurs. In this section we shall discuss
the height of the backscattering spectrum of such a compound sample. Again
we shall consider in detail the case of a mixture of two monoisotopic elements
A and B. The extension to a multiclemental compound sample is straight-
forward.

The backscattering spectrum of such a compound sample is sketched in
Fig. 3.17b. This cnergy spectrum consists of a superposition of the two signals
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Fig, 3.17 Schcmz‘uic of the backscattering process in the surface region of a sample composed
of a homogeneous mixture of two monoisotopic elements A and B (a), and the resulting speetrum

(b).

generated by the elements A and B in the sample. The edge of each signal is
defined by the kinematic factor K of these two elexn?ﬁ?gj‘ﬁ~gfmhﬁi‘aﬁg;(zﬂﬁiﬁg
shown, K, > Ky; that is, A is the heavier of the (wo atomic species. If
HA(E,) and Hy(E,) are the heights of the individual signals generated by
particles detected with energy E, after scattering from clements A and B

the height of the total spectrum H at that energy is given generally by ’

H(E,) = Hp(E,) + Hy(E,). (3.65)

We? shall develop the shape of this total spectrum by first considering scat-
tering from the top surface region.
3.7.1 Spectrum Height for Scattering from
the Top Surface Layer

For backscattering processes near the sample surface, the energy before
scattering can be taken as E,. The expression for scattering from elements
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A and B can then be taken directly from that for an elemental target [Eq.
(3.36)] to give!

Hyo= TAEq)QQN"(xp,0/c08 01) (3.606)

and

" Hy,o = 0p(Eo)QQNR(tp,0/c08 04), (3.67)
where NA® and N4 are the number of atoms A and B per unit volume. The
thicknesses T, o and 1y o are chosen such that particles scattered within these
slabs will have energies between K,Eq and K Eq — & or KgEq and KgEq —
&. There are two such surface slabs now, because the energy lost along the
outward path for particles scattered by atom A differs from that for particles
scattered by atom B. This is shown schematically in the diagram of Fig. 3.17a.
These two widths thus satisly the conditions

&= [EO]QBNABTA,O (3;68)
and .
& = [eo 3" N 5,0, . (3.69)

where NP is the number of moleculat units A,,B, per unit volume. Since
NAP = nNAP and Nj® = nNA®, the surface heights can be written as

Hpo= UA(EO)QQ’”(@@/[EO]QB cos0y) (3.70)

and

Hyo = op(Eo)QQn(8/[ & 5" cosl,). (3;71)

The ratio of these heights is

Hpo  ap(E)m EN :

~ o(Eo) 1 [aA” |

3.72
H E;,_!L,,,,w‘ln,(go, (3.72)

To determine the ratio m/n from a backscattering spectrum, the ratio
[0 ]a%/[£0JAD can be taken as unity in a zeroth-order approximation. This
ratio actually approaches unity within 10%; in most cases for He ion energies
of | to 2 MeV; thus

mfn = [Ha ofoa(E)]/[Hp.o/ou(Eo)]. (3.73)

From this zeroth-o'rder'approximation, one can then obtain a better estimate -

of the ratio [e0]3%/[£0]A" and hence a first-order approximation to m/n.
Typically, this first iteration is sufficient to give a value of the ratio m/n
within the errors of the experimental data,
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0

3.7.2  Spectyum H;pight for Scattering at a Depth

The. calculation of the-spectr‘hm height H(E,) for particles detected at
energy [, is complicated by the gacl that the signals gencrated by scattering
from atoms A and atoms B haye different depth scales. That is, particles
escaping the sample with the same detected energy E, are scatiered from
atoms A at a depth x,, whereas those scattered from atoms B come from a
Fiepth Xy # X, (see Fig. 3.18a), Thus the energies E, and E,, of the particles
immediately before scattering will differ. In analogy to Eq. (3.44), the height
of each signal can be written as ’ ’

HA(E,) = o(EA)QQm(& \'/[6(EA)]A® cos 0,) (3.74)

and
H(E,) = o(Ey)QQn(8y /[6(Eg) 13" cos 0)), (3.75)

where &’ El!ld 5’,3.’ are the energy intervals spanned by particles immediately
alter scattering within the slabs of thickness t, and 7y at depth x, and xj;. One
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—'_>:TB><"“‘
\3'“7/// : Ep
LiiEg /4/
{f%/?? &
BN NN
0 \%:E:—e
L /L)\El
7/ ! £ -t

pe X —>
M= Hat+ Hp 8
H(E,)--—-—w\———,\i A

¥
Q Ha i i l/
o HalE )..___BJ\
= TAT T
Homeee HI
[0 ——— S
It
"
—y il

Ey KgEp KaEo
ENERGY

fig. 3.18  Schematic of the backscattering process at some depth within a sample composed
of a homogeneous mixture of (wo monoisotopic elements A and B (a), and the resulting spectrum

(b).
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84 . o 3.
can relate the energies &, and &y to & by the procedure developed in con-
nection with Eq. (3.47). The result is

& MK AEN)
6 F ABaARA) 3.76
HAE)) = 0A(EA)QQm [e(EA)JA" cos 0y eME) (.79
& " (KyEp) (3.77)

Ha(B) = ool B0 Fo T cos, ()
and-corresponds to Eq. (3.50) for the elemental case. As is true there, the
last factor with the ratio in stopping cross sections is of lesser 1importance.
The main changes as compared with the surface heights Hp o a'nd Hyo
1e from variations in the cross sections g, and oy, and the stopping cross

" section factors [£]4" and [&]3® with energy.

3.8 HIGH-ENERGY EDGE OF AN ENERGY SPECTRUM FOR
AN ELEMENTAL SAMPLE WITH SEVERAL 1SOTOPES -

In the preceding discussions we treated the sample as composed of mono-
isotopic clements. In general, an element has several stable isotopes of the

same atomic number, but different
for each isotope. As a consequence, '
backscattering spectrum with steps in the high-ct
Fig. 3.19. The formalism required to develop the sp

atomic mass. The kinematic factor differs
a sample of such an element has a
rergy cdge as shown in
ectrum height of such a
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Fig. 3.19  Each isotope in an clemental sample com‘ributes a step to the high-energly elc:ge
commensurate with its natural abundance. These isolopic steps are of.ten so close to each 0. 1e;
that the high-energy edge of an isotopic mixture can be replaced by a single step at some averag

location.
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sample is like that for a compound sample. The equations arc simplificd
by the fact that the stopping cross scctions ¢ and scattering cross scclions
are practically the same for cach isotope. However, since the kinecmatic
factor K is different for each isotope, the stopping cross section factor [&]
will differ for each isotope also. Assume that the mass M, is present in a
fractional abundance ny;. Then the kinematic factor K,, will specify a
stopping cross section factor, which we can denote as [¢],. The ratio of
the spectrum heights at the surface for any two isotopes, such as M, and
M, is then

Hygpo _ M3 L2 Jms
Hyo o ma [0,

(3.78)

by Eq. (3.72). For backscattering of *He in the megaclectron voll energy
range, the ratio of isotopic [¢]'s is very close to unity and the ratio of the
spectrum heights at the surface equals the ratio of the fractional abundanccs,
as indicated in Fig. 3.19 for a sample containing five isolopes, such as Ge.
With “He ions in the megaelectron volt range and conventional solid-
state detection systems, the isotopic steps in the high-energy edge are diflicult
to resolve when the element is of medium or heavy mass. The spectrum is
then often interpreted as a single step of an average mass M = Y ;M at
the position KE, in the energy scale. This procedure is actually incorrect,
because the kincmatic factor is not a linear function of M. Strictly taken,
the mean of the isotopic steps is located at KEy = () ;mKy,)Eq and K # Ky,
in general. The difference is insignificant for target masses much larger than
the projectile mass, and usually K is used for K or Kz. We follow this
usage in this book as well. The table of Ziegler (1973) gives Kz, not K.

3.9 ENERGY LOSS AND YIELD RESPOND TO
ATOMS PER UNIT AREA

Up to this point in our development of the subject we have derived general
formulas for converting energy to depth and for calculating the height of a
backscattering spectrum. The purpose of this section is to emphasize the
facts that (i) depth has a specific meaning in backscattering spectrometry
which is not that of distance, as commonly associated with the word, but,

rather refers explicitly to atoms per unit area, and (ii) the height of a back-

scattering spectrum does not depend on the atomic volume density of the
target.

The fact that the energy loss that particles incur when they penetrate
through a sample does not depend on the atomic density can be seen with
the help of a conceptual experiment shown in Fig. 3.20, wherc a becam of

i)
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Fig. 3.20 Three different samples of the same material but different overall density all of
which generate the same backscatlering spectrum.

i)articles is shown incident perpendicularly with energy Eq on three different -

samples. In the first case (Fig. 3.20a), the sa.mple. is a thin f.iln.1 of a%omllc
density N, specilic gravity p, and thickness dx. /\.ltcr transmission lhl()l.lg’\l
the target, the particle energy is E, — 0E. Imagine next t_h.at tl_le.physm.d,
thickness of this sample is increased to a value dx' by slicing it into thin
slabs and spacing them. Clcarly, no encrgy is lost as .lhc beam crosscs lhf:SC
spaces, since no matter is present there. .Hetnce oL is ullcllaf1.ged. Imagine
now that this procedure is carried to the limit so that the additional volume
is distributed microscopically and uniformly throughout the sample. /;\galn,
SE is unchanged, but the atomic density has been re':duccd toavalue N' < .N.
Similarly, the specific gravity is now p' < p. This shows that the cnergy

loss depends only on the amount of material traversed regardless of the

physical thickness. o .
l The number of atoms traversed is cxpressed by N dx = N’ 8x'. The cnergy

loss 8F is given by 0E = (dE/dx)dx = (dE/dx) éx'. This shows that (IE/.ch
depends on the atomic density of the target. On lhc_a other hand, t}m e/nelgy
loss can also be written 6E = eN dx = (¢) N’ §x'. Since N éx = N'dx’, then
¢ = (g). The formal description of energy loss as

SE = &N x (3.79)

has the advantage ol expressing the energy loss in terms of the two physically
relevant quantities: &, the specific energy loss per atom, and N 6x, the number
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of atoms per unit area. For this same reason we prefer the formulation
AE = [¢]N Ax (3.80)

rather than AE = [S]Ax for energy loss in backscattering. Whenever a
measurement made by backscattering spectrometry expresses depth in units
of length, the knowledge of the density has been assumed. The word “depth”
used in connection with backscattering therefore indicates a distance only
when the density is known; otherwise “depth” stands as an abbreviation
for the number of atoms per unit area N Ax over the distance Ax traversed.

The three samples shown in Fig. 3.20 all have the same number of atloms
per unit arca. This is stated by the equality N éx = N’ dx’. It also must follow,
then, that the total numbers of counts generated by t.hese' samples in back-
scattering measurements are the same. Since the energy widths of the back-
scattering signals from these samples are the same, the spectra of all three
are indistinguishable. Thercfore the height (counts per channcl) of a back-
scattering signal is independent of the atomic density of (he sample. For
example, backscattering measurements on a sample of evaporated silicon
that- has an atomic density less than that of bulk silicon will give spectra
identical to those obtained from bulk silicon. One should note, however,
that density-changes generated by additional atoms ol a different species
do change the spectrum, as discussed further in Section 5.3. Such modifi-

_calions arc not of the type described by Fig. 3.20, because (he additional

volume contains energy-absorbing atoms, not voids.

3.10  NUMERICAL METHODS TO COMPUTE
BACKSCATTERING SPECTRA

Many laboratories engaged in backscattering analysis have developed
computer programs to calculatc backscallering spectra. Most of thesc
programs are tailored to meet the specific needs of the respective laboratories.

One program is available in documented form.t It is written in Fortran
and can accommodate samples consisting of up to 10 distinct layers with up
to 10 elements. The program considers only beams of normal incidence and
does not incorporale energy straggling. Bragg’s rule of additivity of stopping
cross scclions is assumed to be valid, and the composition and thickness of
each layer in the sample are constant.

t The program is available from Rome Air Development Center, Air Force Systems Com-
mand, Griffiss Air Force Base, New York, as Report RADC-TR-76-182 (June 1976), entitled
“Computer Program to Synthesize Backscattering Spectra for Samples Composcd of Successive
Laycrs of Uniform Thickness and Composition,” by P. Bdrgesen, I. M. Harris, and B, M. U.
Scherzer.




